首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
本文首次用DSC研究水合紫膜的热力学性质了,实验发现室温至400K内紫膜有三个吸热峰.水合对紫膜特别是其中蛋白质的结构及结构转变有很大影响.在R≌O.05时,BR变性峰才变得更为明显,其焓值也开始由大到小变化.在R≌O.09处,转变峰Ⅰ消失.在R=0.17处,BR变性峰的焓值及半宽分别达到其稳定值和最小值,△H=2.82±0.18 cal/gPM和△T_(1/2)=5.88K.在R≌0.25处,开始出现反映BR三、四级结构变化及紫膜晶格转化的峰Ⅱ.在R≌0.40处,变性峰半宽及峰温分别达到其稳定值△T_(1/2)=9.20±0.62K和T_3=373.1±0.46K.  相似文献   

2.
本文用差示扫描量热技术和热重分析技术分别测定了结合有不同脂肪酸的牛血清白蛋白在不同相对湿度下的水合值R、热变性温度T_D及变性焓ΔH_D。实验结果表明,在任一实验相对湿度下,脂肪酸含量的增加均导致牛血清白蛋白(简称BSA)的水合值增加,其增加程度因脂肪酸的种类而异;在低相对湿度下,脂肪酸含量的增加对BSA的热变性起敏化作用即使T_D降低;而在高相对湿度(例97%)及水溶液状态下,脂肪酸含量的增加对BSA的热变性起保护作用即使T_D增加,其影响程度为月桂酸>油酸>硬脂酸。月桂酸和油酸使BSA的ΔH_D增加,硬脂酸使其ΔH_D降低。实验还表明脂肪酸与低温吸热峰的出现无关。  相似文献   

3.
D-乳酸脱氢酶基因克隆及其表达   总被引:5,自引:0,他引:5  
构建了一株产D ,L 乳酸的乳杆菌 (Lactobacillussp .)MD 1的基因文库。利用乳酸脱氢酶和丙酮酸裂解酶缺陷的EscherichiacoliFMJ1 4 4作为宿主 ,在厌氧条件下通过互补筛选获得乳酸脱氢酶基因 (ldh) ,非变性聚丙烯酰胺凝胶电泳 (Native PAGE)检测证明其阳性克隆表现出D 乳酸脱氢酶 (D LDH)活性。核酸序列分析表明 ,ldhD的ORF编码 331个氨基酸残基组成的蛋白质有两个保守区域 ,其中V1 47~D1 76 区是NADH的结合位点 ,R77~E1 0 7区据报道是酶的活性部位。该菌株D LDH和D羟基异己酸脱氢酶 (D HicDH)属于NADH依赖性脱氢酶家族 ,ldhD和其他乳杆菌属的ldhD及D HicDH基因和编码的氨基酸序列相似性较低 ,核酸序列相似性最高达 4 9 33% ,氨基酸序列相同性最高为 4 2 % ,是一个新的D 乳酸脱氢酶基因  相似文献   

4.
蛋白质热变性前新峰形成机制探讨   总被引:4,自引:0,他引:4  
赵林 《生物物理学报》1999,15(4):627-630
蛋白质热变性前新峰是蛋白质热变性过程的共性。通过对蛋白质三级结构特征的理论分析及实验验证的方法,研究了蛋白质热变性前新峰的变化规律,从而揭示了该峰产生的机理。采用DSC方法对以不同结构水和十二烷基硫酸钠溶液水合溶菌酶样本进行了研究, 结果表明蛋白质的这种热变性前新峰的存在是由于维持其三级结构的疏水相互作用所造成, 新峰出现的峰温及其焓变与水的结构改变及由此而造成的蛋白质中结合水的含量和结构功能的变化有着直接的关系。  相似文献   

5.
[目的]研究高效、廉价制备人乳酸脱氢酶LDH5参考物质的方法。[方法]选取人乳酸脱氢酶基因(LDHA)CDS序列进行分析及优化,合成优化后的基因,克隆至表达载体pRSF-Duet中构建重组乳酸脱氢酶LDH5表达载体。使用大肠杆菌E.coli BL21(DE3)菌株对目的基因进行表达,异丙基硫代半乳糖苷酶(IPTG)诱导,镍离子亲和层析纯化,SDS-PAGE鉴定酶纯度,BCA法分析酶浓度,全自动生化仪分析酶活性、稳定性。[结果]经优化后的LDHA基因的大肠杆菌密码子适应指数为1;纯化蛋白达到电泳纯,比活性达19.01 U/mg,在4℃及25℃可稳定保存8 d。[结论]重组乳酸脱氢酶的表达效率为100 mg/L,酶活性、稳定性、纯度达到临床生化检测的参考物质的条件,可以作为血清乳酸脱氢酶检测的标准物质。  相似文献   

6.
增溶胆碱脱氢酶在较低的PH条件下易于失活,底物胆碱的存在有助于提高基PH稳定性。热变性酶蛋白分子中β结构所占比例上升,α螺旋结构比例下降,其中β结构的变化主要来自于β回折和310螺旋的贡献,底物对CDH的热变性具有一定的保护作用。  相似文献   

7.
【目的】探究缺失编码丙酮酸脱氢酶蛋白的aceE基因对猪链球菌生长特性、三羧酸循环和丙酮酸代谢的影响。【方法】通过测量菌液的OD600值,绘制野生型菌株与aceE基因缺失突变株的生长曲线;利用试剂盒测定三羧酸循环和丙酮酸代谢旁路中乙酰CoA、琥珀酸CoA、延胡索酸、草酰乙酸、丙酮酸、乳酸和ATP的含量,通过荧光定量qRT-PCR确定柠檬酸合酶基因、苹果酸脱氢酶基因、琥珀酸脱氢酶基因、异柠檬酸脱氢酶基因、丙酮酸脱羧酶基因、乳酸脱氢酶基因、乙醇脱氢酶基因和乙醛脱氢酶基因的表达水平。【结果】与野生株相比,菌株ΔaceE在平台期OD600值下降;添加1g/L乙酸盐能够显著提升菌株ΔaceE平台期OD600值。菌株ΔaceE的丙酮酸含量上升,ATP含量下降;三羧酸循环代谢中乙酰CoA、琥珀酸CoA、延胡索酸含量降低;柠檬酸合酶基因和苹果酸脱氢酶基因表达水平上升,琥珀酸脱氢酶基因和异柠檬酸脱氢酶基因表达水平下调;在丙酮酸代谢旁路中丙酮酸脱羧酶基因、乳酸脱氢酶基因、乙醇脱氢酶基因和乙醛脱氢酶基因表达水平上升。【结论】结果显示,菌株ΔaceE三羧酸循环活性降低,虽然能够通过PDH旁路将部分丙酮酸分解为乙...  相似文献   

8.
聚合酶链式反应热流变化的DSC实验研究   总被引:1,自引:0,他引:1  
在PCR每个循环中,目的基因在DNA聚合酶的催化作用下实现快速扩增,同时伴随着化学键的断裂和生成,而不同循环数的扩增效率不同,引起的热现象也不同。实验通过差示扫描量技术,以HBV为PCR扩增体系,分别研究了变性、退火和延伸阶段的热焓及其随循环数的变化,通过分析得出:变性阶段是放热过程,第17个循环放热量达到最大,退火和延伸阶段是吸热过程;3个阶段的热焓随循环数增加都发生明显的变化,其中变性阶段的热流变化最关键。  相似文献   

9.
蛋白质的初级结合水对于蛋白质分子的构象及热稳定性有着重要影响。将不同吸附水量的牛血清白蛋白样品密封入铝制挥发型样品盘中,用P/E DSC_(-2)型差示扫描量热计对蛋白样品的变性温度、变性焓及变性前后的比热变化等热力学参数进行测量。实验证明,随水含量增多变性温度T_D下降,当含水量R(克H_2O/克BSA)>0.24时T_D的下降渐微,当R=0.5时T_D通过最小值后又略有增大。变性焓ΔH_D也与水含量密切相关,当R<0.5时ΔH_D渐趋恒值,为200千卡/克分子。本实验还观察到在低含水量范围内0.02相似文献   

10.
通过对保加利亚乳杆菌(Lactobacillus delbrueckii subsp.bulgaricus)L-乳酸脱氢酶(L-lactate dehydrogenase, L-LDH)同工酶基因的异源表达、酶活测定和摇瓶发酵研究L-LDH在乳酸合成中的作用。将保加利亚乳杆菌ATCC11842中L-乳酸脱氢酶基因ldb0120和ldb0094分别克隆至载体pET28a(+)中,构建重组表达载体pET28aldb0120和pET28aldb0094,并转化到大肠埃希菌(Escherichia coli) BL21(DE3)中进行表达。进一步对重组蛋白进行Ni-NTA柱亲和层析和酶学活性测定,结果显示,LDB0120和LDB0094的比活力分别为0和25 U/mg,表明LDB0094是具有低活性的L-乳酸脱氢酶,而LDB0120不具有活性。对两株重组菌分别进行好氧和微好氧发酵,重组菌E.coli BL21/pET28aldb0094在好氧和微好氧条件可以合成L-乳酸,浓度分别为41.9和227.9 mg/L,而菌株E.coli BL21/pET28aldb0120在两种培养条件下均基本不合...  相似文献   

11.
12.
We studied the thermal denaturation of eglin c by using CD spectropolarimetry and differential scanning calorimetry (DSC). At low protein concentrations, denaturation is consistent with the classical two-state model. At concentrations greater than several hundred microM, however, the calorimetric enthalpy and the midpoint transition temperature increase with increasing protein concentration. These observations suggested the presence of intermediates and/or native state aggregation. However, the transitions are symmetric, suggesting that intermediates are absent, the DSC data do not fit models that include aggregation, and analytical ultracentrifugation (AUC) data show that native eglin c is monomeric. Instead, the AUC data show that eglin c solutions are nonideal. Analysis of the AUC data gives a second virial coefficient that is close to values calculated from theory and the DSC data are consistent with the behavior expected for nonideal solutions. We conclude that the concentration dependence is caused by differential nonideality of the native and denatured states. The nondeality arises from the high charge of the protein at acid pH and is exacerbated by low buffer concentrations. Our conclusion may explain differences between van't Hoff and calorimetric denaturation enthalpies observed for other proteins whose behavior is otherwise consistent with the classical two-state model.  相似文献   

13.
Molecular basis of co-operativity in protein folding.   总被引:4,自引:0,他引:4  
The folding/unfolding transition of proteins is a highly co-operative process characterized by the presence of very few or no thermodynamically stable partially folded intermediate states. The purpose of this paper is to present a thermodynamic formalism aimed at describing quantitatively the co-operative folding behavior of proteins. In order to account for this behavior, a hierarchical algorithm aimed at evaluating the folding/unfolding partition function has been developed. This formalism defines the partition function in terms of multiple levels of interacting co-operative folding units. A co-operative folding unit is defined as a protein structural element that exhibits two-state folding/unfolding behavior. At the most fundamental level are those structural elements that behave co-operatively as a result of purely local interactions. Higher-order co-operative folding units are formed through interactions between different structural elements. The hierarchical formalism utilizes the crystallographic structure of the protein as a template to generate partially folded conformations defined in terms of co-operative folding units. The Gibbs free energy of those states and their corresponding statistical weights are then computed using experimental energetic parameters determined calorimetrically. This formalism has been applied to the case of myoglobin. It is shown that the hierarchical partition function correctly predicts the presence, energetics and co-operativity of the heat and cold denaturation transitions. The major contribution to the co-operative folding behavior arises from the solvent exposure of non-polar residues located in regions complementary to those that have undergone unfolding. This entropically uncompensated and energetically unfavorable solvent exposure characterizes all partially folded states but not the unfolded state, thus minimizing the population of partially folded intermediates throughout the folding/unfolding transition.  相似文献   

14.
When urea is added to ribonuclease A that has already been denatured by salt (CaCl2, LiClO4 or LiCl were used), a second co-operative transition occurs, supporting the previous demonstration that these salts cause only partial denaturation. Also we have studied the effect of the salts on the urea denaturation, and the effect of urea on the salt denaturation. At low concentrations urea makes the salt transitions occur at lower concentrations, but at higher concentrations it changes the transition so that the completely disordered protein found in urea is produced by the salt. At low concentrations the salts actually stabilize the protein against denaturation by urea, but at higher concentrations they destabilize it. The data are presented in “phase diagrams” which are found to be very useful for such three-component systems.  相似文献   

15.
A quantitative analysis has been made of the kinetics of disulphide bond formation, breakage, and rearrangement which occur during the folding and unfolding of the pancreatic trypsin inhibitor. The results have been used to infer the energetics of the protein conformational transitions which accompany each step.The folding transition is shown to be a co-operative process in which all intermediate states with one or two disulphide bonds are unstable relative to the unfolded, reduced protein and that in the fully folded conformation with three disulphide bonds. The approximate two-state nature of the transition at equilibrium was demonstrated experimentally. The folding transition of the inhibitor which has been determined kinetically is therefore analogous to that observed generally with other globular proteins.  相似文献   

16.
Kamen DE  Griko Y  Woody RW 《Biochemistry》2000,39(51):15932-15943
Pectate lyase C (pelC) was the first protein in which the parallel beta-helix structure was recognized. The unique features of parallel beta-helix-containing proteins-a relatively simple topology and unusual interactions among side chains-make pelC an interesting protein to study with respect to protein folding. In this paper, we report studies of the unfolding equilibrium of pelC. PelC is unfolded reversibly by gdn-HCl at pH 7 and 5, as monitored by far- and near-UV CD and fluorescence. The coincidence of these spectroscopically detected transitions is consistent with a two-state transition at pH 7, but the three probes are not coincident at pH 5. No evidence was found for a loosely folded intermediate in the transition region at pH 5. At pH 7, the for unfolding is 12.2 kcal/mol, with the midpoint of the transition at 0.99 M gdn-HCl and m = 12.3 kcal/(mol.M). Thus, pelC is unusually stable and has an m value that is much larger than for typical globular proteins. Thermal denaturation of pelC has been studied by differential scanning calorimetry (DSC) and by CD. Although thermal denaturation is not reversible, valid thermodynamic data can be obtained for the unfolding transition. DeltaH(van't Hoff)/DeltaH(cal) is less than 1 for pHs between 5 and 8, with a maximum value of 0.91 at pH 7 decreasing to 0.85 at pH 8 and to 0.68 at pH 5. At all pHs studied, the excess heat capacity can be deconvoluted into two components corresponding to two-state transitions that are nearly coincident at pH 7, but deviate more at higher and lower pH. Thus, pelC appears to consist of two domains that interact strongly and unfold in a cooperative fashion at pH 7, but the cooperativity decreases at higher and lower pH. The crystal structure of pelC shows no obvious domain structure, however.  相似文献   

17.
Heat denaturation of orosomucoid in solutions of methanol concentrations ranging from 0 to 70% (v/v) has been studied by using circular dichroism, intrinsic protein fluorescence and thermal difference absorption spectroscopy. Regardless of its high saccharide content (40%), the highly cooperative denaturation transition of orosomucoid is fully reversible in neutral water solution. A two-state model has been successfully applied; the numerical analysis results in thermodynamical parameter values that are in close agreement with previously reported experimental data from calorimetric measurements. However, in solutions containing even minute concentrations of methanol (5%) the heat denaturation is irreversible. After cooling of the denatured protein the refolded molecules exhibit a higher α-helical content than the native one. Possibilities of methanol interaction with native and denatured protein molecule are discussed.  相似文献   

18.
A unique three protein two-component system is present in Mycobacterium tuberculosis comprising of two histidine kinases (Rv0600c/HK1 and Rv0601c/HK2) and a response regulator (Rv0602c/TcrA). The HK2 is a novel HPt-mono domain protein absent in other bacteria. We present here the temperature and urea induced denaturation study of HK1 and HK2 using circular dichroism and fluorescence spectroscopy. HK1 and HK2 are thermally quite stable. Thermal transition of HK1 is a two-state process and that of HK2 is a three-state process. Urea denaturation of HK1 and HK2 is a three-state and two-state process, respectively. The DeltaG degrees of the two transitions during urea induced unfolding of HK1 is 4.76+/-0.6 kcal/mol and -7.11+/-0.8 kcal/mol. Unfolding of HK2 in presence of urea has DeltaG degrees of 4.766+/-0.5 kcal/mol. The intrinsic fluorescence study of HK2 unfolding implies flexibility of proline rich loop in the tryptophan bearing HAMP domain.  相似文献   

19.
We have determined the solution structures, equilibrium properties and ultra-fast folding kinetics for three bacterial homologues of the peripheral subunit-binding domain (PSBD) family. The mesophilic homologue, BBL, was less stable than the thermophilic and hyper-thermophilic variants (E3BD and POB, respectively). The broad unfolding transitions of each PSBD, when probed by different techniques, were essentially superimposable, consistent with co-operative denaturation. Temperature-jump and continuous-flow fluorescence methods were used to measure the folding kinetics for E3BD, POB and BBL. E3BD folded fairly rapidly at 298K (folding half-time approximately 25 micros) and BBL and POB folded even faster (folding half-times approximately 3-5 micros). The variations in equilibrium and kinetic behaviour observed for the PSBD family resembles that of the homeodomain family, where the folding pattern changes from apparent two-state transitions to multi-state kinetics as the denatured state becomes more structured. The faster folding of POB may be a consequence of its higher propensity to form helical structure in the region corresponding to the folding nucleus of E3BD. The ultra-fast folding of BBL appears to be a consequence of residual structure in the denatured ensemble, as with engrailed homeodomain. We discuss issues concerning "one-state", downhill folding, and find no evidence for, and strong evidence against, it occurring in these PSBDs. The shorter construct used previously for BBL was destabilized significantly and the stability further perturbed by the introduction of fluorescent probes. Thermal titrations for 11 side-chains scattered around the protein, when probed by (13)C-NMR experiments, could be fit globally to a common co-operative transition.  相似文献   

20.
G Steger  T Po  J Kaper    D Riesner 《Nucleic acids research》1987,15(13):5085-5103
Sequence variants of the double-stranded form of satellite RNAs of cucumber mosaic virus (dsCARNA 5) were analyzed for the possibility to experimentally detect minor nucleotide sequence changes. Denaturation maps (helix-probability versus position of the nucleotide in the sequence versus temperature) were calculated applying the Poland algorithm. Optical denaturation curves and temperature-gradient gel mobility curves were simulated using the denaturation maps and were compared with experimental results from optical melting and temperature-gradient gel electrophoresis (Tien Po et al., accompanying paper). Melting of the dsRNAs starts from both ends of the molecule in two transitions of low co-operativity, continues in the right part in a highly co-operative transition, and is finished in another highly co-operative transition including strand-separation. Whereas all parts of the molecule contribute uniformly to the optical melting curve, opening of the ends predominates in the retardation transition in gel electrophoresis. Detailed discussion of the influence of base pair changes in the sequence shows that a single base pair change may be detected by temperature-gradient gel electrophoresis, if it is located in certain favorable locations, whereas its detection in optical melting curves is possible only in very special cases. The systematic differences found in the accompanying paper between necrogenic and non-necrogenic dsCARNA 5 could be interpreted on the basis of such nucleotide sequence differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号