首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many of the pathological effects of lipid peroxidation are mediated by aldehydes generated through fragmentation of lipid peroxides. Among these aldehydes, the γ-hydroxy- and γ-oxo-α,β-alkenals, e.g., 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE), are especially prone to modifying proteins and DNA through covalent adduction. In addition the "mirror image" γ-hydroxy- and γ-oxo-α,β-alkenal phospholipids can serve as high-affinity ligands for biological receptors triggering pathology. Therefore, the mechanisms by which these aldehydes are generated in vivo are under intense scrutiny. We now report observations supporting the intermediacy of a unique pseudo-symmetrical diepoxycarbinyl radical that accounts for the coproduction of HNE, ONE, and their mirror image analogues 9-hydroxy-12-oxo-10(E)-dodecenoic acid and 9-keto-12-oxo-10-dodecenoic acid upon fragmentation of 13-hydroperoxy-cis-9,10-epoxyoctadeca-11-enoic acid.  相似文献   

2.
The objectives of this study were to estimate the structure of the lipid hydroperoxide-modified lysine residue and to prove the presence of the adducts in vivo. The reaction of lipid hydroperoxide toward the lysine moiety was investigated employing N-benzoyl-glycyl-L-lysine (Bz-Gly-Lys) as a model compound of Lys residues in protein and 13-hydroperoxyoctadecadienoic acid (13-HPODE) as a model of the lipid hydroperoxides. One of the products, compound X, was isolated from the reaction mixture of 13-HPODE and Bz-Gly-Lys and was then identified as N-benzoyl-glycyl-Nepsilon-(hexanonyl)lysine. To prove the formation of Nepsilon-(hexanonyl)lysine, named HEL, in protein exposed to the lipid hydroperoxide, the antibody to the synthetic hexanonyl protein was prepared and then characterized in detail. Using the anti-HEL antibody, the presence of HEL in the lipid hydroperoxide-modified proteins and oxidized LDL was confirmed. Furthermore, the positive staining by anti-HEL antibody was observed in human atherosclerotic lesions using an immunohistochemical technique. The amide-type adduct may be a useful marker for the lipid hydroperoxide-derived modification of biomolecules.  相似文献   

3.
Despite intensive research over the last two decades, there are still no specific markers of endogenous lipid hydroperoxide-mediated DNA damage. We recently demonstrated that heptanone-etheno-2'-deoxyguanosine adducts are formed in the DNA of rat intestinal epithelial cells that stably express cyclooxygenase-2. Heptanone-etheno adducts can only arise from the reaction of lipid hydroperoxide-derived 4-oxo-2(E)-nonenal with DNA. This raised the possibility that similar adducts would be formed in vivo in settings where cyclooxygenase-2 expression is increased. Therefore, DNA-adduct formation was studied in C57BL/6JAPC(min) mice, a colorectal cancer mouse model in which cyclooxygenase-2 is up-regulated. 15(S)-Hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid is the major lipid hydroperoxide produced endogenously by cyclooxygenase-2. It undergoes homolytic decomposition to the DNA-reactive bifunctional electrophile 4-oxo-2(E)-nonenal, which forms heptanone-etheno adducts with DNA. A quantitative comparison was made of the heptanone-etheno-DNA adducts present in C57BL/6J and C57BL/6JAPC(min) mice. Using highly specific and sensitive methodology based on stable isotope dilution liquid chromatography/tandem mass spectrometry, we have detected the endogenous formation of heptanone-etheno adducts in mammalian tissue DNA for the first time. In addition, we found that there were statistically significant increased levels of the heptanone-etheno-2'-deoxyguanosine and heptanone-etheno-2'-deoxycytidine adducts in the C57BL/6JAPC(min) mice when compared with the control C57BL/6J mice.  相似文献   

4.
Endothelial dysfunction is considered to be the earliest event in atherogenesis. Oxidative stress, inflammation, and apoptosis play critical roles in its progression and onset. Lipid peroxidation, which occurs during oxidative stress, results in the formation of lipid hydroperoxide-derived bifunctional electrophiles such as 4-hydroxy-2(E)-nonenal that induce apoptosis. In this study, recently identified lipid hydroperoxide-derived bifunctional electrophiles 4-oxo-2(E)-nonenal (ONE; 5-30 microm) and 4,5-epoxy-2(E)-decenal (EDE; 10-20 microM) were shown to cause a dose- and time-dependent apoptosis in EA.hy 926 endothelial cells. This was manifest by morphological changes, caspase-3 activation, and poly(ADP-ribose) polymerase cleavage. Bifunctional electrophiles caused cytochrome c release from mitochondria into the cytosol, implicating a mitochondrial pathway of apoptosis in the endothelial cells. The novel carboxylate-containing lipid hydroperoxide-derived bifunctional electrophile 9,12-dioxo-10(E)-dodecenoic acid was inactive because it could not translocate across the plasma membrane. However, its less polar methyl ester derivative (2-10 microM) was the most potent inducer of apoptosis of any bifunctional electrophile that has been tested. An acute decrease in intracellular glutathione (GSH) preceded the onset of apoptosis in bifunctional electrophile-treated cells. The ability of ONE and EDE to deplete GSH was directly correlated with their predicted reactivity toward nucleophilic amino acids. Liquid chromatography/mass spectrometry methodology was developed in order to examine the intracellular and extracellular concentrations of bifunctional electrophile-derived GSH adducts. Relative intracellular/extracellular ratios of the GSH adducts were identical with the rank order of potency for inducing caspase 3 activation. This suggests that there may be a role for the bifunctional electrophile-derived GSH adducts in the apoptotic response. N-Acetylcysteine rescued bifunctional electrophile-treated cells from apoptosis, whereas the GSH biosynthesis inhibitor d,l-buthionine-(R,S)-sulfoximine sensitized the cells to apoptosis. These data suggest that lipid hydroperoxide-derived bifunctional electrophiles may play an important role in cardiovascular pathology through their ability to induce endothelial cell apoptosis.  相似文献   

5.
We have previously prepared the polyclonal antibody to the 13-hydroperoxyoctadecadienoic acid-modified protein (13Ab) (Kato et al. 1997. J. Lipid Res. 38: 1334-1346), however, the epitopes have not yet been structurally identified. In this study, we identified a novel amide-type adduct as one of the major epitopes of 13Ab and characterized the endogenous formation. Upon incubation of the lysine derivative with peroxidized linoleic acid, the formation of N epsilon -(azelayl)lysine (AZL) was confirmed using liquid chromatography-mass spectrometry. The chemically synthesized azelayl protein was significantly recognized by 13Ab. The peroxidation products of different polyunsaturated fatty acids also generated several analogous carboxyalkylamide-type adducts to AZL by the reaction with the lysine derivative, whereas 13Ab specifically recognized AZL, suggesting that the AZL moiety may be one of the major epitopes of 13Ab. The immunoreactive materials of 13Ab were immunohistochemically detected in atherosclerotic lesions from hypercholesterolemic rabbits. More strikingly, the immunoreactivity was significantly enhanced when the sections were treated with alkali or phospholipase A2 for hydrolyzing the ester bonds prior to the staining. These results suggest that the lipid hydroperoxide-derived carboxylic adducts, such as AZL, and their esters linked with phospholipids may be generated in vivo and involved in the pathogenesis of atherosclerosis associated with oxidative stress.  相似文献   

6.
15(S)-Hydroperoxy-[5Z,8Z,11Z,13E]-eicosatetraenoic acid (15(S)-HpETE) undergoes homolytic decomposition to bifunctional electrophiles such as 4-oxo-2(E)-nonenal. 4-Oxo-2(E)-nonenal reacts with glutathione to form a thiadiazabicyclo-4-oxo-2(E)-nonenal–glutathione adduct (TOG). Therefore, this endogenous glutathione adduct can serve as a specific biomarker of lipid hydroperoxide-mediated 4-oxo-2(E)-nonenal formation. A monocyte/macrophage cell line was generated to constitutively express human 15-lipoxygenase-1. In these cells, TOG was formed from 15(S)-HpETE-derived 4-oxo-2(E)-nonenal in a nonlinear dose-dependent manner upon arachidonic acid treatment. The lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-α-cyanocinnamate abolished arachidonic acid-mediated TOG formation. The calcium ionophore A23187 was also used to induce the formation of 15(S)-HpETE from esterified arachidonic acid present in the membrane lipids. In the 15-lipoxygenase-1-expressing cells, the calcium ionophore A23187 significantly increased TOG levels compared with mock-transfected cells. This was due to the 15-lipoxygenase-mediated formation of 15(S)-HpETE in the forms of free fatty acid and esterified lipids, which was subsequently converted to 4-oxo-2(E)-nonenal. The increase in TOG formation was again abrogated by pretreatment with cinnamyl-3,4-dihydroxy-α-cyanocinnamate. Only 8.7% 15(S)-HETE (both the free fatty acid and its esterified form in the cell membrane) was formed after ionophore A23187 stimulation compared with that formed after the addition of arachidonic acid. In contrast, the TOG levels after treatment with ionophore A23187 or arachidonic acid were comparable. Thus, it is likely that esterified 15(S)-HpETE underwent homolytic decomposition to 4-oxo-2(E)-nonenal more efficiently than the free 15(S)-HpETE that was formed in the cytosol.  相似文献   

7.
Oxidative stress-induced lipid peroxidation leads to the formation of cytotoxic and genotoxic 2-alkenals, such as 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE). Lipid-derived reactive aldehydes are subject to phase-2 metabolism and are predominantly found as mercapturic acid (MA) conjugates in urine. This study shows evidence for the in vivo formation of ONE and its phase-1 metabolites, 4-oxo-2-nonen-1-ol (ONO) and 4-oxo-2-nonenoic acid (ONA). We have detected the MA conjugates of HNE, 1,4-dihydroxy-2-nonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), the lactone of HNA, ONE, ONO, and ONA in rat urine by liquid chromatography-tandem mass spectrometry comparison with synthetic standards prepared in our laboratory. CCl(4) treatment of rats, a widely accepted animal model of acute oxidative stress, resulted in a significant increase in the urinary levels of DHN-MA, HNA-MA lactone, ONE-MA, and ONA-MA. Our data suggest that conjugates of HNE and ONE metabolites have value as markers of in vivo oxidative stress and lipid peroxidation.  相似文献   

8.
The modification of proteins by lipid peroxidation products has been linked to numerous diseases and age-related disorders. Here we report on the identification of endogenous protein targets of electrophilic 2-alkenals in cardiac mitochondria. An aldehyde/keto-specific chemical labeling and affinity strategy in combination with LC-MS/MS resulted in 39 unique lipoxidation sites on 27 proteins. Several of the target sites were modified by a variety of 2-alkenal products including acrolein, β-hydroxyacrolein, crotonaldehyde, 4-hydroxy-2-hexenal, 4-hydroxy-2-nonenal and 4-oxo-2-nonenal. Many of the adduction sites are implicated in the catalytic function of key mitochondrial enzymes suggesting potential impact on pathways and overall mitochondrial function.  相似文献   

9.
Halogenated quinones are a class of carcinogenic intermediates and newly identified chlorination disinfection by-products in drinking water. 13-Hydroperoxy-9,11-octadecadienoic acid (13-HPODE) is the most extensively studied endogenous lipid hydroperoxide. Although it is well known that the decomposition of 13-HPODE can be catalyzed by transition metal ions, it is not clear whether halogenated quinones could enhance its decomposition independent of metal ions and, if so, what the unique characteristics and similarities are. Here we show that 2,5-dichloro-1,4-benzoquinone (DCBQ) could markedly enhance the decomposition of 13-HPODE and formation of reactive lipid alkyl radicals such as pentyl and 7-carboxyheptyl radicals, and the genotoxic 4-hydroxy-2-nonenal (HNE), through the complementary application of ESR spin trapping, HPLC–MS, and GC–MS methods. Interestingly, two chloroquinone–lipid alkoxyl conjugates were also detected and identified from the reaction between DCBQ and 13-HPODE. Analogous results were observed with other halogenated quinones. This represents the first report that halogenated quinoid carcinogens can enhance the decomposition of the endogenous lipid hydroperoxide 13-HPODE and formation of reactive lipid alkyl radicals and genotoxic HNE via a novel metal-independent nucleophilic substitution coupled with homolytic decomposition mechanism, which may partly explain their potential genotoxicity and carcinogenicity.  相似文献   

10.
The breakdown of polyunsaturated fatty acids (PUFAs) under conditions of oxidative stress results in the formation of lipid peroxidation (LPO) products. These LPO products such as 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) can contribute to the development of cardiovascular and neurodegenerative diseases and cancer. Conjugation with glutathione, followed by further metabolism to mercapturic acid (MA) conjugates, can mitigate the effects of these LPO products in disease development by facilitating their excretion from the body. We have developed a quantitative method to simultaneously assess levels of 4-oxo-2-nonen-1-ol (ONO)-MA, HNE-MA, and 1,4-dihydroxy-2-nonene (DHN)-MA in human urine samples utilizing isotope-dilution mass spectrometry. We are also able to detect 4-hydroxy-2-nonenoic acid (HNA)-MA, 4-hydroxy-2-nonenoic acid lactone (HNAL)-MA, and 4-oxo-2-nonenoic acid (ONA)-MA with this method. The detection of ONO-MA and ONA-MA in humans is significant because it demonstrates that HNE/ONE branching occurs in the breakdown of PUFAs and suggests that ONO may contribute to the harmful effects currently associated with HNE. We were able to show significant decreases in HNE-MA, DHN-MA, and total LPO-MA in a group of seven smokers upon smoking cessation. These data demonstrate the value of HNE and ONE metabolites as in vivo markers of oxidative stress.  相似文献   

11.
Histidine and lysine as targets of oxidative modification   总被引:4,自引:0,他引:4  
Uchida K 《Amino acids》2003,25(3-4):249-257
Summary. Histidine and lysine are two representative targets of oxidative modifications. Histidine is extremely sensitive to a metal-catalyzed oxidation, generating 2-oxo-histidine and its ring-ruptured products, whereas the oxidation of lysine generates carbonyl products, such as aminoadipic semialdehyde. On the other hand, both histidine and lysine are nucleophilic amino acids and therefore vulnerable to modification by lipid peroxidation-derived electrophiles, such as 2-alkenals, 4-hydroxy-2-alkenals, and ketoaldehydes, derived from lipid peroxidation. Histidine shows specific reactivity toward 2-alkenals and 4-hydroxy-2-alkenals, whereas lysine is a ubiquitous target of aldehydes, generating various types of adducts. Covalent binding of reactive aldehydes to histidine and lysine is associated with the appearance of carbonyl reactivity and antigenecity of proteins.  相似文献   

12.
The electrophilic lipid oxidation product 4-hydroxy-2-nonenal (HNE) reacts with proteins to form covalent adducts, and this damage has been implicated in pathologies associated with oxidative stress. HNE adduction of blood proteins, such as human serum albumin (HSA), yields adducts that may serve as markers of oxidative stress in vivo. We used liquid chromatography-tandem mass spectrometry (LC-MS-MS) and the P-Mod algorithm to map the sites of 10 adducts formed by reaction of HNE with HSA in vitro. The detected adducts included Michael adducts formed at histidine and lysine residues. The selectivity of HNE in competing adduction reactions was evaluated by analysis of kinetics for HNE Michael adduction at six targeted HSA histidine residues. Reaction kinetics were analyzed by selected reaction monitoring in LC-MS-MS using stable isotope tagging with phenyl isocyanate. Rate constants ranged over 4 orders of magnitude, with the order of reactivity being H242 > H510 > H67 > H367 > H247 approximately K233. The most reactive target, H242, is located in a fatty acid- and drug binding cavity in subdomain IIa of HSA and appears to be a hot-spot for HNE modification. Analysis of adduction kinetics together with HSA structure and target residue pK(a) values suggest that location in the hydrophobic binding cavity and low predicted pK(a) of H242 account for its high reactivity toward HNE. H242 adducts may be preferred products of adduction by lipophilic electrophiles and may comprise a family of biomarkers for oxidative stress.  相似文献   

13.
Elevated oxidative stress has been suggested to be associated with the features of Down's syndrome (DS). We previously reported increased oxidative stress in cultured cells from the embryonic brain of Ts1Cje, a mouse genetic DS model. However, since in vivo evidence for increased oxidative stress is lacking, we here examined lipid peroxidation, a typical marker of oxidative stress, in the brains of Ts1Cje and another DS mouse model Ts2Cje with an overlapping but larger trisomic segment. Accumulations of proteins modified with the lipid peroxidation-derived products, 13-hydroperoxy-9Z,11E-octadecadienoic acid and 4-hydroxy-2-nonenal were markedly increased in Ts1Cje and Ts2Cje brains. Analysis with oxidation-sensitive fluorescent probe also showed that reactive oxygen species themselves were increased in Ts1Cje brain. However, electron spin resonance analysis of microdialysate from the hippocampus of Ts1Cje showed that antioxidant activity remained unaffected, suggesting that the reactive oxygen species production was accelerated in Ts1Cje. Proteomics approaches with mass spectrometry identified the proteins modified with 13-hydroperoxy-9Z,11E-octadecadienoic acid and/or 4-hydroxy-2-nonenal to be involved in either ATP generation, the neuronal cytoskeleton or antioxidant activity. Structural or functional impairments of these proteins by such modifications may contribute to the DS features such as cognitive impairment that are present in the Ts1Cje mouse.  相似文献   

14.
Degradation of lipid peroxides leads to the formation of cytotoxic 2-alkenals and oxenes (collectively designated reactive carbonyls). The novel NADPH-dependent oxidoreductase 2-alkenal reductase (AER; EC 1.3.1.74) from Arabidopsis (Arabidopsis thaliana), which is encoded by the gene At5g16970, catalyzes the reduction of the alpha,beta-unsaturated bond of reactive carbonyls, and hence is presumed to function in antioxidative defense in plants. Here we show that Arabidopsis AER (At-AER) has a broad substrate spectrum to biologically relevant reactive carbonyls. Besides 2-alkenals, the enzyme recognized as substrates the lipid peroxide-derived oxenes 9-oxo-octadeca-(10E),(12Z)-dienoic acid and 13-oxo-octadeca-(9E),(11Z)-dienoic acid, as well as the potent genotoxin 4-oxo-(2E)-nonenal, altogether suggesting AER has a key role in the detoxification of reactive carbonyls. To validate this conclusion by in vivo studies, transgenic tobacco (Nicotiana tabacum) plants that had 100- to 250-fold higher AER activity levels than control plants were generated. The engineered plants exhibited significantly less damage from either (1) the exogenously administered 4-hydroxy-(2E)-nonenal, (2) treatment with methyl viologen plus light, or (3) intense light. We further show that the At-AER protein fused with the Aequorea victoria green fluorescent protein localizes in cytosol and the nucleus in Bright-Yellow 2 cells. These results indicate that reactive carbonyls mediate photooxidative injury in leaf cells, and At-AER in the cytosol protects the cells by reducing the alpha,beta-unsaturated bond of the photoproduced reactive carbonyls.  相似文献   

15.
Protein carbonylation is the covalent modification of proteins by α,β-unsaturated aldehydes produced by nonenzymatic lipid peroxidation of polyunsaturated fatty acids. The most widely studied aldehyde product of lipid peroxidation, trans-4-hydroxy-2-nonenal (4-HNE), is associated with obesity-induced metabolic dysfunction and has demonstrated reactivity toward key proteins involved in cellular function. However, 4-HNE is only one of many lipid peroxidation products and the lipid aldehyde profile in adipose tissue has not been characterized. To further understand the role of oxidative stress in obesity-induced metabolic dysfunction, a novel LC–MS/MS method was developed to evaluate aldehyde products of lipid peroxidation and applied to the analysis of adipose tissue. 4-HNE and trans-4-oxo-2-nonenal (4-ONE) were the most abundant aldehydes present in adipose tissue. In high fat-fed C57Bl/6J and ob/ob mice the levels of lipid peroxidation products were increased 5- to 11-fold in epididymal adipose, unchanged in brown adipose, but decreased in subcutaneous adipose tissue. Epididymal adipose tissue of high fat-fed mice also exhibited increased levels of proteins modified by 4-HNE and 4-ONE, whereas subcutaneous adipose tissue levels of these modifications were decreased. High fat feeding of C57Bl/6J mice resulted in decreased expression of a number of genes linked to antioxidant biology selectively in epididymal adipose tissue. Moreover, TNFα treatment of 3T3-L1 adipocytes resulted in decreased expression of GSTA4, GPx4, and Prdx3 while upregulating the expression of SOD2. These results suggest that inflammatory cytokines selectively downregulate antioxidant gene expression in visceral adipose tissue, resulting in elevated lipid aldehydes and increased protein carbonylation.  相似文献   

16.
Oxidatively damaged lipid membranes are known to promote the aggregation of amyloid β proteins and fibril formation. Oxidative damage typically produces 4-hydroxy-2-nonenal when lipid membranes contain ω-6 polyunsaturated fatty acyl chains, and this compound is known to modify the three His residues in Aβ proteins by Michael addition. In this report, the ability of 4-hydroxy-2-nonenal to reproduce the previously observed amyloidogenic effects of oxidative lipid damage on amyloid β proteins is demonstrated and the mechanism by which it exerts these effects is examined. Results indicate that 4-hydroxy-2-nonenal modifies the three His residues in amyloid beta proteins, which increases their membrane affinity and causes them to adopt a conformation on membranes that is similar to their conformation in a mature amyloid fibril. As a consequence, fibril formation is accelerated at relatively low protein concentrations, and the ability to seed the formation of fibrils by unmodified amyloid beta proteins is enhanced. These in vitro findings linking oxidative stress to amyloid fibril formation may be significant to the in vivo mechanism by which oxidative stress is linked to the formation of amyloid plaques in Alzheimer's disease.  相似文献   

17.
1. A particulate enzyme fraction and an acetone powder preparation from cucumber fruits cleaved 9- and 13-hydroperoxyoctadecadienoic acids to form volatile aldehydes and oxoacid fragments. 2. From the 9-hydroperoxide, the major volatile fragments were cis-3-nonenal and trans-2-nonenal using particulate enzyme and acetone powder preparations, respectively. 3. Hexanal was the only significant volatile fragment from the 13-hydroperoxide. 4. The particulate enzyme system was equally effective on both 9- and 13-hydroperoxide isomers and was fully active under anaerobic conditions and at pH 6.4. 5. An enzymic pathway for the biogenesis of hexanal, cis-3- and trans-2-nonenal (components of the characteristic flavour volatiles of cucumber) from linoleic acid is proposed. This involves the sequential activity of lipoxygenase, hydroperoxide cleavage and cis-3-: trans-2-enal isomerase enzymes.  相似文献   

18.
α,β-Unsaturated aldehydes generated during lipid peroxidation, such as 4-oxoalkenals and 4-hydroxyalkenals, can give rise to protein degeneration in a variety of pathological states. Although the covalent modification of proteins by these end products has been well studied, the reactivity of unstable intermediates possessing a hydroperoxy group, such as 4-hydroperoxy-2-nonenal (HPNE), with protein has received little attention. We have now established a unique protein modification in which the 4-hydroperoxy group of HPNE is involved in the formation of structurally unusual lysine adducts. In addition, we showed that one of the HPNE-specific lysine adducts constitutes the epitope of a monoclonal antibody raised against the HPNE-modified protein. Upon incubation with bovine serum albumin, HPNE preferentially reacted with the lysine residues. By employing N(α)-benzoylglycyl-lysine, we detected two major products containing one HPNE molecule per peptide. Based on the chemical and spectroscopic evidence, the products were identified to be the N(α)-benzoylglycyl derivatives of N(ε)-4-hydroxynonanoic acid-lysine and N(ε)-4-hydroxy-(2Z)-nonenoyllysine, both of which are suggested to be formed through mechanisms in which the initial HPNE-lysine adducts undergo Baeyer-Villiger-like reactions proceeding through an intramolecular oxidation catalyzed by the hydroperoxy group. On the other hand, using an HPNE-modified protein as the immunogen, we raised a monoclonal antibody against the HPNE-modified protein and identified one of the HPNE-specific lysine adducts, N(ε)-4-hydroxynonanoic acid-lysine, as an intrinsic epitope of the monoclonal antibody. Furthermore, we demonstrated that the HPNE-specific epitopes were produced not only in the oxidized low density lipoprotein in vitro but also in the atherosclerotic lesions. These results indicated that HPNE is not just an intermediate but also a reactive molecule that could covalently modify proteins in biological systems.  相似文献   

19.
We report a mass spectrometry-based comparative "bottom up" proteomics approach that combines d(0)/d(4)-succinic anhydride labeling with commercially available hydrazine (Hz)-functionalized beads (Affi-gel Hz beads) for detection, identification and relative quantification of site-specific oxylipid modifications in biological matrices. We evaluated and applied this robust and simple method for the quantitative analysis of oxylipid protein conjugates in cardiac mitochondrial proteome samples isolated from 3- and 24-month-old rat hearts. The use of d(0)/d(4)-succinic anhydride labeling, Hz-bead based affinity enrichment, nanoLC fractionation and MALDI-ToF/ToF tandem mass spectrometry yielded relative quantification of oxylipid conjugates with residue-specific modification information. Conjugation of acrolein (ACR), 4-hydroxy-2-hexenal (HHE), 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-noneal (ONE) to cysteine, histidine and lysine residues were identified. HHE conjugates were the predominant subset of Michael-type adducts detected in this study. The HHE conjugates showed higher levels in mitochondrial preparations from young heart congruent with previous findings by others that the n-3/n-6 PUFA ratio is higher in young heart mitochondrial membranes. Although this study focuses on protein adducts of reactive oxylipids, the method might be equally applicable to protein carbonyl modifications caused by metal catalyzed oxidation reactions.  相似文献   

20.
A simple and rapid enzyme-linked immunosorbent assay (ELISA) method for quantitation of acrolein and 4-hydroxy-2-nonenal (HNE)-modified proteins was developed. Microtiter plate wells were precoated and blocked simultaneously with epitope-bound bovine caseins as matrix proteins, and aldehyde-modified proteins were quantitated by a competition assay with a monoclonal antibody specific for acrolein-modified lysine or HNE-modified histidine epitopes. Minimal reaction times required for the coating/blocking; first monoclonal antibody and the peroxidase-conjugated second antibody binding steps were 3, 3, and 7 min, respectively, the former two steps being found to be or akin to diffusion-rate-limiting reactions. The convenient ELISA should find an application for analyses of the intricate processes involved in oxidative stress and carcinogenic insult. The epitope-attachment methodology may also be advantageous for the quantitation of various other biologically important haptenic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号