首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subtilisin-A was colyophilized with various types of support materials, such as Amberlite IRC-50, Celite545, chitosan, DEAE-cellulose, DOWEX-1, zeolite, glass bead, and polystyrene. The colyophilized enzyme was used for the optical resolution of racemic 1-phenylethylamine with 2,2,2-trifluoroethylbutyrate in 3-methyl-3-pentanol. The enzyme activity in organic media changed dramatically according to the hydration state of the support materials before lyophilization. This effect was especially marked with supports of high water capacity (aquaphilicity), such as chitosan and DEAE-cellulose. By hydrating these supports of high aquaphilicity prior to lyophilization, subtilisin-A activity in organic media increased ca. 4-8 times, depending upon the supports used. This result suggests that the hydration state of aquaphilic support materials for colyophilization is critical to determining enzyme activity in organic solvents. (c) 1996 John Wiley & Sons, Inc.  相似文献   

2.
Summary This paper describes a newly developed technique to adjust and control the water activity in enzymatic reactions in organic media. A saturated salt solution of known water activity is circulated inside a silicone tube, submerged into the reaction medium. The circulating solution can both absorb and release water. Water activity control during lipase catalyzed esterification was demonstrated with diisopropyl ether as solvent.  相似文献   

3.
Lipase (E.C. 3.1.1.3) from Rhizomucor miehei was adsorbed on silica, zirconia and five alumina support materials. The immobilised preparations were used to catalyse esterincation reactions of decanoic acid and dodecanol in hexane. The immobilised lipase and the organic phase were separately preequilibrated to the desired water activities. The various support materials adsorbed widely different amounts of water at a given water activity. The reaction rates with all the support materials show similar dependence on water activity when the rates were normalised with the optimal rate for that support material. Hence water activity predicts the optimal conditions much better than water content.  相似文献   

4.
The kinetically controlled condensation of Z-Gly-Trp-OMe and H-Met-OEt catalyzed by α-chymo-trypsin in organic media is reported. The influence of thermodynamic water activity and the support material used to adsorb α-chymotrypsin, on both the product yield and enzymatic activity was investigated. Polyamide based materials were the best support at low water activity rendering the highest reaction rates and yields. The activity of the adsorbed enzyme at low water activities depends on both the accessible surface area and the hydrophobicity of the support. Polyamide had both adequate hydrophilicity and high surface area yielding the best results. Polypropylene based supports were strongly hydrophobic and, although they presented a high surface area, the enzymatic activity was much lower. The solvents used to carry out the synthesis were acetonitrile and ethyl acetate. No significant differences were observed on the performance of the reaction in either solvent. The tripeptide selected is a fragment of the cholecystokinin C-terminal octapeptide (CCK-8), a biological active peptide involved in the control of gastrointestinal function.  相似文献   

5.
Laccase (E.C. 1.10.3.2) from Trametes versicolor was immobilized (adsorbed) by drying on various supports (glass, glass powder, silica gel, and Nylon 66 membrane). The enzyme activity and stability were determined in diethyl ether, ethyl acetate, and methylene chloride. The initial rate for the oxidation of syringaldazine varied up to 245-fold depending on the solvent and support, the best results being obtained with Nylon 66 membrane. No inactivation of immobilized laccase over 72 h was observed in diethyl ether and ethyl acetate, while exposure to methylene chloride resulted in significant activity decreases regardless of the support material.  相似文献   

6.
Subtilisin Carlsberg was covalently attached to five macroporous acrylic supports of varying aquaphilicity (a measure of hydrophilicity). Kinetic parameters of the transesterification of S and R enantiomers of secphenethyl alcohol with vinyl butyrate, catalyzed by various immobilized subtilisins, were determined in anhydrous dioxane and acetonitrile. Enzyme enantioselectivity in acetonitrile, but not in dioxane, correlated with the aquaphilicity of the support; a mechanistic rationale for this phenomenon was proposed. Although the catalytic activity of immobilized subtilisin in anhydrous solvents strongly depended on enzyme pretreatment, the enantioselectivity was essential conserved. (c) 1994 John Wiley & Sons, Inc.  相似文献   

7.
Esterification of N-acetyl phenylalanine with ethanol catalyzed by immobilized α-chymotrypsin (EC 3.4.21.1) was studied in various reaction media. The effect of reaction medium polarity on enzymatic activity as well as equilibrium yield was measured. The reaction rate increased with increasing amounts of added water, reaching an optimum corresponding to water saturation of the reaction medium. Further additions of water resulted in decreased activity. Bell-shaped activity profiles were obtained for all reaction media tested. Reaction media consisting of pure solvents and of mixtures of solvents were used. The enzymatic activity and the equilibrium yield increased with decreased polarity of the medium. Maximum activity was found in a reaction medium consisting of 80% diisopropyl ether and 20% heptane. The enzymatic activity obtained at optimal water additions in the different solvents and solvents mixtures could be correlated to the solubility of water and the log P of the medium. The equilibrium yield of the reaction was much more closely correlated to the solubility of water than the log P. Much lower enzymatic activity was obtained when solvent mixtures producing water-miscible media were created, than in mixtures producing water-immiscible media, such as mixtures of acetonitrile and diisopropyl ether. The equilibrium yield could be increased by decreasing the water content in the reaction medium, which reduced the water activity.  相似文献   

8.
Catalytic activity and adsorption of Pa-hydroxynitrile lyase (Pa-Hnl) was investigated at various organic solvent/water interfaces. We focused on the role of solvent polarity in promoting activity and stability in two-phase systems, specifically for the solvents heptane, dibutyl ether (DBE), diisopropyl ether (DIPE), butylmethyl ether (BME), and methyl tert-butyl ether (MTBE). Enzyme activity towards mandelonitrile cleavage was determined in a recycle reactor with a well-defined interfacial area as described by Hickel, et al. 1999. Here the recycle reactor was modified to permit exchange of the aqueous phase. With this modification, irreversibility of enzyme adsorption was determined as a function of the adsorption time at the interface. Irreversibility of enzyme adsorption was also investigated by measuring the surface pressure of a sessile-drop upon washout. We find that Pa-Hnl exhibits the highest stability but the lowest initial catalytic activity at the aqueous/organic solvent interface with the most polar organic solvents. Thus, DIPE and MTBE display no loss in enzyme activity over a period of several hours. However, the more apolar the solvent is the higher the initial Pa-Hnl activity, but the faster the loss of activity. Dynamic tensiometry reveals that Pa-Hnl adsorbs more strongly at the interface of the more apolar solvents. Surprisingly, Pa-Hnl develops some irreversible adsorption after 30 min at the DIPE/water interface, but does not lose catalytic activity.  相似文献   

9.
Design of enzymatic kyotorphin synthesis in low water media has been carried out as a function of enzyme nature, the immobilization support material and the reaction medium, by using N-benzoyl-L-tyrosine ethyl ester and L-argininamide as substrates. Native and chemically-glycated alpha-chymotrypsin deposited on supports with different degrees of aquaphilicity (celite, polypropylene PP, and polyamide PA6) were used as catalysts. Binary organic solvent systems of ethanol and different water-immiscible organic cosolvents (ethylacetate, tert-butanol, chloroform, toluene, n-hexane, and n-octane) were studied as reaction media at constant water content (3% v/v). The greater the water binding affinity of the support the lower the synthetic activity of deposited enzymes: the activity of the celite derivative was 4x greater than the polyamide derivative. The enzyme glycation process hardly modified the catalytic ability of the celite derivative, but resulted in a moderate increase in operational stability. The presence of hydrophobic organic cosolvents in the water/ethanol reaction medium significantly increased enzyme activity, whereas the selectivity of the reaction remained high. Hexane was shown to be the best cosolvent, the synthetic activity of the celite derivative in hexane-ethanol (77 : 20%, v/v) being 130x greater than that in 97% (v/v) ethanol.  相似文献   

10.
A microbial lipase from Pseudomonas aeruginosa TE3285 was treated in anhydrous diisopropyl ether with three kinds of serine-reactive reagents, ethyl p-nitrophenyl methylphosphonate (ENMP), diisopropyl fluorophosphate (DFP), and phenylmethylsulfonyl fluoride (PMSF) to lose its catalytic activity for both transesterification in an organic solvent and ester hydrolysis in aqueous system. In contrast with the facile inactivation in an organic solvent, no or very slow inactivation was observed in an aqueous solution. The lipase was shown to behave more like a typical serine enzyme in an organic solvent than in aqueous solution with regard to the chemical inactivation by serine-reactive reagents. The unique behavior of the lipase in an organic solvent may be associated with inferfacial activation of the lipase, which is one of the most distinct characteristics of the lipase family, and the activiation of lipase could be induced by a hydrophobic interaction with an organic solvent.  相似文献   

11.
The activity of Thermoanaerobium brockii alcohol dehydrogenase (TBADH) adsorbed on mesoporous silica SBA-15 was compared with that of the free enzyme in water and in biphasic system (water phase up to 50% v/v water). TBADH was active at a water concentration ≥10% v/v. In the reduction reaction of sulcatone to sulcatol carried out in biphasic systems, the yield obtained with SBA-15-adsorbed TBADH was up to 5.5-fold higher than that with the free enzyme, which suggests a higher stability of the immobilized enzyme toward the organic solvent. The nature of the organic solvent substantially influenced the degree of conversion that, for example, was 7.4% in toluene and 31.6% in petroleum ether.  相似文献   

12.
Mandelonitrile lyase (EC 4.1.2.10) catalyzes the formation of D-mandelonitrile from HCN and benzaldehyde. Mandelonitrile lyase was immobilized by adsorption to support materials, for example, Celite. The enzyme preparations were used in diisopropyl ether for production of D-mandelonitrile. In order to obtain optically pure D-mandelonitrile it was necessary to use reaction conditions which favor the enzymatic reaction and suppress the competing spontaneous reaction, which yields a racemic mixture of D, L-mandelonitrile. The effects of substrate concentrations, water content, and support materials on both the spontaneous and enzymatic reactions were studied. The enzymatic reaction was carried out under conditions where the importance of the spontaneous reaction was negligible and high enantiomeric purity of D-mandelonitrile was achieved (at least 98% enantiomeric excess). The operational stability of the enzyme preparations was studied in batch as well as in continuous systems. It was vital to control the water content in the system to maintain an active preparation. In a packed bed reactor the enzyme preparations were shown to be active and stable. The reactors were run for 50 h with only a small decrease in product yield.  相似文献   

13.
We studied a model transesterification reaction catalyzed by subtilisin Carlsberg suspended in toluene, n-hexane, diisopropyl ether, and mixtures of these solvents. To account for solvent effects due to differences in water partitioning between the enzyme and the bulk solvents, we measured water sorption isotherms for the enzyme in each solvent. We measured catalytic activity as a function of enzyme hydration and obtained bell-shaped curves with maxima at the same enzyme hydration in all the solvents. However, the activity maxima were different in all the media, being the lowest in toluene. Differences in the partitioning of substrates and product between the bulk solvent phase and the enzyme active site were accounted for but could not explain the lower catalytic activity observed in toluene. The fact that toluene is very similar to one of the substrates suggested the possibility of competitive inhibition by this solvent. We derived a model allowing for differences in solvation of the substrates, by using thermodynamic activities instead of concentrations, as well as for competitive inhibition by toluene. The model fit the experimental data well, confirming that toluene had a direct adverse effect on the catalytic activity of the enzyme. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
Microporous polymer supports for the immobilization of lipase have been prepared by the polymerization of a concentrated emulsion precursor. The concentrated emulsion consists of a mixture of styrene and divinyl-benzene containing a suitable surfactant and an initiator as the continuous phase and water as the dispersed phase. The volume fraction of the latter phase was greater than 0.74, which is the volume fraction of the dispersed phase for the most compact arrangement of spheres of equal radius. The lipase from Candida rugosa has been immobilized on the internal surface of the hydrophobic microporous poly(styrene-divinyl benzene) supports and used as biocatalysts for the hydrolysis of triacylglycerides. The effects of the amount of surfactant, of the molar ratio of divinylbenzene/styrene in the continuous phase, and of the aquaphilicity of the supports on the adsorption, activity, and stability of the immobilized lipase have been investigated. The microporous poly(styrene-divinylbenzene) adsorbents constitute excellent supports for lipase because both the amount adsorbed is large and the rate of enzymatic reaction per molecule of lipase is higher for the immobilized enzyme than for the free one. (c) 1993 John Wiley & Sons, Inc.  相似文献   

15.
The activity and operational stability of horse liver alcohol dehydrogenase (HLADH) and α-chymotrypsin were investigated in three systems commonly used for biocatalysis in organic solvents:

1. enzyme adsorbed on a solid support (celite) and added to the organic solvent (isooctane)

2. enzyme powder directly added to the organic solvent (isooctane).

3. enzyme dissolved in a microemulsion (AOT/isooctane).

The activity and the operational stability in all systems were strongly dependent on the water content. The initial reaction rate was high in both the microemulsion and the celite system, but was much lower when adding the enzymes directly to the organic solvent. HLADH was observed to be more stable when added directly to the organic solvent or dissolved in the microemulsion than when adsorbed on celite, whereas for α-chymotrypsin stability was higher when adsorbed on celite or added directly to the organic solvent. For a hydrolytic reaction, a microemulsion was preferred due to the high water content. When adding the enzymes directly to the organic solvent both HLADH and chymotrypsin were adsorbed strongly to the glass walls of the reaction vessel. None of the systems were superior in all respects for the two enzymes studied.  相似文献   

16.
Pig bone was examined for its suitability as a support material for lipase immobilization. It was observed that pig bone (PB) particles dispersed readily in both polar and nonpolar solvents, and lipase was easily adsorbed. In particular lipase adsorbed on olive oil-soaked pig bone (OPB) particles exhibited a higher hydrolytic activity than that in lipase adsorbed on a selection of other representative supports, regardless of removing the presoaked olive oil from the particles after immobilization of lipase. The optimum pH and temperature for hydrolytic activity of OPB-adsorbed lipase were the same as those for free lipase, although thermal resistance was increased by immobilization. When OPB-adsorbed lipase was used for repeated batch reactions of olive oil hydrolysis, an activity of more than 80% of the initial activity of each run could he retained after 46 h reaction. The results suggest that PB is an excellent support material.  相似文献   

17.
Subtilisin Carlsberg adsorbed on silica particles has been used to catalyze the transesterification of CBZ-Ala-ONp and CBZ-Leu-ONp with 1-butanol in organic systems preequilibrated to water activity of 0.93. Initial reaction rates are conveniently followed by extraction of the released nitrophenol into an alkaline aqueous phase. Kinetic parameters were determined for varied ester concentrations in toluene, isopropyl ether, and hexane. The effect of solvent on substrate solvation was determined by solubility measurements. Much of the observed effect of solvent on V(m)/K(m) may be accounted for by solvation differences. The residual effect of solvent on K(m), after discounting solvation differences, is completely opposite to the apparent trend. (c) 1994 John Wiley & Sons, Inc.  相似文献   

18.
A kinetic framework is developed to describe enzyme activity and stability in two-phase liquid-liquid systems. In particular, the model is applied to the enzymatic production of benzaldehyde from mandelonitrile by Prunus amygdalus hydroxynitrile lyase (pa-Hnl) adsorbed at the diisopropyl ether (DIPE)/aqueous buffer interface (pH = 5.5). We quantitatively describe our previously obtained experimental kinetic results (Hickel et al., 1999; 2001), and we successfully account for the aqueous-phase enzyme concentration dependence of product formation rates and the observed reaction rates at early times. Multilayer growth explains the early time reversibility of enzyme adsorption at the DIPE/buffer interface observed by both enzyme-activity and dynamic-interfacial-tension washout experiments that replace the aqueous enzyme solution with a buffer solution. The postulated explanation for the unusual stability of pa-Hnl adsorbed at the DIPE/buffer interface is attributed to a two-layer adsorption mechanism. In the first layer, slow conformational change from the native state leads to irreversible attachment and partial loss of catalytic activity. In the second layer, pa-Hnl is reversibly adsorbed without loss in catalytic activity. The measured catalytic activity is the combined effect of the deactivation kinetics of the first layer and of the adsorption kinetics of each layer. For the specific case of pa-Hnl adsorbed at the DIPE/buffer interface, this combined effect is nearly constant for several hours resulting in no apparent loss of catalytic activity. Our proposed kinetic model can be extended to other interfacially active enzymes and other organic solvents. Finally, we indicate how interfacial-tension lag times provide a powerful tool for rational solvent selection and enzyme engineering.  相似文献   

19.
A novel recycle reactor has been designed to determine the interfacial activity of hydroxynitrile lyase in a diisopropyl ether (DIPE)/water two-phase system. The reactor provides a known interfacial area. Enzyme activity toward mandelonitrile cleavage is continuously measured in the reactor by following benzaldehyde product formation in the DIPE organic phase with an optical flow cell. For the first time, we establish that this enzymatic reaction is carried out by the hydroxynitrile lyase residing at the organic solvent/water interface and not in the aqueous bulk phase. Hydroxynitrile lyase adsorbs at the interface and exhibits extraordinary stability. Denaturation does not occur over several hours, although the surface pressure increases under the same conditions over this time span. Increases in surface pressure indicate enzyme penetration through the interface although no loss of enzyme activity is observed. Adsorption of p-Hnl at the interface is fit by the Langmuir equilibrium adsorption model with an adsorption equilibrium constant of 0.032 L mg(-1). For the mandelonitrile-cleavage reaction at ambient temperature, p-Hnl follows Michaelis-Menten kinetics at the interface with a Michaelis constant of 14.4 mM and a specific activity close that for the bulk aqueous phase.  相似文献   

20.
Summary Membrane inlet mass spectrometry (MIMS) is introduced as a method for measuring water activity in nonpolar solvents, aqueous solutions and gas phase. The determination of the rate of hydrolysis of diphenyl carbonate by porcine liver esterase as a function of water activity in diisopropyl ether is presented as an example. A linear relationship is found between the enzyme activity and the water activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号