首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim At macroecological scales, exotic species richness is frequently positively correlated with human population density. Such patterns are typically thought to arise because high human densities are associated with increased introduction effort and/or habitat modification and disturbance. Exotic and native species richness are also frequently positively correlated, although the causal mechanisms remain unclear. Energy availability frequently explains much of the variation in species richness and we test whether such species–energy relationships may influence the relationships of exotic species richness with human population density and native species richness. Location Great Britain. Methods We first investigate how spatial variation in the distributions of the 10 exotic bird species is related to energy availability. We then model exotic species richness using native avian species richness, human population density and energy availability as predictors. Species richness is modelled using two sets of models: one assumes independent errors and the other takes spatial correlation into account. Results The probability of each exotic species occurring, in a 10‐km quadrat, increases with energy availability. Exotic species richness is positively correlated with energy availability, human population density and native species richness in univariate tests. When taking energy availability into account, exotic species richness is negligibly influenced by human population density, but remains positively associated with native species richness. Main conclusions We provide one of the few demonstrations that energy availability exerts a strong positive influence on exotic species richness. Within our data, the positive relationship between exotic species richness and human population density probably arises because both variables increase with energy availability, and may be independent of the influence of human density on the probability of establishment. Positive correlations between exotic and native species richness remain when controlling for the influence of energy on species richness. The relevance of such a finding to the debate on the relationship between diversity and invasibility is discussed.  相似文献   

2.
Aim: Recent coarse‐scale studies have shown positive relationships between the biodiversity of plants/vertebrates and the human population. Little is known about the generality of the pattern for invertebrates. Moreover, biodiversity and human population might correlate because they both covary with other factors such as energy availability and habitat heterogeneity. Here we test these two non‐mutually exclusive mechanisms with ant species‐richness data from the Fauna Europaea. Location Forty‐three European countries/regions. Methods We derived mixed models of total, native and exotic ant species richness as a function of human population size/density, controlling for country area, plant species richness (as a proxy for habitat heterogeneity), and mean annual temperature and precipitation (variables related to energy availability). Results Ant species richness increased significantly with increasing human population. This result was confirmed when controlling for variations in country area. Both for human population size/density and for ant species richness, there were positive correlations with temperature but not with precipitation. This finding is in agreement with the energy‐availability hypothesis. However, we observed a negative latitudinal gradient in ant and plant species richness, although not in human population size/density. Plant species richness was positively correlated with ant species richness but not with human population size/density. Thus, there is evidence that this type of habitat heterogeneity can play a role in the observed latitudinal gradient of ant species richness, but not in the positive correlation between ant species richness and human population. The results were confirmed for the 545 native and the 32 exotic ant species reported, and we observed a good correlation between exotic and native ant species richness. Main conclusions Ant species richness in European countries conforms to six macroecological patterns: (1) a negative latitudinal gradient; and a positive (2) species–energy relationship, (3) species–area relationship, (4) correlation with plant species richness, (5) exotic–native species richness correlation, and (6) species–people correlation. There is some evidence for the energy‐availability hypothesis, but little evidence for habitat heterogeneity as an explanation of the large‐scale human population–ant biodiversity correlation. This correlation has implications for the conservation of ant diversity in Europe.  相似文献   

3.
Aim To investigate the inter‐relationships between energy availability, species richness and human population density, particularly whether human population density influences the manner in which species richness responds to energy availability. Location British 10‐km grid cells. Methods Using regressions, we investigate how human population density varies with energy availability and the nature of relationships between the numbers of species, classified by abundance and threat categories, and human population density. We then assess whether the relationships between these species richness measures and energy availability are altered when accounting for human population density. We conduct analyses using both independent error models and ones that control for spatial autocorrelation. Results Human population density was strongly and positively correlated with energy availability. Total species richness, and that of unthreatened, threatened, common and moderately common species, increases in a positive decelerating manner with human density. When human population density was taken into account, these species groups exhibited similar species–energy relationships, but the slopes of these relationships were significantly reduced in independent error models and, in the case of total richness, in spatial models. Main conclusions Positive correlations between human density and species richness probably arise as both increase with energy availability. Our data are compatible with the suggestion that high human population densities reduce the rate at which species richness increases with energy availability, but additional research is required before causality can be confirmed.  相似文献   

4.
Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates—species with small range sizes—is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km2) and local (up to 200 m2) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together with passive dispersal and population patch dynamics, positively contributes to soil faunal diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Wildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2'' to 60'' across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation.  相似文献   

6.
Reliable plans for desert bird conservation will depend on accurate prediction of habitat change effects on their distribution and abundance patterns. Predictive models can help highlight relationships between human‐related and other environmental variables and the presence of desert bird species. Presence/absence of 30 desert bird species of Baja California peninsula was modelled on the basis of explanatory variables taken from the field, maps, and digital imagery. Generalized linear models were fit to each bird species using both variables representing human activity and other environmental factors as predictors that might influence distribution. Probability of species presence was used as a habitat suitability index to evaluate the effect of human activity when the model contained a significant human activity variable. No differences were found in bird species richness between natural sites and those transformed by agriculture or urbanization. Of 59 bird species recorded in surveys, 34% were positively or negatively associated with human‐transformed habitats. Fourteen species seem to benefit from transformation of natural vegetation by agriculture or urbanization, while six were negatively affected. Sensitivity analyses of final models indicated all were robust. Results suggest that the occurrence of a large percentage of bird species inhabiting scrub habitats is sensitive to human habitat transformation. This finding has important conservation implications at regional scale as fragmentation and conversion of desert ecosystems into agricultural and urban areas affect the distribution of species that are highly selective for scrub habitat. Land use and anthropogenic activities seem to change ecological patterns at large spatial scales, but other factors could drive species richness distribution too (i.e. individual species response, species–energy relationships). The spatial modelling approach at regional scale used in this study can be useful for designing natural resource management plans in the Sonoran desert scrub.  相似文献   

7.
为探究片段化生境中木本植物种子雨的基本特征,该研究根据2015—2020年(研究期间)在千岛湖样岛上的植物群落长期监测样地内每月收集的种子雨数据,采用Kruskal-Wallis检验对木本植物的种子雨密度进行年际差异分析,对不同传播方式物种的种子雨密度进行月份间差异性分析,并利用线性混合效应模型,探究岛屿空间特征(岛屿面积、距最近岛屿的距离、距大陆的距离)以及气候因子(0 ℃以上积温、降水量)对木本植物以及不同传播方式物种的种子雨密度的影响。结果表明:(1)2015—2020年6年间,在29个样岛用240个收集器共收集到877 178粒木本植物的成熟种子,属于26科40属52种。(2)动物传播是木本植物主要的种子传播方式,不同传播方式物种的种子雨时间动态存在较大差异。(3)木本植物的种子雨年密度与岛屿面积和年积温呈显著正相关,与年降水量呈显著负相关。(4)自主传播物种的种子雨月密度与距最近岛屿的距离呈显著正相关,而动物传播物种的种子雨月密度则与距大陆的距离呈显著正相关,风力传播物种的种子雨月密度与月积温呈极显著正相关。综上表明,生境片段化通过岛屿空间特征影响了木本植物种子雨的时间动态。  相似文献   

8.
Many factors affect the distribution of species richness. This study examines the relative influence of habitat heterogeneity, climate, human disturbance, and spatial structure on the species-richness distribution of terrestrial vertebrates (amphibians, reptiles, birds and mammals) in mainland Spain. The results indicate that spatial structure and environment exert similar influences on species richness. For all four taxa, species richness increases southward and northward, being lower in the center of the country, when controlled for other variables. This may be the result of a peninsular effect, as found in other studies, and reflect the importance of historical events on species richness in the Iberian Peninsula. Climate is more important than habitat heterogeneity in determining species richness. Temperature is positively correlated with amphibian, reptile, and bird species richness, while mammalian species richness is highest at intermediate temperatures. This effect is stronger in ectotherms than among endotherms, perhaps reflecting physiological differences. Precipitation positively correlates with bird and mammalian species richness, but has no effect on ectotherm species richness. Amphibian species richness increases with altitudinal range, and bird species richness with habitat diversity. Human population density is positively correlated with bird and mammalian species richness, but does not affect ectotherm species richness, while amphibian and bird species richness is highest at moderate levels of human land alteration (farmland). However, unexplained variance remains, and we discuss that the effects of environmental variables on species richness may vary geographically, causing different effects to be obscured on a national scale, diminishing the explanatory power of environmental variables.  相似文献   

9.
Aim  To assess whether spatial variation in sampling effort drives positive correlations between human population density and species richness.
Location  British 10 × 10 km squares.
Methods  We calculated three measures of species richness from atlas data of breeding birds in Britain: total species richness, species richness standardised for sampling effort, and the number of species only recorded in supplementary casual records in a manner not standardised for survey effort. We then assessed the form of the relationship between these richness estimates and human population density, both with and without taking spatial autocorrelation into account.
Results  Both total and standardised species richness exhibit similar species richness–human population density relationships; species richness generally increases with human population density, but decreases at the very highest densities. Supplementary species richness is very weakly correlated with human population density.
Main conclusions  In this example, sampling effort only slightly influences the form of species richness–human population density relationships. The positive correlation between species richness and human population density and any resultant conservation conflicts are thus not artefactual patterns generated by confounding human density and sampling effort.  相似文献   

10.
The influences of low-head dams on the fish assemblages were examined in this study, using fish data collected in six treatment and five reference sites at three low-head dams in the headwater streams of the Qingyi watershed, China. Comparing with those in the reference sites, local habitat variables were significantly altered by low-head dams in the treatment sites, involving wider channel (only in the impoundment area), deeper water and slower flow. Fish species richness varied significantly across seasons, not across site categories, suggesting that these low-head dams did not alter species richness. However, significant decreases in fish abundance and density were observed in the impoundment areas immediately upstream of dams, but not in the plunge areas downstream. Fish assemblage structures kept relative stability across seasons, and their significant difference between-site was only observed between the impoundment areas and the sites far from dams upstream. This variation in assemblage structures was due to the differing relative abundance of some co-occurring species; more lentic but less lotic fish was observed in the impoundment areas. The spatial and temporal patterns of fish assemblages were correlated with local habitat in this study area. Wetted width had negative correlation with fish species richness, abundance and density, respectively. Water temperature also positively affected species richness. In addition, wetted width, water depth, current velocity and substrate were the important habitat variables influencing assemblage structures. Our results suggested that, by modifying local habitat characteristics, low-head dams altered fish abundance and density in the impoundment areas immediately upstream of dam, not in the plunge areas immediately downstream, and thereby influenced fish assemblage structures in these stream segments.  相似文献   

11.
叶晓堤  马勇 《兽类学报》1998,18(4):260-267
在采用网格法对华北平原及黄土高原啮齿动物调查的基础上,分析了啮齿动物物种丰富度空间格局。华北平原物种丰富度最低,其次为晋、翼山地和汾、渭谷地,而南蒙高原和黄土高原的丰富度较高;物种丰富度纬向变化不明显,而经向变化显著,由东向西,物种丰富度呈递增趋势;丰富度在海拔上的变化并不存在相关的地理模式;丰富度与山地面积呈正相关,与平原面积呈负相关,而与丘陵面积相关不显著,丰富度与各地地貌类型面积的总和呈明显的正相关;丰富度与温度相关不明显,而与降雨量呈负相关。在华北平原及黄土高原,生境结构类型愈复杂的地区,啮齿动物物种丰富度愈高。  相似文献   

12.
The spatial distribution of alien species richness often correlates positively with native species richness, and reflects the role of human density and activity, and primary productivity and habitat heterogeneity, in facilitating the establishment and spread of alien species. Here, we investigate the relationship between the spatial distribution of alien bird species, human density, and anthropogenic and natural environmental conditions. Next, we examined the relationship between the spatial distribution of alien bird species and native bird species richness. We examined alien species richness as a response variable, using correlative analyses that take spatial autocorrelation into account. Further, each alien bird species was examined as a response variable, using logistic regression procedures based on binary presence–absence data. A combination of human density and natural habitat heterogeneity best explained the spatial distribution of alien species richness. This contrasts with the results for individual alien species and with previous studies on other non-native taxa showing the importance of primary productivity and anthropogenic habitat modification as explanatory variables. In general, native species richness is an important correlate of the spatial distribution of alien species richness and individual alien species, with alien species being more similar to common species than to rare species.  相似文献   

13.
Aim Large, charismatic and wide‐ranging animals are often employed as focal species for prioritizing landscape linkages in threatened ecosystems (i.e. ‘connectivity conservation’), but there have been few efforts to assess empirically whether focal species co‐occur with other species of conservation interest within potential linkages. We evaluated whether the African elephant (Loxodonta africana), a world‐recognized flagship species, would serve as an appropriate focal species for other large mammals in a potential linkage between two major protected area complexes. Location A 15,400 km2 area between the Ruaha and Selous ecosystems in central Tanzania, East Africa. Methods We used walking transects to assess habitat, human activity and co‐occurrence of elephants and 48 other large mammal species (> 1 kg) at 63 sites using animal sign and direct sightings. We repeated a subset of transects to estimate species detectability using occupancy modelling. We used logistic regression and AIC model selection to characterize patterns of elephant occurrence and assessed correlation of elephant presence with richness of large mammals and subgroups. We considered other possible focal species, compared habitat‐based linear regression models of large mammal richness and used circuit theory to examine potential connectivity spatially. Results Elephants were detected in many locations across the potential linkage. Elephant presence was highly positively correlated with the richness of large mammals, as well as ungulates, carnivores, large carnivores and species > 45 kg in body mass (‘megafauna’). Outside of protected areas, both mammal richness and elephant presence were negatively correlated with human population density and distance from water. Only one other potential focal species was more strongly correlated with species richness than elephants, but detectability was highest for elephants. Main conclusions Although African elephants have dispersal abilities that exceed most other terrestrial mammals, conserving elephant movement corridors may effectively preserve habitat and potential landscape linkages for other large mammal species among Tanzanian reserves.  相似文献   

14.
Aim To test six hypotheses that could explain or mediate the positive correlation between human population density (HPD) and bird species richness while controlling for biased sampling effort. These hypotheses were labelled as follows: productivity (net primary productivity, NPP); inherent heterogeneity (diversity of vegetation types); anthropogenic heterogeneity (diversity of land uses); conservation policy (proportion of conservation land); increased productivity (human‐induced productivity increases); and the reduced‐slope hypothesis (which predicts that humans have a negative impact on species numbers across the full range of variation in HPD). Location Australia. Methods All data were collected at a spatial resolution of 1° across mainland Australia. Bird species richness was from 2007 atlas data and random subsampling was used to account for biased sampling effort. HPD was from the 2006 census. All other data were from government produced geographic information system layers. The most important biotic or abiotic factors influencing patterns in both species richness and HPD were assessed using simultaneous autoregressive models and an information theoretic approach. Results NPP appeared to be one of the main factors driving spatial congruence between bird species richness and HPD. Inherent habitat heterogeneity was weakly related to richness and HPD, although an interaction between heterogeneity and NPP indicated that the former may be an important determinant of species richness in low‐productivity regions. There was little evidence that anthropogenic landscape heterogeneity or human‐induced changes in productivity influenced the relationship between species richness and HPD, but conservation policy appeared to act as an important mediating factor and species richness was positively related to the proportion of conservation land only in regions of high HPD. Main conclusions The spatial congruence between bird species richness and HPD occurs because both respond positively to productivity and, in certain circumstances, habitat heterogeneity. Our results suggest that conservation policy could mediate this relationship, but further research is required to determine the importance of conservation reserves in supporting species in regions densely populated by humans.  相似文献   

15.
Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (semi)natural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments) in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies) when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated) ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground.  相似文献   

16.
People, species richness and human population growth   总被引:1,自引:0,他引:1  
Aim To investigate how the magnitude of conservation conflicts arising from positive relationships between human population size and species richness is altered during a period of marked human population growth (2% year?1). Location South Africa. Methods Anuran and avian species richness were calculated from atlas distribution maps, and human population was measured in 1996 and 2001, all at a quarter‐degree resolution. We investigated the relationships between human population size in, and its change during, these two periods and environmental energy availability. We then investigated the nature of relationships between species richness and human population size in both time periods, and its change during them; these analyses were conducted both with and without taking environmental energy availability into account. Finally, we investigated the nature of the relationships between human population size, and its change, and the proportion of protected land. Analyses were conducted both without and with taking spatial autocorrelation into account; the latter was achieved using mixed models that fitted a spatial covariance structure to the data. Results Change in human population size between 1996 and 2001 exhibited marked spatial variation, with both large increases and decreases, but was poorly correlated with environmental energy availability. The nature of the relationship between human population size and environmental energy availability did not, however, exhibit statistically significant differences regardless of whether the former was measured in 1996 or 2001. Similarly, relationships between species richness and human population size did not exhibit significant differences between the two periods. The strengths of the species–human relationships were markedly reduced when energy availability was taken into account. Change in human population size was poorly correlated with species richness. The proportion of protected land was negatively, albeit rather weakly, correlated with human population size in 1996 and 2001, and with its change between these two periods. Main conclusions Positive species–human relationships arise largely, but not entirely, because both species richness and human population size exhibit similar responses to environmental energy availability. During a period of rapid human population growth, and marked changes in the spatial variation in human population size, positive correlations remained between human population size and both anuran and avian species richness. The slope of these correlations did not, however, alter, and the most species‐rich areas are not those with the largest increases in human population. Despite marked population growth, the magnitude of conservation conflicts arising from positive species–human relationships thus appears to have remained largely unchanged.  相似文献   

17.
We studied how human presence in three urban parks in Madrid (Spain) might affect Blackbird densities by changing feeding behaviour patterns. Our specific purposes were: (a) to ascertain the effect of park visitors on Blackbird feeding behaviour; (b) to analyse the influence of human disturbance on foraging success; and (c) to determine how humans affect Blackbird spatial and temporal patterns of habitat use. Pedestrians were the main source of flushing responses in all sampled parks, followed by Magpies Pica pica and dogs accompanying visitors. Blackbird responses to visitors entailed more time being vigilant and moving away from people and less time searching for food (decreasing food intake), a response that remained constant in the three parks. The number of pedestrians was positively correlated with Blackbird distance to pathways and negatively correlated with distance to protective cover. The number of active birds decreased with increase in the number of pedestrians during the day. Blackbird density was negatively related to the number of visitors per park. Our results confirmed that human disturbance negatively affects Blackbird feeding strategies in urban parks, ultimately modifying spatial and temporal patterns of habitat selection and abundance. Since such responses could also affect densities of other urban species by the same process, we propose some management measures to decrease the levels of disturbance as well as to enhance the recreational use of urban parks.  相似文献   

18.
Aim To assess the relative importance of environmental (climate, habitat heterogeneity and topography), human (population density, economic prosperity and land transformation) and spatial (autocorrelation) influences, and the interactions between these predictor groups, on species richness patterns of various avifaunal orders. Location South Africa. Methods Generalized linear models were used to determine the amount of variation in species richness, for each order, attributable to each of the different predictor groups. To assess the relationships between species richness and the various predictor groups, a deviance statistic (a measure of goodness of fit for each model) and the percentage deviation explained for the best fitting model were calculated. Results Of the 12 avifaunal orders examined, spatially structured environmental deviance accounted for most of the variation in species richness in 11 orders (averaging 28%), and 50% or more in seven orders. However, orders comprising mostly water birds (Charadriiformes, Anseriformes, Ciconiformes) had a relatively large component of purely spatial deviance compared with spatially structured environmental deviance, and much of this spatial deviance was due to higher‐order spatial effects such as patchiness, as opposed to linear gradients in species richness. Although human activity, in general, offered little explanatory power to species richness patterns, it was an important correlate of spatial variation in species of Charadriiformes and Anseriformes. The species richness of these water birds was positively related to the presence of artificial water bodies. Main conclusions Not all bird orders showed similar trends when assessing, simultaneously, the relative importance of environmental, human and spatial influences in affecting bird species richness patterns. Although spatially structured environmental deviance described most of the variation in bird species richness, the explanatory power of purely spatial deviance, mostly due to nonlinear geographical effects such as patchiness, became more apparent in orders representing water birds. This was especially true for Charadriiformes, where the strong anthropogenic relationship has negative implications for the successful conservation of this group.  相似文献   

19.
Aim Mediterranean coastal sand dunes are characterized by both very stressful environmental conditions and intense human pressure. This work aims to separate the relative contributions of environmental and human factors in determining the presence/abundance of native and alien plant species in such an extreme environment at a regional scale. Location 250 km of the Italian Tyrrhenian coast (Region Lazio). Methods We analysed alien and native plant richness and fitted generalized additive models in a multimodel‐inference framework with comprehensive randomizations to evaluate the relative contribution of environmental and human correlates in explaining the observed patterns. Results Native and alien richness are positively correlated, but different variables influence their spatial patterns. For natives, human population density is the most important factor and is negatively related to richness. Numbers of natives are unexpectedly lower in areas with a high proportion of natural land cover (probably attributable to local farming practices) and, to a lesser degree, affected by the movement of the coastline. On the other hand, alien species richness is strongly related to climatic factors, and more aliens are found in sectors with high rainfall. Secondarily, alien introductions appear to be related to recent urban sprawl and associated gardening. Main conclusions Well‐adapted native species in a fragile equilibrium with their natural environment are extremely sensitive to human‐driven modifications. On the contrary, for more generalist alien species, the availability of limited resources plays a predominant role.  相似文献   

20.
Aim Local‐scale diversity patterns are not necessarily regulated by contemporary processes, but may be the result of historical events such as habitat changes and selective extinctions that occurred in the past. We test this hypothesis by examining species‐richness patterns of the land snail fauna on an oceanic island where forest was once destroyed but subsequently recovered. Location Hahajima Island of the Ogasawara Islands in the western Pacific. Methods Species richness of land snails was examined in 217 0.25 × 0.25 km squares during 1990–91 and 2005–07. Associations of species richness with elevation, current habitat quality (proportion of habitat composed of indigenous trees and uncultivated areas), number of alien snail species, and proportion of forest loss before 1945 in each area were examined using a randomization test and simultaneous autoregressive (SAR) models. Extinctions in each area and on the entire island were detected by comparing 2005–07 records with 1990–91 records and previously published records from surveys in 1987–91 and 1901–07. The association of species extinction with snail ecotype and the above environmental factors was examined using a spatial generalized linear mixed model (GLMM). Results The level of habitat loss before 1945 explained the greatest proportion of variation in the geographical patterns of species richness. Current species richness was positively correlated with elevation in the arboreal species, whereas it was negatively correlated with elevation in the ground‐dwelling species. However, no or a positive correlation was found between elevation and richness of the ground‐dwelling species in 1987–91. The change of the association with elevation in the ground‐dwelling species was caused by greater recent extinction at higher elevation, possibly as a result of predation by malacophagous flatworms. In contrast, very minor extinction levels have occurred in arboreal species since 1987–91, and their original patterns have remained unaltered, mainly because flatworms do not climb trees. Main conclusions The species‐richness patterns of the land snails on Hahajima Island are mosaics shaped by extinction resulting from habitat loss more than 60 years ago, recent selective extinction, and original faunal patterns. The effects of habitat destruction have remained long after habitat recovery. Different factors have operated during different periods and at different time‐scales. These findings suggest that historical processes should be taken into account when considering local‐scale diversity patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号