首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effects of temperature acclimation and acute temperature change were investigated in postprandial green shore crabs, Carcinus maenas. Oxygen uptake, gut contractions and transit rates and digestive efficiencies were measured for crabs acclimated to either 10 °C or 20 °C and subsequently exposed to treatment temperatures of 5, 15, or 25 °C. Temperature acclimation resulted in a partial metabolic compensation in unfed crabs, with higher oxygen uptake rates measured for the 10 °C acclimated group exposed to acute test temperatures. The Q10 values were higher than normal, probably because the acute temperature change prevented crabs from fully adjusting to the new temperature. Both the acclimation and treatment temperature altered the characteristics of the specific dynamic action (SDA). The duration of the response was longer for 20 °C acclimated crabs and was inversely related to the treatment temperature. The scope (peak oxygen consumption) was also higher for 20 °C acclimated crabs with a trend towards an inverse relationship with treatment temperature. Since the overall SDA (energy expenditure) is a function of both duration and scope, it was also higher for 20 °C acclimated crabs, with the highest value measured at the treatment temperature of 15 °C. The decline in total SDA after acute exposure to 5 and 25 °C suggests that both cold stress and limitations to oxygen supply at the temperature extremes could be affecting the SDA response. The contractions of the pyloric sac of the foregut region function to propel digesta through the gut, and contraction rates increased with increasing treatment temperature. This translated into faster transit rates with increasing treatment temperatures. Although pyloric sac contractions were higher for 20 °C acclimated crabs, temperature acclimation had no effect on transit rates. This suggests that a threshold level in pyloric sac contraction rates needs to be reached before it manifests itself on transit rates. Although there was a correlation between faster transit times and the shorter duration of the SDA response with increasing treatment temperature, transit rates do not make a good proxy for calculating the SDA characteristics. The digestive efficiency showed a trend towards a decreasing efficiency with increasing treatment temperature; the slower transit rates at the lower treatment temperatures allowing for more efficient nutrient absorption. Even though metabolic rates of 10 °C acclimated crabs were higher, there was no effect of acclimation temperature on digestive efficiency. This probably occurred because intracellular enzymes and digestive enzymes are modulated through different control pathways. These results give an insight into the metabolic and digestive physiology of Carcinus maenas as it makes feeding excursions between the subtidal and intertidal zones.  相似文献   

2.
This study reports temperature effects on paralarvae from a benthic octopus species, Octopus huttoni, found throughout New Zealand and temperate Australia. We quantified the thermal tolerance, thermal preference and temperature-dependent respiration rates in 1-5 days old paralarvae. Thermal stress (1 °C increase h−1) and thermal selection (∼10-24 °C vertical gradient) experiments were conducted with paralarvae reared for 4 days at 16 °C. In addition, measurement of oxygen consumption at 10, 15, 20 and 25 °C was made for paralarvae aged 1, 4 and 5 days using microrespirometry. Onset of spasms, rigour (CTmax) and mortality (upper lethal limit) occurred for 50% of experimental animals at, respectively, 26.0±0.2 °C, 27.8±0.2 °C and 31.4±0.1 °C. The upper, 23.1±0.2 °C, and lower, 15.0±1.7 °C, temperatures actively avoided by paralarvae correspond with the temperature range over which normal behaviours were observed in the thermal stress experiments. Over the temperature range of 10 °C-25 °C, respiration rates, standardized for an individual larva, increased with age, from 54.0 to 165.2 nmol larvae−1 h−1 in one-day old larvae to 40.1-99.4 nmol h−1 at five days. Older larvae showed a lesser response to increased temperature: the effect of increasing temperature from 20 to 25 °C (Q10) on 5 days old larvae (Q10=1.35) was lower when compared with the 1 day old larvae (Q10=1.68). The lower Q10 in older larvae may reflect age-related changes in metabolic processes or a greater scope of older larvae to respond to thermal stress such as by reducing activity. Collectively, our data indicate that temperatures >25 °C may be a critical temperature. Further studies on the population-level variation in thermal tolerance in this species are warranted to predict how continued increases in ocean temperature will limit O. huttoni at early larval stages across the range of this species.  相似文献   

3.
Climate change, sea level rise, and human freshwater demands are predicted to result in elevated temperature and salinity variability in upper estuarine ecosystems. Increasing levels of environmental stresses are known to induce the cellular stress response (CSR). Energy for the CSR may be provided by an elevated overall metabolic rate. However, if metabolic rate is constant or lower under elevated stress, energy for the CSR is taken from other physiological processes, such as growth or reproduction. This study investigated the examined energetic responses to the combination of temperature and salinity variability during a multigenerational exposure of partheogenetically reproducing Daphnia pulex. We raised D. pulex in an orthogonal combination of daily fluctuations in temperature (15, 15–25, 15–30 °C) and salinity (0, 0–2, 0–5). Initially metabolic rates were lower under all variable temperature and variable salinity treatments. By the 6th generation there was little metabolic variation among low and intermediate temperature and salinity treatments, but metabolic suppression persisted at the most extreme salinity. When grown in the control condition for the 6th generation, metabolic suppression was only observed in D. pulex from the most extreme condition (15–30 °C, 0–5 salinity). Generation time was influenced by acclimation temperature but not salinity and was quickest in specimens reared at 15–25 °C, likely due to Q10 effects at temperatures closer to the optima for D. pulex, and slowest in specimens reared at 15–30 °C, which may have reflected elevated CSR. Acute tolerance to temperature (LT50) and salinity (LC50) were both highest in D. pulex acclimated to 15–30 °C and salinity 0. LT50 and LC50 increased with increasing salinity in specimens raised at 15 °C and 15–25 °C, but decreased with increasing salinity in specimens raised at 15–30 °C. Thus, increasing temperature confers cross-tolerance to salinity stress, but the directionality of synergistic effects of temperature and salinity depend on the degree of environmental variability. Overall, the results of our study suggest that temperature is a stronger determinant of metabolism, growth, and tolerance thresholds, and assessment of the ecological impacts of environmental change requires explicit information regarding the degree of environmental variability.  相似文献   

4.
The survival of aphids exposed to low temperatures is strongly influenced by their ability to move within and between plants and to survive exposure to potentially lethal low temperatures. Little is known about the physiological and behavioural limitations on aphid movement at low temperatures or how they may relate to lethal temperature thresholds. These questions are addressed here through an analysis of the thermal ecology of three closely related aphid species: Myzus persicae, a ubiquitous temperate zone pest, Myzus polaris, an arctic species, and Myzus ornatus, a sub-tropical species. Lower lethal temperatures (LLT50) of aphids reared at 15 °C were similar for M. persicae and M. polaris (range: −12.7 to −13.9 °C), but significantly higher for M. ornatus (−6.6 °C). The temperature thresholds for activity and chill coma increased with rearing temperature (10, 15, 20, and 25 °C) for all clones. For M. polaris and M. ornatus the slopes of these relationships were approximately parallel; by contrast, for M. persicae the difference in slopes meant that the difference between the temperatures at which aphids cease walking and enter coma increased by approximately 0.5 °C per 1 °C increase in rearing temperature. The data suggest that all three species have the potential to increase population sizes and expand their ranges if low temperature limitation is relaxed.  相似文献   

5.
Final temperature preferendum of white shrimp adults were determined with acute and gravitation methods. The final preferendum was similar, independent of method (26.2–25.6 °C). A direct relationship was determined between the critical thermal maxima values and the acclimation temperatures (P<0.05). The end point of Critical Thermal Maxima (CTMax) for adults was defined as the loss of righting response (LRR). The acclimation response ratio (ARR) for adults of white shrimp had an interval of 0.36–0.76, values that agreed with others obtained for crustaceans from tropical and subtropical climates. The oxygen consumption rates increased significantly (P<0.05) from 39.6 up to 90.0 mg O2 kg−1 h−1 wet weight (w.w.) as the acclimation temperature increased from 20 to 32 °C. The range of temperature coefficient (Q10) of the white shrimp between 23 and 26 °C was the lower 1.60. The results obtained in this work are discussed in relation to the species importance in the reproductive scope and maintenance of breeders.  相似文献   

6.
The resting metabolic rate (RMR) of seasonally-acclimated Mabuya brevicollis of various body masses was determined at 20, 25, 30, 35 and 40 °C, using open-flow respirometry. RMR (ml g−1 h−1) decreased with increasing mass at each temperature. RMRs increaProd. Type: FTPsed as temperature increased. The highest and lowest Q10 values were obtained for the temperature ranges 20–25 °C and 30–35 °C for the summer-acclimated lizards. The exponent of mass “b” in the metabolism-body mass relation ranged from 0.41 to 0.61. b values were lower in the autumn and winter-acclimated lizards than in spring and summer-acclimated lizards. Seasonal acclimation effects were evident at all temperatures (20–40 °C) for M. brevicollis. Winter-acclimated skinks had the lowest metabolic rates at different temperatures. The pattern of acclimation exhibited by M. brevicollis may represent a useful adaptation for lizards inhabiting subtropical deserts to promote activity during their active seasons.  相似文献   

7.
Remote measurements of body temperature (Tb) in animals require implantation of relatively large temperature-sensitive radio-transmitters or data loggers, whereas rectal temperature (Trec) measurements require handling and therefore may bias the results. We investigated whether ∼0.1 g temperature-sensitive subcutaneously implanted transponders can be reliably used to quantify thermal biology and torpor use in small mammals. We examined (i) the precision of transponder readings as a function of temperature and (ii) whether subcutaneous transponders can be used to remotely record subcutaneous temperature (Tsub). Five adult male dunnarts (Sminthopsis macroura, body mass 24 g) were implanted with subcutaneous transponders to determine Tsub as a function of time and ambient temperature (Ta), and in comparison to thermocouple readings of Trec. Transponder temperature was highly correlated with water bath temperature (r2=0.96–0.99) over a range of approximately 10.0–40.0 °C. Transponders provided reliable data (±0.6 °C) over the Tsub of 21.4–36.9 °C and could be read from a distance of up to 5 cm. Below 21.4 °C, accuracy was reduced to ±2.8 °C, but individual transponder accuracy varied. Consequently, small subcutaneous transponders are useful to remotely quantify thermal physiology and torpor patterns without having to disturb the animal and disrupt torpor. Even at Tsub<21.4 °C where the accuracy of the temperature readings was reduced, transponders do provide reliable data on whether and when torpor is used.  相似文献   

8.
Global warming and associated increases in the frequency and amplitude of extreme weather events, such as heat waves, may adversely affect tropical rainforest plants via significantly increased tissue temperatures. In this study, the response to two temperature regimes was assessed in seedlings of the neotropical pioneer tree species, Ficus insipida. Plants were cultivated in growth chambers at strongly elevated daytime temperature (39 °C), combined with either close to natural (22 °C) or elevated (32 °C) nighttime temperatures. Under both growth regimes, the critical temperature for irreversible leaf damage, determined by changes in chlorophyll a fluorescence, was approximately 51 °C. This is comparable to values found in F. insipida growing under natural ambient conditions and indicates a limited potential for heat tolerance acclimation of this tropical forest tree species. Yet, under high nighttime temperature, growth was strongly enhanced, accompanied by increased rates of net photosynthetic CO2 uptake and diminished temperature dependence of leaf-level dark respiration, consistent with thermal acclimation of these key physiological parameters.  相似文献   

9.
The occurrence, characteristics and response to environmental salinity of alkaline phosphatase (AP) activity were studied in chela muscle of the euryhaline crab Chasmagnathus granulatus from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). Chela muscle exhibited a levamisole-insensitive and a levamisole-sensitive AP activities with distinct characteristics. Levamisole-insensitive activity appeared to be maximal at pH 7.7, whereas levamisole-sensitive AP activity was similar with the range of pH 7.4 to 8.0. Both activities at pH 7.7 exhibited a Michaelis-Menten kinetics (Km = 0.789 and 1.416 mM, respectively). I50 for levamisole-sensitive AP activity was about 12 mM. Levamisole-insensitive and levamisole-sensitive AP activities were differentially affected by temperature. Levamisole-sensitive AP activity was quite sensitive to temperature, exhibiting a peak at 37 °C but being low at 5 to 30 °C and 45 to 60 °C. Both activities were inhibited by Cu2+. At 1.0 mM Cu2+, levamisole-insensitive AP activity was inhibited about 82% whereas levamisole-sensitive AP activity was almost completely inhibited. Levamisole-insensitive AP activity appeared to be sensitive to environmental salinity. In crabs acclimated to low salinity (10‰) this activity was lower than in 35‰ salinity. The response to environmental salinity suggests that levamisole-insensitive AP activity could be a component of muscle regulatory mechanisms at the biochemical level secondary to hyperregulation of C. granulatus. The possible physiological roles and functional relationship of AP activity with Na+/K+ ATPase in muscle are discussed.  相似文献   

10.
Populations of a rheophilic cyprinid Barbus barbus have declined in last decades, which created a need of conservation aquaculture. Production of stocking material in controlled conditions calls for optimization of the two major factors, temperature and diet. Condition, growth and food conversion ratio in fish fed a formulated diet Aller Futura were compared with those on natural food—frozen Chironomidae larvae at 17, 21 and 25 °C. Groups of 60 early juveniles (0.6–3.7 g) were reared in each of 18 aquaria in which six experimental groups were run in triplicate. Daily food ratios were adjusted according to fish biomass, differences in hydration between the two diets and rearing temperature. No mortality occurred during the experiment. Condition coefficient K was significantly higher in fish fed Aller Futura compared to those fed Chironomidae irrespective of temperature tested; body deformities were not recorded. Relative growth rate at the same temperature was always higher in fish on the formulated diet than in those fed Chironomidae, and food conversion ratio was always suppressed, both suggesting an efficient utilization of Aller Futura for growth in B. barbus early juveniles. On both diets the coefficient K was depressed at 21 °C. Relative growth rate (RGR) was accelerated with temperature according the Krogh’s “normal curve” within the range 21–25 °C, while at lower temperatures (17–21 °C) the observed values of temperature coefficient Q10 were much higher than the theoretical Q10 values based on Krogh’s “normal curve”. Food conversion ratios (FCR) were reduced on both diets at 21 and 25 °C. Theoretical optimum temperatures for food conversion were 22.0 and 23.6 °C. Summing up, responses of three independent indices: condition, growth and food utilization locate the optimum temperature for B. barbus between 21 and 25 °C. No evidence was found that the effect of temperature on these indices was substantially modified by the diet.  相似文献   

11.
12.
We investigated the ability of eelgrass (Zostera marina) to adjust light requirements to seasonal changes in temperature, light and nutrient conditions through changes in metabolism, pigment and nutrient content. In agreement with expectations we found that rates of respiration and light saturated photosynthesis of summer acclimated plants peaked at higher temperatures (5 °C and 2 °C higher, respectively), and were lower than of winter acclimated plants, both at sub- and supra-optimal temperatures. Moreover respiration rates were generally more sensitive to increasing temperatures than photosynthetic rates, especially so for cold acclimated plants in February (36% higher Q10-values). These changes were accompanied by a reduction in chlorophyll a and nitrogen concentrations in leaves by 35% and 60% respectively from February to August. The critical light requirement (EC) of Z. marina to maintain a positive carbon balance increased exponentially with increasing temperature but less so for summer-acclimated than for winter-acclimated plants. However, combining EC vs temperature models for whole-plants with data on daily light availability showed that seasonal acclimation in metabolism increased the annual period, when light requirements were meet at the 2-5 m depth interval, by 32-66 days. Hence, acclimation is an important mechanism allowing eelgrass to grow faster and penetrate to deeper waters. Critical depth limits estimated for different combinations of summer temperatures and water clarity in a future climate scenario, suggested that expected increases in temperature and nutrient run-off have synergistic negative effects, especially in clear waters, stressing the importance of continued efforts to improve water clarity of coastal waters.  相似文献   

13.
Perkinsus marinus is a major cause of mortality in eastern oysters along the Gulf of Mexico and Atlantic coasts. It is also well documented that temperature and salinity are the primary environmental factors affecting P. marinus viability and proliferation. However, little is known about the effects of combined sub-optimal temperatures and salinities on P. marinus viability. This in vitro study examined those effects by acclimating P. marinus at three salinities (7, 15, 25 ppt) to 10 °C to represent the lowest temperatures generally reached in the Gulf of Mexico, and to 2 °C to represent the lowest temperatures reached along the mid-Atlantic coasts and by measuring changes in cell viability and density on days 1, 30, 60 and 90 following acclimation. Cell viability and density were also measured in 7 ppt cultures acclimated to each temperature and then transferred to 3.5 ppt. The largest decreases in cell viability occurred only with combined low temperature and salinity, indicating that there is clearly a synergistic effect. The largest decreases in cell viability occurred only with both low temperature and salinity after 30 days (3.5 ppt, 2 °C: 0% viability), 60 days (3.5 ppt, 10 °C: 0% viability) and 90 days (7 ppt, 2 °C: 0.6 ± 0.7%; 7 ppt, 10 °C: 0.2 ± 0.2%).  相似文献   

14.
1.
Thermoregulatory behavior of fed and fasted desert hamsters (Phodopus roborovskii) acclimated to summer- [16 light (L):8 dark (D), ambient temperature (Ta)=26.5 °C] and winter-like (8L:16D, Ta=10 °C) conditions was studied. Body temperature (Tb), selected temperature and activity were measured in hamsters placed in a thermal gradient system for 48 h.  相似文献   

15.
Ocean temperatures are rising and fish are redistributing themselves poleward and into deeper waters to retain a favourable thermal environment (11 and 30). To investigate whether biogeographical shifts might occur through behavioural redistribution into optimal environments, we examined whether a common triplefin species (Forsterygion lapillum) would behaviourally select (i.e. track) a temperature that matches its physiological optimum under laboratory conditions. F. lapillum were acclimated to 15, 18 or 21 °C for at least 4 weeks, after which various rates of oxygen consumption (MO2) were measured using automated respirometry and their behavioural thermal preferenda assessed using an electronic shuttle choice tank. Aerobic metabolic scope (resolved as the difference between maximal and maintenance MO2) did not differ across all thermal treatments (i.e. specimens acclimated to 15, 18 or 21 °C) revealing that F. lapillum is a eurythermal species with a range of optimal physiological performance that closely matches the environmental conditions they are exposed to. A comparably wide range of behavioural preference would perhaps be expected but all three acclimation groups showed a surprisingly narrow behavioural preference range of 20–21 °C. The results therefore suggest that, irrespective of acclimation, eurythermal species may have a tendency to select optimal temperatures at the upper limit of their thermal distribution range. The results are discussed in the context of the ecology and the expected response of F. lapillum to future thermal change.  相似文献   

16.
The ability of hatchling turtles to detect environmental temperature differences and to effectively select preferred temperature is a function that critically impacts survival. In some turtle species, temperature preference may be influenced by embryonic and post-hatching conditions, such as egg-incubation and acclimation temperature. We tested for effects of embryonic incubation temperature (27.5 °C, 30 °C) and acclimation temperature (20 °C, 25 °C) on the selected temperature and movement patterns of 32 Chrysemys picta bellii (Reptilia: Emydidae) hatchlings in an aquatic thermal gradient of 14-34 °C and in single-temperature (20 °C, 25 °C) control tests. Among 10-11 month old hatchlings, acclimation temperature and egg-incubation temperature influenced temperature selection and movement patterns. Acclimation temperature affected activity and movement: in thermal gradient and single-temperature control tests, 25 °C-acclimated turtles relocated between chambers significantly more frequently than individuals acclimated to 20 °C. Acclimation temperature also affected temperature selection: 20 °C-acclimated turtles selected a specific temperature during gradient tests, but 25 °C-acclimated turtles did not. Among 20 °C-acclimated turtles, egg-incubation temperature was inversely related to selected temperature: hatchling turtles incubated at 27.5 °C selected the warmest temperature available (34 °C); individuals incubated at 30 °C selected the coldest temperature (14 °C). These results suggest that interactions of environmental conditions may influence post-hatching thermoregulatory behavior in C. picta bellii, a factor that ultimately affects fitness.  相似文献   

17.
Ammonia-N toxicity to early Portunus pelagicus juveniles at different salinities was investigated along with changes to haemolymph osmolality, Na+, K+, Ca2+ and ammonia-N levels, ammonia-N excretion and gill Na+/K+-ATPase activity. Experimental crabs were acclimated to salinities 15, 30 and 45‰ for one week and 25 replicate crabs were subsequently exposed to 0, 20, 40, 60, 80, 100 and 120 mg L− 1 ammonia-N for 96-h, respectively. High ammonia-N concentrations were used to determine LC50 values while physiological measurements were conducted at lower concentrations. When crabs were exposed to ammonia-N, anterior gill Na+/K+-ATPase activity significantly increased (p < 0.05) at all salinities, while this only occurred on the posterior gills at 30‰. For crabs exposed to 20 and 40 mg L− 1 ammonia-N, both posterior gill Na+/K+-ATPase activity and ammonia-N excretion were significantly higher at 15‰ than those at 45‰. Despite this trend, the 96-h LC50 value at 15‰ (43.4 mg L− 1) was significantly lower (p < 0.05) than at both 30‰ and 45‰ (65.8 and 75.2 mg L− 1, respectively). This may be due to significantly higher (p < 0.05) haemolymph ammonia-N levels of crabs at low salinities and may similarly explain the general ammonia-N toxicity pattern to other crustacean species.  相似文献   

18.
The salinity, temperature and pH tolerance of Procephalothrix simulus Iwata, 1952, were experimentally studied. In hypo-media, the nemerteans could survive 96 h in 3.3‰ solution at 10 °C (median lethal salinity [LS50] was not determined at this temperature), and 96 h LS50 were 7.3‰ and 13.5‰ at 20 °C and 30 °C, respectively. In hyper-media, 96 h LS50 values were 53.9‰, 47.1‰ and 41.4‰ at 10 °C, 20 °C and 30 °C, respectively. The trend of body weight changes in diluted media indicated that this nemertean is a volume regulator. During a 96-h exposure in media at 0 °C, worms were thanatoid but could recover if the temperature was gradually elevated to 20 °C. In thermal tolerance experiments, the nemertean survived 96 h in seawater of 30 °C, and worms suffered high mortalities when the temperature exceeded 32 °C. Present results suggest that the interaction of temperature and salinity on the lethal effects on P. simulus is significant (P < 0.05). Elevated temperature (range 10-30 °C) decreased the worm's solute tolerance, and elevated salinity (range 18-38‰) decreased the worm's thermal tolerance. The survival pH level for this nemertean ranged from 5.00 to 9.20.  相似文献   

19.
Evaporative water loss (EWL) and energy metabolism were measured at different temperatures in Eothenomys miletus and Apodemus chevrieri in dry air. The thermal neutral zone (TNZ) of E. miletus was 22.5–30 °C and that of A. chevrieri was 20–27.5 °C. Mean body temperatures of the two species were 35.75±0.5 and 36.54±0.61 °C. Basal metabolic rates (BMR) were 1.92±0.17 and 2.7±0.5 ml O2/g h, respectively. Average minimum thermal conductance (Cm) were 0.23±0.08 and 0.25±0.06 ml O2/g h °C. EWL in E. miletus and A. chevrieri increased with the increase in temperature; the maximal EWL at 35 °C was 4.78±0.6 mg H2O/g h in E. miletus, and 5.92±0.43 mg H2O/g h in A. chevrieri. Percentage of evaporative heat loss to total heat production (EHL/HP) increased with the increase in temperature; the maximal EHL/HP was 22.45% at 30 °C in E. miletus, and in A. chevrieri it was 19.96% at 27.5 °C. The results may reflect features of small rodents in the Hengduan mountains region: both E. miletus and A. chevrieri have high levels of BMR and high levels of total thermal conductance, compared with the predicted values based on their body masses, while their body temperatures are relatively low. EWL plays an important role in temperature regulation.  相似文献   

20.
Proper adjustment of thermoregulatory mechanisms ensures the survival of mammals when they are subjected to seasonal changes in their natural environment. To understand the physiological and ecological adaptations of Eothenomys olitor, we measured their metabolic rate, thermal conductance, body temperature (Tb) and evaporative water loss at a temperature range of 5–30 °C in summer. The thermal neutral zone (TNZ) of E. olitor was 20–27.5 °C, and the mean body temperature was 35.81±0.15 °C. Basal metabolic rate (BMR) was 2.81±0.11 ml O2/g h and mean minimum thermal conductance (Cm) was 0.18±0.01 ml O2/g h °C. Evaporative water loss (EWL) in E. olitor increased when the ambient temperature increased. The maximal evaporative water loss was 6.74±0.19 mg H2O/g h at 30 °C. These results indicated that E. olitor have relatively high BMR, low body temperature, low lower critical temperature, and normal thermal conductance. EWL plays an inportant role in temperature regulation. These characteristics are closely related to the living habitat of the species, and represent its adaptive strategy to the climate of the Yunnan-Kweichow Plateau, a low-latitude, high-altitude region where annual temperature fluctuations are small, but daily temperature fluctuations are greater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号