首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In developing seed ofVicia faba L., solutes imported throughthe phloem of the coats move symplastically from the sieve elementsto a specialized set of cells (the thin-walled parenchyma transfercells) for release to the seed apoplast. Potassium (K+) is thepredominant cation released from the seed coats. To elucidatethe mechanisms of K+ efflux from seed coat to seed apoplast,whole-cell currents across the plasma membranes of protoplastsof thin-walled parenchyma transfer cells were measured usingthe whole-cell patch-clamp technique. Membrane depolarizationelicited a time-dependent and an instantaneous outward current.The reversal potential (ER of the time-dependent outward currentwas close to the potassium equilibrium potential (EK and itshifted in the same direction as EK upon changing the externalK+ concentration, indicating that this current was largely carriedby an efflux of K+. The activation of the time-dependent outwardK+ current could be well fitted by two exponential componentsplus a constant. The instantaneous outward current could alsobe carried by K+ efflux as suggested by ion substitution experiments.These K+ outward rectifier currents elicited by membrane depolarizationare probably too small to represent the mechanism for the normalK+ efflux from seed coat cells. Membrane hyperpolarization morenegative than –80 mV activated a time-dependent inwardcurrent. K+ influx was responsible for the inward current asthe current reversed at membrane voltage close to EK and shiftedin the same direction as EK when external [K+] was varied. Activationof this K+inward rectifier current was well fitted with twoexponential components plus a constant. A regulating functionfor this current is suggested. Key words: Potassium outward rectifier, potassium inward rectifier, transfer cell protoplast, seed coat, Vicia faba L  相似文献   

2.
Ion efflux during excitation of Nitella axilliformis was measuredconductometrically. In medium lacking Ca2+ but with 0.1 mM MgCl2,the duration of the action potential and the total efflux weremuch larger than those in APW, while the efflux rate, givenas the total efflux divided by the duration, was about halfof that in APW. (Received September 4, 1986; Accepted November 25, 1986)  相似文献   

3.
Characteristics of Action Potentials in Willow (Salix viminalis L.)   总被引:1,自引:0,他引:1  
After application of electric stimuli (square DC pulses) extra-andintracellular potentials were recorded on willow shoots. Theall-or-nothing law, strength-duration relation, and generalcharacteristics of the action potential were investigated. Byusing inhibitors of ionic channels (tetraethylammonium, MnCl2,LaCl3), the excitability of willow could be completely blocked.Treatment with the phosphorylation uncoupler dinitrophenol induceda depolarization and disappearance of excitability, indicatingthe participation of a metabolic component of the membrane potential.By using energy-dispersive X-ray microanalysis, the distributionof chloride, potassium and calcium was measured in differenttissues of non-stimulated and stimulated willow shoots. It was shown that stimulation of the plant was followed by ionshifts which were most striking in the phloem cells. While theircontent of potassium and chloride was diminished after stimulation,the amount of cytoplasmic calcium increased slightly. Thesedisplacements lead to the conclusion that Ca2+ influx as wellas K+ and Cl efflux are involved in the propagation ofaction potentials. Key words: Action potential, electrical stimuli, energy-dispersive X-ray microanalysis, ion shifts, Salix viminalis  相似文献   

4.
Originally published in Annals of Botany84: 639–644 1999.For technical reasons beyond our control the flux symbol wasomitted from this paper. The paper is reprinted here in itsentirety. Short term experiments investigated the effects of potassiumsupply on radiocaesium influx/efflux and the radiocaesium compartmentationin intact spring wheat roots. Short term (24–72 h) influxanalysis showed that net influxes of radiocaesium to both rootand xylem were reduced approximately ten-times by increasingexternal potassium concentration from 50 µM to 200 µM.Efflux analysis distinguished three components for radiocaesium(namely cell wall+free space, cytoplasm and vacuole) and showedthat the rates of Cs+efflux at an external potassium concentrationof 100 µM (19.16 and 1.70 Bq g-1min-1for coand vo, respectively)were about three-times faster than those at 50 µM (7.24and to 0.41 Bq g-1min-1for coand vo, respectively). The resultsalso showed that external potassium concentration did not havea significant effect on the distribution of137Cs between cytoplasmand vacuole, as indicated by the ratio of137Cs in the two compartments.Results obtained in this study suggested that the inhibitoryeffect of potassium on the net uptake of radiocaesium by theplant root may be partially ascribed to the fact that at higherexternal potassium concentrations Cs+efflux rates were muchhigher. The mechanisms involved are discussed. Copyright 2000Annals of Botany Company Compartmentation, efflux analysis, potassium, radiocaesium, Triticum aestivum, wheat.  相似文献   

5.
The influence of range of concentrations of potassium nitrate(Cm)in the medium surrounding the roots of decapitated Ricinuscommunis plants on: (a) the potassium concentration of the exudate(Cs), (b)the rate of exudation (fH2O), and (c) the flux of potassiuminto the exudate (fk) was investigated. A change in Cm couldinfluence exudation by altering the osmotic potential of themedium as will as by a change in potassium concentration, andthese two effect were separated in the following way. the effectof varying the potassium concentration was investigated usingmedia made isotonic with mannitol, whilst the osmotic effectwas investigated using mannitol solutions of various concentrationsbut of equal potassium concentration. An analysis of the resultsrevealed the existence of two salt-transfer processes, one independentof the water flux but dependent on the concentration of potassiumin the medium, the other linearly related to the flux of waterthrough the root system. The implications of these findingsin relation to the intact transpiring plant are discussed.  相似文献   

6.
Elevated levels of carbon dioxide increase lung ventilation in Helix aspersa. The hypercapnic response originates from a discrete respiratory chemosensory region in the dorsal subesophageal ganglia that contains CO2-sensitive neurons. We tested the hypothesis that pH-dependent inhibition of potassium channels in neurons in this region mediated the chemosensory response to CO2. Cells isolated from the dorsal subesophageal ganglia retained CO2 chemosensitivity and exhibited membrane depolarization and/or an increase in input resistance during an acid challenge. Isolated somata expressed two voltage-dependent potassium channels, an A-type and a delayed-rectifier-type channel (IKA and IKDR). Both conductances were inhibited during hypercapnia. The pattern of voltage dependence indicated that IKA was affected by extracellular or intracellular pH, but the activity of IKDR was modulated by extracellular pH only. Application of inhibitors of either channel mimicked many of the effects of acidification in isolated cells and neurons in situ. We also detected evidence of a pH-sensitive calcium-activated potassium channel (IKCa) in neurons in situ. The results of these studies support the hypothesis that IKA initiates the chemosensory response, and IKDR and IKCa prolong the period of activation of CO2-sensitive neurons. Thus multiple potassium channels are inhibited by acidosis, and the combined effect of pH-dependent inhibition of these channels enhances neuronal excitability and mediates CO2 chemosensory responses in H. aspersa. We did not find a single "chemosensory channel," and the chemosensitive channels that we did find were not unique in any way that we could detect. The protein "machinery" of CO2 chemosensitivity is probably widespread among neurons, and the selection process whereby a neuron acts or does not act as a respiratory CO2 chemosensor probably depends on the resting membrane potential and synaptic connectivity. carbon dioxide  相似文献   

7.
We examined 1) whether the effects of lowered trans-sarcolemmal Na+ gradient on force differed between nonfatigued fast- and slow-twitch muscles of mice and 2) whether effects on action potentials could explain the decrease of force. The Na+ gradient was reduced by lowering the extracellular [Na+] ([Na+]o). The peak force-[Na+]o relationships for the twitch and tetanus were the same in nonfatigued extensor digitorum longus and soleus muscles: force was maintained over a large range of [Na+]o and then decreased abruptly over a much smaller range. However, fatigue was significantly exacerbated at a lowered [Na+]o that had little effect in nonfatigued soleus muscle. This finding suggests that substantial differences exist in the Na+ effect on force between nonfatigued and fatigued muscle. The reduced contractility in nonfatigued muscles at lowered [Na+]o was largely due to 1) an increased number of inexcitable fibers and threshold for action potentials, 2) a reduction of action potential amplitude, and 3) a reduced capacity to generate action potentials throughout trains. sodium gradient; muscle contraction; action potential train; extensor digitorum longus; soleus  相似文献   

8.
Many nodal cells are interposed between two internodal cellsof Chara braunii. When an action potential conducted in an internodereached the node, no electrical activation in the nodal cellscould be found, although an area of the membrane bordering thenodal cells in this internode was partially activated (end-membraneaction potential). When the action potential approached thenode along the stimulated internode, an electrotonic potentialchange (depolarization) was produced in the other internode.This depolarization was greatly depressed by the end-membraneaction potential of the stimulated internode, so that hardlyany transmission took place. The ratio of the potential changein the surface membrane of the adjoining ("postsynaptic") internode(cell b) to that of the stimulated one (cell a), the couplingratio, eb/ea, can be estimated from a simple equivalent circuitof the nodal region composed of two surface-membrane resistances(Ra, Rb) and intercellular resistance (Rn). If Rn remains thesame, a higher ratio should be produced with a larger Rb, butthe ratio does not depend on any change in Ra, which could beproved experimentally. Transmission of the action potentialbeyond the node was frequent when the coupling ratio was increasedand when the threshold that elicits the action potential waslowered by immersing the node in a K or Na salt solution. 1 Present address: Department of Physiology, Tohoku UniversitySchool of Dentistry, Sendai 980, Japan. (Received December 1, 1980; Accepted January 23, 1981)  相似文献   

9.
Carotenoid photobleaching induced by photosystem II action wasstudied using membrane fragments of the blue-green alga Anabaenavariabilis. Special attention was paid to the action of O2. Carotenoid photobleaching elicited by carbonyl cyanide m-chlorophenylhydrazone(CCCP) depended on O2. However, the addition of H2O2, sodiumsilicotungstate or potassium ferricyanide (Ferri), an electronacceptor for reaction center II action, removed the O2-dependency.These results indicate that O2 acts as the electron acceptorfor this reaction. When both CGCP and Ferri were present, a short illumination(0.25 sec) caused a rapid photobleaching followed by a slowrecovery in the subsequent dark period. The spectrum of theabsorption decrease in the light was identical with that ofthe absorption increase in the subsequent dark, indicating thata reversible process is involved in the carotenoid photobleaching.The size in the dark recovery relative to the light bleachingbecame larger under anaerobic conditions and smaller under higherpartial pressure of O2. The reuslts were interpreted as indicatingthat O2 does not function in the primary process including areversible bleaching step, but is involved in the slow and irreversiblebleaching process. (Received April 3, 1978; )  相似文献   

10.
The Transport of Potassium to the Xylem Exudate of Ryegrass: II. EXUDATION   总被引:2,自引:0,他引:2  
The membrane potentials of ryegrass root cells (Ev0) were foundto be linearly related to the logarithm of the external KClconcentration ([KCl]o), over the range 0.1 to 20.0 mM. Exudationwas studied over the same concentration range. The concentrationof potassium in the exudate did not vary significantly with[KCl]0 but the rates of movement of water and potassium to theexudate (fH2O and fK respectively) and the electrical potentialand electrochemical potential for potassium in the exudate (Exoand x0,K respectively) all tended to decreaseas [KCl]0 increased. There was a very highly significant correlationbetween fK and fH2O. By rapidly increasing [KCl]E0 and following the depolarization,two components of Ex0 were observed. The first of these wasinstantaneous and was attributed to Ev0 of the epidermal cells.The second component, a gradual repolarisation which commencedabout 9 min later, was attributed to Ev0 of the stelar cells.With an additional contribution from electro-osmosis, thesetwo components quantitatively account for Ex0. The implications of these data for the mechanism of radial iontransport in roots are discussed and it is concluded that thestelar cells are not exclusively specialized for transportingpotassium into the xylem vessels.  相似文献   

11.
Carbon exchange was measured on whole plants of field bean,lucerne, chick pea, kidney bean, pea and tobacco. The maintenance respiration rate was measured in three ways:(i) by allowing the CO2 efflux to decay in prolonged darknessto an asymptotic value which was then taken to be the maintenancevalue (the dark decay method); (ii) by plotting the dark CO2efflux as a function of the net CO2 uptake over a range of irradiancesand taking maintenance as the dark CO2 efflux when the net CO2uptake was zero (the dynamic method); and (iii) by plottingthe total CO2 uptake as a function of the growth rate and takingmaintenance respiration as the CO2 efflux when the growth ratewas zero (the zero growth rate method). The range of valuesfor the maintenance coefficient over all species was from 1.6to 2.1 per cent of the dry weight per day, 1.8 to 2.1 per centand 2.7 to 2.9 per cent as determined by these three methodsrespectively. There was a linear relationship, common to allspecies, between the maintenance respiration rate (dark decaymethod) and dry weight, total nitrogen and the organic nitrogencontent. The growth coefficient (0.69±0.01) was the samefor field bean, chick pea and lucerne and was unaffected bythe method of estimation. It was concluded that the dark decay method provided the bestestimate of the minimal maintenance requirements in the plantsstudied. Vicia faba L., Medicago sativa L., Cicer arientinum L., Phaseolus vulgaris L., Pisum sativum L., Nicotiana tobacum L., field bean, lucerne, chick pea, kidney bean, pea, tobacco, respiration, maintenance, growth, nitrogen content  相似文献   

12.
We created a single-compartment computer model of a CO2 chemosensory neuron using differential equations adapted from the Hodgkin-Huxley model and measurements of currents in CO2 chemosensory neurons from Helix aspersa. We incorporated into the model two inward currents, a sodium current and a calcium current, three outward potassium currents, an A-type current (IKA), a delayed rectifier current (IKDR), a calcium-activated potassium current (IKCa), and a proton conductance found in invertebrate cells. All of the potassium channels were inhibited by reduced pH. We also included the pH regulatory process to mimic the effect of the sodium-hydrogen exchanger (NHE) described in these cells during hypercapnic stimulation. The model displayed chemosensory behavior (increased spike frequency during acid stimulation), and all three potassium channels participated in the chemosensory response and shaped the temporal characteristics of the response to acid stimulation. pH-dependent inhibition of IKA initiated the response to CO2, but hypercapnic inhibition of IKDR and IKCa affected the duration of the excitatory response to hypercapnia. The presence or absence of NHE activity altered the chemosensory response over time and demonstrated the inadvisability of effective intracellular pH (pHi) regulation in cells designed to act as chemostats for acid-base regulation. The results of the model indicate that multiple channels contribute to CO2 chemosensitivity, but the primary sensor is probably IKA. pHi may be a sufficient chemosensory stimulus, but it may not be a necessary stimulus: either pHi or extracellular pH can be an effective stimuli if chemosensory neurons express appropriate pH-sensitive channels. The lack of pHi regulation is a key feature determining the neuronal activity of chemosensory cells over time, and the balanced lack of pHi regulation during hypercapnia probably depends on intracellular activation of pHi regulation but extracellular inhibition of pHi regulation. These general principles are applicable to all CO2 chemosensory cells in vertebrate and invertebrate neurons. hypercapnia; potassium channels; computer modeling; central chemoreceptors  相似文献   

13.
Ammonia (pKa 9.25) and methylamine (pKa, 10.65) increase cytoplasmicpH and stimulate Cl influx in Chara corallina, theseeffects being associated with influx of the amine cations ona specific porter. The weak base imidazole (pKa 6.96) has similareffects but diffuses passively into the cell both as an unionizedbase and as a cation. When the external pH is greater than 6.0influx of the unionized species predominates. Imidazole accumulates to high concentrations in the vacuole,where it is protonated. Cytoplasmic pH and vacuolar pH riseby only 0.2–0.3 units, suggesting a large balancing protoninflux across the plasma membrane. Balance of electric chargeis partially maintained by net efflux of K+ and net influx ofCl. Calculation of vacuolar concentrations of imidazole(from (14C] imidazole uptake, assuming that there is no metabolism)plus K+ and Na+ indicates an excess of cations over inorganicanions (Cl). However, although the osmotic potentialof the cells increases, also indicating increased solute concentrations,the increase is less than that predicted by the calculated ionicconcentrations. This discrepancy remains to be resolved. Becausethe osmotic potential also increases when imidazole is absorbedfrom Cl-free solutions it is likely that maintenanceof charge-balance can also involve synthesis and vacuolar storageof organic or amino acids. Key words: Imidazole, potassium, intracellular pH, membrane transport, Chara  相似文献   

14.
Normal rat kidney (NRK) fibroblasts change their excitability properties through the various stages of cell proliferation. The present mathematical model has been developed to explain excitability of quiescent (serum deprived) NRK cells. It includes as cell membrane components, on the basis of patch-clamp experiments, an inwardly rectifying potassium conductance (GKir), an L-type calcium conductance (GCaL), a leak conductance (Gleak), an intracellular calcium-activated chloride conductance [GCl(Ca)], and a gap junctional conductance (Ggj), coupling neighboring cells in a hexagonal pattern. This membrane model has been extended with simple intracellular calcium dynamics resulting from calcium entry via GCaL channels, intracellular buffering, and calcium extrusion. It reproduces excitability of single NRK cells and cell clusters and intercellular action potential (AP) propagation in NRK cell monolayers. Excitation can be evoked by electrical stimulation, external potassium-induced depolarization, or hormone-induced intracellular calcium release. Analysis shows the roles of the various ion channels in the ultralong (30 s) NRK cell AP and reveals the particular role of intracellular calcium dynamics in this AP. We support our earlier conclusion (De Roos A, Willems PH, van Zoelen EJ, and Theuvenet AP. Am J Physiol Cell Physiol 273: C1900–C1907, 1997) that AP generation and propagation may act as a rapid mechanism for the propagation of intracellular calcium waves, thus contributing to fast intercellular calcium signaling. The present model serves as a starting point to further analyze excitability changes during contact inhibition and cell transformation. Hodgkin-Huxley model; intracellular calcium dynamics; L-type calcium conductance; inward rectifier; calcium-activated chloride conductance; gap junctional coupling  相似文献   

15.
The present study illustrates elements ofthe signal cascades involved in the activation of taurine effluxpathways in myotubes derived from skeletal muscle cells. Exposingprimary skeletal muscle cells, loaded with 14C-taurine, to1) hypotonic media, 2) the phospholipaseA2 (PLA2) activator melittin, 3)anoxia, or 4) lysophosphatidyl choline (LPC) causes anincrease in 14C-taurine release and a concomitantproduction of reactive oxygen species (ROS). The antioxidants butulatedhydroxy toluene and vitamin E inhibit the taurine efflux after cellswelling, anoxia, and addition of LPC. The muscle cells possess twoseparate taurine efflux pathways, i.e., a swelling- andmelittin-induced pathway that requires 5-lipoxygenase activity foractivation and a LPC-induced pathway. The two pathways aredistinguished by their opposing sensitivity toward the anion channelblocker DIDS and cholesterol. These data provide evidence forPLA2 products and ROS as key mediators of the signalcascade leading to taurine efflux in muscle.

  相似文献   

16.
In spite of the importance of respiration in forest carbon budgets,the mechanisms by which physiological factors control stem respirationare unclear. An experiment was set up in a Eucalyptus globulusplantation in central Portugal with monoculture stands of 5-year-oldand 10-year-old trees. CO2 efflux from stems under shaded andunshaded conditions, as well as the concentration of CO2 dissolvedin sap [CO2*], stem temperature, and sap flow were measuredwith the objective of improving our understanding of the factorscontrolling CO2 release from stems of E. globulus. CO2 effluxwas consistently higher in 5-year-old, compared with 10-year-old,stems, averaging 3.4 versus 1.3 µmol m–2 s–1,respectively. Temperature and [CO2*] both had important, andsimilar, influences on the rate of CO2 efflux from the stems,but neither explained the difference in the magnitude of CO2efflux between trees of different age and size. No relationshipwas found between efflux and sap flow, and efflux was independentof tree volume, suggesting the presence of substantial barriersto the diffusion of CO2 from the xylem to the atmosphere inthis species. The rate of corticular photosynthesis was thesame in trees of both ages and only reduced CO2 efflux by 7%,probably due to the low irradiance at the stem surface belowthe canopy. The younger trees were growing at a much fasterrate than the older trees. The difference between CO2 effluxfrom the younger and older stems appears to have resulted froma difference in growth respiration rather than a differencein the rate of diffusion of xylem-transported CO2. Key words: Eucalyptus globulus, refixation, stem respiration Received 19 May 2008; Revised 14 September 2008 Accepted 8 October 2008  相似文献   

17.
Effect of Sudden Salt Stress on Ion Fluxes in Intact Wheat Suspension Cells   总被引:4,自引:0,他引:4  
Although salinity is one of the major problems limiting agriculturalproduction around the world, the underlying mechanisms of highNaCl perception and tolerance are still poorly understood. Theeffects of different bathing solutions and fusicoccin (FC),a known activator of plasma membrane ATPase, on plasma membranepotential (Em) and net fluxes of Na+, K+and H+were studied inwheat suspension cells (Triticum aestivum) in response to differentNaCl treatments. Emof cells in Murashige and Skoog (MS) mediumwas less negative than in cells exposed to a medium containing10 mM KCl + 0.1 m M CaCl2(KSM) and to a basic salt medium (BSM),containing 1 m M KCl and 0.1 m M CaCl2. Multiphasic Na+accumulationin cells was observed, peaking at 13 min after addition of 120m M NaCl to MS medium. This time scale was in good agreementwith net Na+flux changes measured non-invasively by moving ion-selectivemicroelectrodes (the MIFE system). When 120 m M NaCl was addedto all media studied, a quick rise of Na+influx was reversedwithin the first 20 min. In both 120 and 20 m M NaCl treatmentsin MS medium, net Na+efflux was observed, indicating that activeNa+transporters function in the plant cell response to saltstress. Lower external K+concentrations (KSM and BSM) and FCpre-treatment caused shifts in Na+fluxes towards net influxat 120 m M NaCl stress. Copyright 2000 Annals of Botany Company Sodium, potassium, proton, membrane potential, fusicoccin, salt stress, wheat, Triticum aestivum  相似文献   

18.
The effects of pH on the resting and action potentials and onthe fluxes of potassium, sodium, and chloride across the membranesof internodal cells of Chara australis have been investigated. Experiments were carried out in an artificial pond water (A.P.W.)of standard composition: CaCl2, 01 mM; KCl, 0.1 mM; NaCl, 1.0mM. The resting potential decreased as the pH was lowered from6.5, being depolarized by about 75 mV at pH 4.5. Measurementsof the ion fluxes as a function of pH suggested that this depolarizationwas caused by an increase in the permeability to sodium anda decrease in permeability to potassium at pH 4.5. Action potentialsof constant peak value can be elicited for some time at pH 4.5,but after 20 min or so the cell becomes refractory. All theseeffects on resting and action potentials are fully reversible.We briefly speculate about the mechanism of these pH effects.  相似文献   

19.
Weinvestigated the influence of pregnancy on large-conductancecalcium-activated potassium channel (BKCa) activity(NPo) and on channel expression in membranes ofisolated human myometrial smooth muscle cells.NPo in inside-out patches was higher in pregnant myometria (PM) compared with nonpregnant myometria (NPM), and thehalf-maximal activation potential was shifted by 39 mV to more negativepotentials. This effect was not due to an enhanced BKCachannel expression. In the presence of cAMP kinase (PKA) or cGMP kinase(PKG), NPo increased in patches from PMbut decreased in those from NPM. Western blot analysis and use of aspecific PKG inhibitor (1 µM KT-5823) verified the existence of apartially active membrane-associated PKG. Inhibition of PKA by100 nM PKI, the inhibitory peptide of PKA, had no effect onNPo. 8-p-Chlorophenylthio-cGMP (8-pCPT-cGMP) hyperpolarized cells from PM. This effect wasabolished by iberiotoxin, a specific blocker of BKCachannels. It is concluded that an endogenous, membrane-bound PKG inmyometrial cells specifically enhances BKCa channelactivity during pregnancy and thus may contribute to uterine quiescenceduring pregnancy.

  相似文献   

20.
Although ATP-sensitive K+ (KATP) channel openers depress force, channel blockers have no effect. Furthermore, the effects of channel openers on single action potentials are quite small. These facts raise questions as to whether 1) channel openers reduce force via an activation of KATP channels or via some nonspecific effects and 2) the reduction in force by KATP channels operates by changes in amplitude and duration of the action potential. To answer the first question we tested the hypothesis that pinacidil, a channel opener, does not affect force during fatigue in muscles of Kir6.2-/- mice that have no cell membrane KATP channel activity. When wild-type extensor digitorum longus (EDL) and soleus muscles were stimulated to fatigue with one tetanus per second, pinacidil increased the rate at which force decreased, prevented a rise in resting tension, and improved force recovery. Pinacidil had none of these effects in Kir6.2-/- muscles. To answer the second question, we tested the hypothesis that the effects of KATP channels on membrane excitability are greater during action potential trains than on single action potentials, especially during metabolic stress such as fatigue. During fatigue, M wave areas of control soleus remained constant for 90 s, suggesting no change in action potential amplitude for half of the fatigue period. In the presence of pinacidil, the decrease in M wave areas became significant within 30 s, during which time the rate of fatigue also became significantly faster compared with control muscles. It is therefore concluded that, once activated, KATP channels depress force and that this depression involves a reduction in action potential amplitude. Kir6.2-/- mice; pinacidil; action potential train; M wave  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号