首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physical work, high ambient temperature and wearing protective clothing can elevate body temperature and cardiovascular strain sufficiently to degrade performance and induce heat-related illnesses. We have recently developed an Arm Immersion Cooling System (AICS) for use in military training environments and this paper will review literature supporting such an approach and provide details regarding its construction. Extremity cooling in cool or cold water can accelerate body (core temperature) cooling from 0.2 to 1.0 °C/10 min vs. control conditions, depending on the size/surface area of the extremity immersed. Arm immersion up to the elbow results in greater heat loss than hand- or foot-only immersion and may reduce cardiovascular strain by lowering heart rate by 10–25 beats/min and increase work tolerance time by up to 60%. The findings from studies in this paper support the use of AICS prototypes, which have been incorporated as part of the heat stress mitigation procedures employed in US Army Ranger Training and may have great application for sports and occupational use.  相似文献   

2.
The influences of both hypobaric hypoxia and cold on peripheral circulation were studied using the finger cooling test (measurement of the decrease in finger temperature, measured at the dorsal surface of the finger, during immersion of the hand in 0° C water for 20 min) at Qinghai Plateau. The same test was carried out at simulated altitudes in a 25° C climatic chamber to separate the hypobaric hypoxia influence from that of cold. In Japanese subjects at Qinghai Plateau there was a significant difference between finger skin temperatures (FSTs) during 20 min of 0° C water immersion at altitudes of 2260 m and 4860 m by ANOVA. Mean finger skin temperature during the 20-min immersion (5–20 min, MST) measured at 4860 m was significantly lower than that at 2260 m. In Tibetan subjects, there was also a significant difference between FSTs at 2260 m and at 4860 m by ANOVA. MST at 4860 m tended to be lower than that at 2260 m. In the 25° C climatic chamber, there was a significant difference between FSTs of Japanese expedition members at 2000 m and at 4000 m by ANOVA. MST was higher at 4000 m than at 2000 m, contrary to the data obtained in Qinghai. In conclusion, the higher skin temperature in response to local cold immersion, which would have been caused by stronger hypobaric hypoxia, must have been masked by the lower ambient temperature.  相似文献   

3.
An experiment was undertaken to answer long-standing questions concerning the nature of metabolic habituation in repeatedly cooled humans. It was hypothesised that repeated skin and deep-body cooling would produce such a habituation that would be specific to the magnitude of the cooling experienced, and that skin cooling alone would dampen the cold-shock but not the metabolic response to cold-water immersion. Twenty-one male participants were divided into three groups, each of which completed two experimental immersions in 12 °C water, lasting until either rectal temperature fell to 35 °C or 90 min had elapsed. Between these two immersions, the control group avoided cold exposures, whilst two experimental groups completed five additional immersions (12 °C). One experimental group repeatedly immersed for 45 min in average, resulting in deep-body (1.18 °C) and skin temperature reductions. The immersions in the second experimental group were designed to result only in skin temperature reductions, and lasted only 5 min. Only the deep-body cooling group displayed a significantly blunted metabolic response during the second experimental immersion until rectal temperature decreased by 1.18 °C, but no habituation was observed when they were cooled further. The skin cooling group showed a significant habituation in the ventilatory response during the initial 5 min of the second experimental immersion, but no alteration in the metabolic response. It is concluded that repeated falls of skin and deep-body temperature can habituate the metabolic response, which shows tissue temperature specificity. However, skin temperature cooling only will lower the cold-shock response, but appears not to elicit an alteration in the metabolic response.  相似文献   

4.
While heat acclimatization reflects the development of heat tolerance, it may weaken an ability to tolerate cold. The purpose of this study was to explore cold-induced vasodilation (CIVD) responses in the finger of tropical indigenes during finger cold immersion, along with temperate indigenes. Thirteen tropical male indigenes (subjects born and raised in the tropics) and 11 temperate male indigenes (subjects born and raised in Japan and China) participated. Subjects immersed their middle finger at 4.3±0.8 °C water for 30 min. Rectal temperature, skin temperatures, finger skin blood flow, blood pressure and subjective sensations were recorded during the test. The results showed that: (1) the tropical group demonstrated a lower minimum (Tmin), maximum (Tmax) and mean finger temperature (Tmean) compared to those of the temperate group (P<0.05); (2) seven tropical indigenes demonstrated a late-plateau type of CIVD pattern, which is characterized by a pronounced 1st vasoconstriction and a single CIVD with a faint and weak 2nd vasoconstriction, whereas no temperate indigene demonstrated the late-plateau type; and (3) the hand temperature at the end of finger immersion was 3 °C lower in the tropical than the temperate group (P<0.05). These results indicate that tropical indigenes have less active responses of arterio-venous anastomoses in the finger and weaker vasoconstrictions after the first CIVD response during finger cold immersion, which can be considered as being more vulnerable to cold injury of the periphery in severe cold.  相似文献   

5.
Alterations to the finger skin temperature (Tsk) and blood flow (FBF) before and after cold immersion on exposure to an Antarctic environment for 8 weeks were studied in 64 subjects. There was a significant fall in Tsk and increase in finger blood flow after 1 week of Antarctic exposure. The Tsk did not further change even after 8 weeks of stay in Antarctica but a significant increase in FBF was obtained after 8 weeks. The cold immersion test was performed at non-Antarctic and Antarctic conditions by immersing the hand for 2 min in 0–4° C cold water. In the non-Antarctic environment the Tsk and FBF dropped significantly (P < 0.001) indicating a vasoconstriction response. Interestingly after 8 weeks of stay in Antarctic conditions, the skin temperature dropped (P < 0.001) but the cold induced fall in FBF was inhibited. Based on these observations it may be hypothesized that continuous cold exposure in Antarctica results in vasodilatation, which overrides the stronger vasoactive response of acute cold exposure and thus prevents cold injuries.  相似文献   

6.
Whole-body cryotherapy (WBC) involves exposing minimally dressed participants to very cold air (injecting liquid nitrogen with temperature −195 °C), either in a specially designed chamber (cryo-chamber) or cabin (cryo-cabin), for a short period of time. The aim of this study was to examine the actual temperature of the air in the cryo-cabin at different locations throughout the cabin by using human subjects and a manikin. Additionally, we monitored skin temperature before and for 60 min after the cryo-cabin session. Twelve subjects completed one 3 min cryo-cabin session. Temperature next to the skin was assessed during the session, while the skin temperature was monitored before, 3 min after and every 10 min for 60 min after completing the session. There was a statistically significant interaction (time×position) for temperature among the different body parts during the WBC, and for skin temperature among different body parts after the cryo-cabin session. Statistically significant time effects during and following cryo-cabin session were present for all body parts. We showed that actual temperature in the cryo-cabin is substantially different from the one reported by the manufacturer. Thermal response after cryo-cabin session is similar to response observed after cryo-chamber cold exposure reported in previously published studies. This could be of great practical value as cryo-cabins are less expensive and easier to use compared to cryo-chambers.  相似文献   

7.
This study investigated whether there are any gender differences in body-heating strategies during cold stress and whether the immune and neuroendocrine responses to physiological stress differ between men and women. Thirty-two participants (18 men and 14 women) were exposed to acute cold stress by immersion to the manubrium level in 14 °C water. The cold stress continued until rectal temperature (TRE) reached 35.5 °C or for a maximum of 170 min. The responses to cold stress of various indicators of body temperature, insulation, metabolism, shivering, stress, and endocrine and immune function were compared between men and women. During cold stress, TRE and muscle and mean skin temperatures decreased in all subjects (P < 0.001). These variables and the TRE cooling rate did not differ between men and women. The insulative response was greater in women (P < 0.05), whereas metabolic heat production and shivering were greater (P < 0.05) in men. Indicators of cold strain did not differ between men and women, but men exhibited larger changes in the indicators of neuroendocrine (epinephrine level) and in immune (tumor necrosis factor-α level) responses (both P < 0.05). The results of the present study indicated that men exhibited a greater metabolic response and shivering thermogenesis during acute cold stress, whereas women exhibited a greater insulative response. Despite the similar experience of cold strain in men and women, the neuroendocrine and immune responses were larger in men. Contrary to our expectations, the cooling rate was similar in men and women.  相似文献   

8.
The combined thermal load created by exercise and a hot environment is associated with an exaggerated core temperature response. The elevated core temperature is believed to increase the total stress of the exercise. Increased stress during exercise has been associated with increased levels of cortisol. The association of cortisol with increased inflammatory responses following exercise in the heat is equivocal. Thus, the purpose of the current investigation was to explore the relationship between increases in rectal temperature (Tre) and TNFα and cortisol. To induce Tre changes, 8 male subjects (mean±SD, age=23.6±2 yr, VO2max=52.8±3.7 mL/kg/min, BMI=24.2±1.9) participated in two 40 min trials of cycle ergometry at 65% of VO2peak immersed to chest level in cool (25 °C) and warm (38.5 °C) water. Tre was monitored throughout each trial, with blood samples taken immediately pre and post of each trial. Neither cortisol nor TNFα changed significantly during exercise in the cool water; however, in the warm trial, both cortisol and TNFα significantly increased (p<0.004). Concordance correlations (Rc) between Δ cortisol and Δ TNFα indicated a strong but non-significant correlation (Rc=0.833, p=0.135). In conclusion, changes in core temperature may be impacting the relationship between exercise induced changes in cortisol and TNFα. Therefore, acute moderate-intensity exercise (40 min or less) in warm water impacts the stress and inflammatory response. Understanding this is important because exercise load may need to be adjusted in warm and hot environments to avoid the negative effects of elevated stress and inflammation response.  相似文献   

9.
The effects of alcohol on core cooling rates (rectal and tympanic), skin temperatures, and metabolic rate were determined for 10 subjects rendered hypothermic by immersion for 45 min in 10 degrees C water. Experiments were duplicated with and without a 20-min period of exercise at the beginning of cold water immersion. Measurements were continued during rewarming in a hot bath. With blood alcohol concentrations averaging 82 mg 100 mL-1, core cooling rates and changes in skin temperatures were insignificantly different from controls, even if the exercise period was imposed. Alcohol reduced shivering metabolic rate by an overall mean of 13%, insufficient to affect cooling rate. Alcohol had no effect on metabolic rate during exercise. During rewarming by hot bath, the amount of 'afterdrop' and rate of increase in core temperature were unaffected by alcohol. It was concluded that alcohol in a moderate dosage does not influence the rate of progress into hypothermia or subsequent, efficient rewarming. This emphasizes that the high incidence of alcohol involvement in water-related fatalities is due to alcohol potentiation of accidents rather than any direct effects on cold water survival, although very high doses of alcohol leading to unconsciousness would increase rate of progress into hypothermia.  相似文献   

10.
This study examined the effects of an oral 30-mg dose of pyridostigmine bromide (PYR) on thermoregulatory and physiological responses of men undergoing cold stress. Six men were immersed in cold water (20 degrees C) for up to 180 min on two occasions, once each 2 h after ingestion of PYR and 2 h after ingestion of a placebo. With PRY, erythrocyte cholinesterase inhibition was 33 +/- 12% (SD) 110 min postingestion (10 min preimmersion) and 30 +/- 7% at termination of exposure (mean 117 min). Percent cholinesterase inhibition was significantly related to lean body mass (r = -0.91, P less than 0.01). Abdominal discomfort caused termination in three of six PYR experiments but in none of the control experiments (mean exposure time 142 min). During immersion, metabolic rate, ventilatory volume, and respiratory rate increased significantly (P less than 0.05) over preimmersion levels and metabolic rate increased with duration of immersion (P less than 0.01) in both treatment but did not differ between conditions. PYR had no significant effect on rectal temperature, mean body temperature, thermal sensations, heart rate, plasma cortisol, or change in plasma volume. It was concluded that a 30-mg dose of PYR does not increase an individual's susceptibility to hypothermia during cold water immersion; however, in combination with cold stress, PYR may result in marked abdominal cramping and limit cold tolerance.  相似文献   

11.
The relative importance of skin vs. core temperature for stimulating cold acclimation (CA) was examined by 5 wk of daily 1-h water immersions (20 degrees C) in resting (RG) and exercising (EG) subjects. Rectal temperature fell (0.8 degrees C; P < 0.05) during immersion only in RG. Skin temperature fell (P < 0.05) similarly in both groups. Physiological responses during cold-air exposure (90 min, 5 degrees C) were assessed before and after CA. Body temperatures and metabolic heat production were similar in both groups with no change due to CA. Cardiac output was lower (P < 0.05) in both groups post-CA (10.4 +/- 1.2 l/min) than pre-CA (12.2 +/- 1. 0 l/min), but mean arterial pressure was unchanged (pre-CA 107 +/- 2 mmHg, post-CA 101 +/- 2 mmHg). The increase in norepinephrine was greater (P < 0.05) post-CA (954 +/- 358 pg/ml) compared with pre-CA (1,577 +/- 716 pg/ml) for RG, but CA had no effect on the increase in norepinephrine for EG (pre-CA 1,288 +/- 438 pg/ml, post-CA 1,074 +/- 279 pg/ml). Skin temperature reduction alone may be a sufficient stimulus during CA for increased vasoconstrictor response, but core temperature reduction appears necessary to enhance sympathetic activation during cold exposure.  相似文献   

12.
Five men, aged 31.2 years (SD 2.3), under semi-nude conditions and resting in a dorsal reclining position, were exposed to thermoneutral air for 30 min, followed immediately by a cold water (15°C) immersion for 60 min. Cardiac output was measured using a dualbeam Doppler flow meter. During immersion in cold water, cardiac frequency (f c) showed an initial bradycardia. The lowest values were reached at about 10 min after immersion, 58.3 (SD 2.5) to 48.3 (SD 7.8) beats min–1 (P < 0.05). By the 20th min of exposure,f c had gradually risen to 70.0 beats min–1 (SD 6.6,P < 0.05). This change could be due to the inhibition of the initial vagal reflex by increased catecholamine concentration. Stroke volume (V s) was significantly increased (P < 0.05) during the whole cold immersion period. Cardiac output, increased from 3.57 (SD 0.50) to 6.26 (SD 1.33)1 min–1 (P < 0.05) and its change with time was a function of bothV s andf c. On the other hand, systolic flow acceleration was unchanged during the period of immersion. The changes in the respiratory variables (ventilation, oxygen uptake, carbon dioxide output and respiratory exchange ratio) during immersion showed an initial hyperventilation followed, as immersion proceeded, by a slower metabolic increase due to shivering.  相似文献   

13.
The aim of this study was to ascertain whether repeated local cooling induces the same or different adaptational responses as repeated whole body cooling. Repeated cooling of the legs (immersion into 12 degrees C water up to the knees for 30 min, 20 times during 4 weeks = local cold adaptation - LCA) attenuated the initial increase in heart rate and blood pressure currently observed in control subjects immersed in cold water up to the knees. After LCA the initial skin temperature decrease tended to be lower, indicating reduced vasoconstriction. Heart rate and systolic blood pressure appeared to be generally lower during rest and during the time course of cooling in LCA humans, when compared to controls. All these changes seem to indicate attenuation of the sympathetic tone. In contrast, the sustained skin temperature in different areas of the body (finger, palm, forearm, thigh, chest) appeared to be generally lower in LCA subjects than in controls (except for temperatures on the forehead). Plasma levels of catecholamines (measured 20 and 40 min after the onset of cooling) were also not influenced by local cold adaptation. Locally cold adapted subjects, when exposed to whole body cold water immersion test, showed no change in the threshold temperature for induction of cold thermogenesis. This indicates that the hypothermic type of cold adaptation, typically occurring after systemic cold adaptation, does not appear after local cold adaptation of the intensity used. It is concluded that in humans the cold adaptation due to repeated local cooling of legs induces different physiological changes than systemic cold adaptation.  相似文献   

14.
Monitoring an individual's thermic state in the workplace requires reliable feedback of their core temperature. However, core temperature measurement technology is expensive, invasive and often impractical in operational environments, warranting investigation of surrogate measures which could be used to predict core temperature. This study examines an alternative measure of an individual's thermic state, thermal sensation, which presents a more manageable and practical solution for Australian firefighters operating on the fireground. Across three environmental conditions (cold, warm, hot & humid), 49 Australian volunteer firefighters performed a 20-min fire suppression activity, immediately followed by 20 min of active cooling using hand and forearm immersion techniques. Core temperature (Tc) and thermal sensation (TS) were measured across the rehabilitation period at five minute intervals. Despite the decline in Tc and TS throughout the rehabilitation period, there was little similarity in the magnitude or rate of decline between each measure in any of the ambient conditions. Moderate to strong correlations existed between Tc and TS in the cool (0.41, p<0.05) and hot & humid (0.57, p<0.05) conditions, however this was resultant in strong correlation during the earlier stages of rehabilitation (first five minutes), which were not evident in the latter stages. Linear regression revealed TS to be a poor predictor of Tc in all conditions (SEE=0.45–0.54 °C) with a strong trend for TS to over-predict Tc (77–80% of the time). There is minimal evidence to suggest that ratings of thermal sensation, which represent a psychophysical assessment of an individual's thermal comfort, are an accurate reflection of the response of an individual's core temperature. Ratings of thermal sensation can be highly variable amongst individuals, likely moderated by local skin temperature. In account of these findings, fire managers require a more reliable source of information to guide decisions of heat stress management.  相似文献   

15.
The prediction of survival time (ST) for cold exposure is speculative as reliable controlled data of deep hypothermia are unavailable. At best, guidance can be obtained from case histories of accidental exposure. This study describes the development of a mathematical model for the prediction of ST under sedentary conditions in the cold. The model is based on steady-state heat conduction in a single cylinder comprised of a core and two concentric annular shells representing the fat plus skin and the clothing plus still boundary layer, respectively. The ambient condition can be either air or water; the distinction is made by assigning different values of insulation to the still boundary layer. Metabolic heat production (M) is comprised of resting and shivering components with the latter predicted by temperature signals from the core and skin. Where the cold exposure is too severe forM to balance heat loss, ST is largely determined by the rate of heat loss from the body. Where a balance occurs, ST is governed by the endurance time for shivering. End of survival is marked by the deep core temperature reaching a value of 30° C. The model was calibrated against survival data of cold water (0 to 20° C) immersion and then applied to cold air exposure. A sampling of ST predictions for the nude exposure of an average healthy male in relatively calm air (1 km/h wind speed) are the following: 1.8, 2.5, 4.1, 9.0, and >24 h for –30, –20, –10, 0, and 10° C, respectively. With two layers of loose clothing (average thickness of 1 mm each) in a 5 km/h wind, STs are 4.0, 5.6, 8.6, 15.4, and >24 h for –50, –40, –30, –20, and –10° C. The predicted STs must be weighted against the extrapolative nature of the model. At present, it would be prudent to use the predictions in a relative sense, that is, to compare or rank-order predicted STs for various combinations of ambient conditions and clothing protection.  相似文献   

16.
During cold exposure, increase in heat production is produced via the activation of shivering thermogenesis and nonshivering thermogenesis, the former being the main contributor to compensatory heat production in non-acclimatized humans. In rats, it has been demonstrated that shivering thermogenesis is modulated solely by skin thermoreceptors but this modulation has yet to be investigated in humans. The aim of this study was to determine if cold-induced shivering in humans can be modulated by cutaneous thermoreceptors in conditions where increases in heat loss can be adequately compensated by increases in thermogenic rate. Using a liquid-conditioned suit, six non-acclimatized men were exposed to cold (6 °C) for four 30 min periods, each of them separated by 15 min of heat exposure (33 °C). Core temperature remained stable throughout exposures whereas skin temperatures significantly decreased by 12% in average during the sequential cold/heat exposures compared to baseline (p<0.0001). Shivering intensity and metabolic rate increased significantly during 6 °C exposures (3.3±0.7% MVC, 0.40±0.0 L O2/min, respectively) and were significantly reduced during 33 °C exposure (0.5±0.1% MVC, 0.25±0.0 L O2/min; p<0.005 for both). Most importantly, shivering could be quickly and strongly inhibited during 33 °C exposure although skin temperature often remained below baseline values. In conclusion, under compensatory conditions, cutaneous thermoreceptors appear to be a major modulator of the shivering response in humans and seem to react rapidly to changes in the microclimate right next to the skin and to skin temperature.  相似文献   

17.

Background

Cryotherapy is used in various clinical and sporting settings to reduce odema, decrease nerve conduction velocity, decrease tissue metabolism and to facilitate recovery after exercise induced muscle damage. The basic premise of cryotherapy is to cool tissue temperature and various modalities of cryotherapy such as whole body cryotherapy, cold spray, cryotherapy cuffs, frozen peas, cold water immersion, ice, and cold packs are currently being used to achieve this. However, despite its widespread use, little is known regarding the effectiveness of different cryotherapy modalities to reduce skin temperature.

Objectives

To provide a synopsis of the use of thermal imaging as a method of assessing skin temperature following cryotherapy and to report the magnitude of skin temperature reductions associated with various modalities of cooling.

Design

Structured narrative review.

Methods

Three electronic databases were searched using keywords and MESH headings related to the use of thermal imaging in the assessment of skin temperature following cryotherapy. A hand-search of reference lists and relevant journals and text books complemented the electronic search.

Summary

Nineteen studies met the inclusion criteria. A skin temperature reduction of 5–15 °C, in accordance with the recent PRICE (Protection, Rest, Ice, Compression and Elevation) guidelines, were achieved using cold air, ice massage, crushed ice, cryotherapy cuffs, ice pack, and cold water immersion. There is evidence supporting the use and effectiveness of thermal imaging in order to access skin temperature following the application of cryotherapy.

Conclusions

Thermal imaging is a safe and non-invasive method of collecting skin temperature. Although further research is required, in terms of structuring specific guidelines and protocols, thermal imaging appears to be an accurate and reliable method of collecting skin temperature data following cryotherapy. Currently there is ambiguity regarding the optimal skin temperature reductions in a medical or sporting setting. However, this review highlights the ability of several different modalities of cryotherapy to reduce skin temperature.  相似文献   

18.
Recovery of maximal isometric grip strength following cold immersion   总被引:1,自引:0,他引:1  
The purpose of this study was to investigate the effects of various cold immersion durations on maximal grip strength and the subsequent recovery of grip strength. Sixteen healthy men between 20 and 42 years of age participated in this study. Maximal isometric grip strength was measured before, immediately after, and 5, 10, and 15 minutes after cold immersion. Subjects submerged their dominant elbow, forearm, and hand in a cold water whirlpool at 10 degrees C for 5, 10, 15, or 20 minutes. There was a significant decrease in isometric grip strength when the forearm was immersed in 10 degrees C water for durations between 5 and 20 minutes and no recovery of this strength loss for a period of 15 minutes following removal from the cold immersion (p = 0.0001). These findings suggest that clinicians should be aware of the alterations in isometric muscle strength that result from utilizing the temperature and time frames of cold application used in this study.  相似文献   

19.
There are several types of cold adaptation based on the alteration of thermoregulatory response. It has been thought that the temperature of repeated cold exposures during the adaptation period is one of the factors affecting the type of cold adaptation developed. This study tested the hypothesis that repeated mild cold immersions would induce an insulative cold adaptation but would not alter the metabolic response. Seven healthy male participants were immersed to their xiphoid process level repeatedly in 26°C water for 60 min, 3 days every week, for 4 weeks. During the first and last exposure of this cold acclimation period, the participants underwent body immersion tests measuring their thermoregulatory responses to cold. Separately, they conducted finger immersion into 5°C water for 30 min to assess their cold-induced vasodilation (CIVD) response before and after cold acclimation. During the immersion to xiphoid process, participants showed significantly lower mean skin temperature and skin blood flow in the forearm post-acclimation, while no adaptation was observed in the metabolic response. Additionally, blunted CIVD responses were observed after cold acclimation. From these results, it was considered that the participants showed an insulative-type of cold acclimation after the repeated mild cold immersions. The major finding of this study was the acceptance of the hypothesis that repeated mild cold immersion was sufficient to induce insulative cold adaptation but did not alter the metabolic response. It is suggested that the adaptation in the thermoregulatory response is specific to the response which is repeatedly stimulated during the adaptation process.  相似文献   

20.
The cold tolerance of first-instar nymphs of the Australian plague locust, Chortoicetes terminifera, was examined using measures of total body water content, supercooling point and mortality for a range of sub-zero temperature exposure regimes. The supercooling points for starved and fed nymphs were −13.1 ± 0.9 and −12.6 ± 1.6 °C, and freezing caused complete mortality. Above these temperatures, nymphs were cold tolerant to different degrees based on whether they were starved or given access to food and water for 24 h prior to exposure. The rate of cooling also had a significant effect on mortality. Very rapid cooling to −7 °C caused 84 and 87% mortality for starved and fed nymphs respectively, but this significantly decreased for starved nymphs if temperature declined by more ecologically realistic rates of 0.5 and 0.1 °C min−1. These results are indicative of a rapid cold hardening response and are discussed in terms of the likely effects of cold nights and frost on first-instar nymphal survival in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号