首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 976 毫秒
1.
大鹅观草与阿拉善鹅观草杂种的形态学和细胞学研究   总被引:6,自引:1,他引:6  
张海琴  周永红  郑有良  杨瑞武  丁春邦 《广西植物》2002,22(4):352-356,T004
为探讨阿拉善鹅观草 ( R.alashanica( Keng) S.L.Chen)的染色体组组成 ,进行了大鹅观草 ( R.grandisKeng( 2 n=2 4 ,St St YY) )和阿拉善鹅观草种间杂交 ,对这两个种及其杂种 F1的形态学、繁育学和减数分裂染色体配对行为进行了研究。结果表明 :杂种 F1的形态特征介于父母本之间 ,其花粉母细胞减数分裂染色体平均构型为 :2 0 .4 0 +3.6 9 +0 .0 9 +0 .0 4 。表明阿拉善鹅观草含有一个修饰的 St基因组 ,即 Sta。  相似文献   

2.
为了探索阿拉善鹅观草RoegneriaalashanicaKeng、大丛鹅观草RoegneriamagnicaespesD .F .Cui与纤毛鹅观草Roegneriaciliaris (Trin .)Nevski间的相互关系 ,将其进行了远缘杂交 ,通过幼胚离体培养 ,两个组合均成功合成了杂种。对亲本及杂种F1 花粉母细胞减数分裂中期Ⅰ染色体配对行为及形态学进行了统计分析。结果表明 ,上述物种的种间杂交较难进行 ,杂种F1 减数分裂染色体平均构型分别为 :R ciliaris×R alashanica 10 6 2Ⅰ 8 17Ⅱ 0 32Ⅲ 0 0 2Ⅳ (c -值 =0 4 4 ) ,R ciliaris×R magnicaespes 18 0 0Ⅰ 4 76Ⅱ 0 16Ⅲ (c -值 =0 2 1) ;杂种穗部特征多数介于双亲之间。阿拉善鹅观草、大丛鹅观草与纤毛鹅观草间至少有一个基因组具有较高的同源性 ,即为S基因组 ,本文对它们在分类中的地位也进行了讨论。  相似文献   

3.
凡星  廖莎  沙莉娜  刘静  王晓丽  周永红 《遗传》2009,31(10):1049-1058
文章对禾本科小麦族猬草属及其近缘属Thinopyrum(Eb)、Lophopyrum(Ee)、拟鹅观草属(St)、新麦草属(Ns)、大麦属(H)、赖草属(NsXm)和披碱草属(StH)植物共23个类群的单拷贝核Pgk1基因序列进行系统发育分析, 探讨猬草属及其近缘属植物的系统发育关系。序列分析发现Pgk1基因序列在L. arenarius和Psa. juncea中有81 bp的Stowaway家族DNA转座元件插入, 而在Hy. duthiei、Hy. duthiei ssp. longearistata和L. akmolinensis中有29 bp Copia家族的反转录转座元件插入。最大似然和贝叶斯推断进行的系统发育分析表明: (1)猬草属模式种Hy. patula与披碱草属、拟鹅观草属和大麦属具有密切的亲缘关系; (2)猬草属的其他物种Hy. duthiei、Hy. duthiei ssp. longearistata、Hy. coreana和Hy. komarovii与新麦草属和赖草属植物亲缘关系密切。研究结果支持将Hy. patula从猬草属组合到披碱草属中, 而Hy. duthiei、Hy. duthiei ssp. longearistata、Hy. coreana和Hy. komarovii应组合到赖草属中。  相似文献   

4.
小麦族中含St染色体组物种的特异分子标记的建立   总被引:2,自引:0,他引:2  
刘成  杨足君  刘畅  李光蓉  任正隆 《遗传》2007,29(10):1271-1279
以拟鹅观草(Pseudoroegneria spicata)、偏凸山羊草(Aegilops ventricosa)、二倍体簇毛麦(Dasypyrum villosum)、荆州黑麦(Secale cereale cv. Jingzhou rye)、普通小麦中国春(Chinese Spring)等15个物种为材料, 用200条10碱基随机引物进行RAPD分析, 筛选到拟鹅观草基因组中1个542 bp的特异DNA片段(GenBank登录号为DQ992032), 命名为OPH11542。根据OPH11542设计特异引物, 对小麦族物种进行PCR扩增, 发现拟鹅观草可以扩增出OPH11542以及分子量分别为742 bp (GenBank登录号为DQ992033, 记为OPH11742)和743 bp (GenBank登录号为EF014218, 记为OPH11743)的DNA片段, 而其他材料均未扩增出这3个片段。经序列比对结合多个软件的分析结果认为该3个片段为同一类新重复序列。利用特异引物对15份含St染色体的物种进行扩增, 发现含StY染色体组的物种均能扩增出OPH11742或OPH11743, 而含StH染色体组的物种均能扩增出OPH11542。这表明St染色体组在与其它染色体组组合形成多倍体的过程中往往会出现不同程度的重组或修饰。OPH11542、OPH11742和OPH11743可以作为检测St染色体的分子标记。  相似文献   

5.
以拟鹅观草(Pseudoroegneria spicata)、中间偃麦草(Thinopyrum intermedium)、长穗偃麦草(Th.elonga-tum)、二倍体簇毛麦(Dasypyrum villosum)、澳冰草(Australopyrum retrofractum)等10份小麦族物种为材料,对100条ISSR引物进行分析,结果显示引物811可以在拟鹅观草(GenBank登录号为EU368859)和中间偃麦草中扩增出一条长441 bp的特异DNA片段命名为St441,而其它供试物种均未扩出.经序列比对、软件分析结合原位杂交结果认为St441为一类新的低拷贝重复序列.利用ISSR引物811对10份不同居群的中间偃麦草、20份披碱草属物种、4份小麦-偃麦草部分双二倍体、6份小麦-茸毛偃麦草后代和12份小麦对照进行扩增,结果发现除对照小麦外均能扩增出St441;进而对小麦-中间偃麦草两套附加系进行扩增,将St441初步定位于包括第四同源群在内的8条St染色体上.同时,发现只含有整条St染色体和St染色体片段的材料能扩增出St441,而仅有Js染色体的材料未扩增出St441.因此,该标记St441可以作为检测不同背景下St染色质的分子标记.  相似文献   

6.
小麦族披碱草属、鹅观草属和猬草属模式种的C带研究   总被引:12,自引:0,他引:12  
采用改良的Giemsa C带技术,分析了小麦族披碱草属、鹅观草属和猬草属模式种的染色体C带带型。Elymus sibiricus、Roegneria caucasica和Hysrix patula的染色体在Giemsa C带带型上存在明显的差异,显示了这3个属模式种的物种特异性。3个模式种的Giemsa C带核型表明,C带带纹主要分布在染色体的末端和着丝粒附近,而中间带相对较少。对E.sibiricus、R.caucasica和H.patula的St、H、Y染色体组C带带型与其它物种的St、H、Y染色体组C带带型的差异进行了讨论。  相似文献   

7.
中间偃麦草麦、小麦和小麦-中间偃麦草2Ai-2附加系Z1、Z2、X6,代换系ZD28等进行RAPD分析,从320个RAPD引物中,鉴定出2Ai-2染色体特异的2个RAPD标记OPO05650和OPMO414000。利用这2个特异OPO05和OPM04,PCR扩增普通小麦CS(ABD)及其近缘植物中间偃麦草(E1E2St)、拟鹅冠草(St),长穗偃麦草(E)、簇毛麦(V)、黑麦(R)、大麦(H)粗山羊草(D)等基因组DNA。结果表明,OPO05650和OPO41400均是2Ai-2染色体上St基因组区域的特异标记。将上棕2个特异片段分离回收、克隆、测序,根据测序结果重新设计、合成特异引物,成功地转换RAPD标记为SCAR(sequence characterizked amplifed region)标记SC-05和SC-M4。利用SCAR标记对不同材料进行分析的结果表明,凡含有2Ai-2染色体的抗黄矮病材料及拟鹅冠草均产生一条扩增带,不含2Ai-2染色体的材料,包括小麦、长穗麦草、簇毛麦、黑麦、在麦、粗山羊草以有含有其他他中间偃麦草染色休的附加系,均没有扩增产物,说明上棕2个SCAR标记是中间偃麦草2Ai-2染色体的特异性PCR标记,且是2Ai-2染色体上St基因组区域的特异性标记。克隆与鉴定中间偃麦草的2个SCAR扩增片段TiSCO5和TiSCM4。结果表明,克隆的中间偃麦草TiSCO5和TiSCM4特异片段,分别是St基因组特异性的寡拷贝序列有多拷贝重复序列,为St基因组遗传研究的新探针。  相似文献   

8.
冰草P基因组特异RAPD标记的筛选   总被引:2,自引:0,他引:2  
以二倍体、四倍体和六倍体冰草(P基因组)以及中国春、Fukuho、栽培一粒小麦和硬粒小麦(ABD基因组)等为材料进行RAPD分析,从520个RAPD随机引物中,筛选出2个P基因组特异的RAPD分子标记OPC04和OPP12.利用OPC04和OPP12对小麦族其它基因组植物和8个小麦-冰草二体附加系进行扩增,结果表明OPC04和OPP12在ABD、C、E、AG、I、M、R、S、V、Y等基因组扩增中未出现相应结合位点;而在对8个小麦-冰草二体附加系扩增中均出现此2个特异片段,且扩增稳定、重复性好.进一步表明OPC04和OPP12是冰草P基因组的特异标记,可作为小麦-冰草重组系外源P染色质的鉴定标记之一.  相似文献   

9.
为探讨大鹅观草(Roegneria grandis,2n=4x=28)的染色体组组成,为其正确的分类处理提供细胞学依据。该研究通过人工远缘杂交,成功获得3株大鹅观草与蛇河披碱草(Elymus wawawaiensis,2n=4x=28)属间杂种F1植株。杂种植株形态介于两亲本之间,不育。亲本及杂种经I2-IK溶液染色后进行花粉育性检测,结果显示Roegneria grandis和Elymus wawawaiensis的花粉可育,育性高达94.6%和90.5%;杂种F1不育。花粉母细胞减数分裂中期I染色体配对结果显示,亲本花粉母细胞配对正常,均形成14个二价体,以环状二价体为主,Roegneria grandis有频率很低(0.04/细胞)的单价体出现;杂种F1平均每个花粉母细胞形成6.46个二价体,变化范围为5~8;在观察的83个花粉母细胞中,有35.2%的花粉母细胞形成了7个二价体,形成6个二价体的细胞占42.59%,较少细胞形成8个二价体;平均每个细胞形成14.66个单价体,变化范围为10~18;平均每细胞观察到0.14个三价体;杂种花粉母细胞染色体构型为14.66 I+6.46 II+0.14 III;平均每细胞交叉数为9.83,C值为0.35。结果表明:(1)R.grandis与Elymus wawawaiensis有一组染色体组同源的St染色体组,另外一组染色体组不是St或者H染色体组,Roegneria grandis的染色体组组成不是St Stg;(2)较低频率的三价体(平均0.14个/细胞),可能是由于R.grandis的St和Y染色体组间具有一定的同源性,也可能是染色体易位等原因导致,对于Y染色体组的起源还需深入地研究;(3)在不同地理来源的披碱草属和鹅观草属物种中St染色体组同源性不同,R.grandis与来自于北美的Elymus lanceolatus与E.wawawaiensis的St染色体组较与分布于亚洲的E.sibiricus和E.caninus的St染色体组同源性反而更高,其原因还需要进一步地研究。  相似文献   

10.
St基因组中的CRW同源序列在偃麦草中的FISH分析   总被引:4,自引:0,他引:4  
陆坤  徐柱  刘朝  张学勇 《遗传》2009,31(11):1141-1148
为了确定十倍体长穗偃麦草(Thinopyrum ponticum, Liu & Wang)和六倍体中间偃麦草(Th. intermedium, [Host] Barkworth & Dewey )的基因组组成, 根据野生一粒小麦(Triticum boeoticum)着丝粒自主型反转录转座子(CRW)序列设计特异引物, 以二倍体拟鹅观草(Pseudoroegneria spicata, Á Löve )基因组 DNA为模板进行PCR扩增, 筛选到一条St基因组着丝粒区相对特异反转录转座子的部分序列pStC1, 长度为1.755 kb (GenBank登录号: FJ952565), 其中有800 bp与小麦着丝粒反转录转座子(CRW)的LTR区高度同源, 另有小部分片段与其外壳蛋白编码基因(gag)部分同源, 并且包含一段富含AGCAAC碱基的重复序列。以pStC1为探针, 对十倍体长穗偃麦草的FISH检测结果显示其基因组组成为两个St组3个E组(St1St2EeEbEx); pStC1与中间偃麦草杂交时, 不仅St基因组上有强烈的荧光信号, 而且E基因组一些染色体的近着丝粒区域也有杂交信号, 说明偃麦草属异源多倍体物种在其形成及进化过程中St与E基因组之间在着丝粒及近着丝粒相关区域可能存在协同进化。  相似文献   

11.
J Z Wei  R R Wang 《Génome》1995,38(6):1230-1236
Eight different genomes (E, H, I, P, R, St, W, and Ns) represented by 22 diploid species of the tribe Triticeae were analyzed using the random amplified polymorphic DNA (RAPD) technique. The genome relationships were obtained based on 371 RAPD fragments produced with 30 primers. The four species of the genus Psathyrostachys (having various Ns genomes) were closely related. The genomes Ee and Eb had a similarly close relationship and were distinct from all other genomes analyzed. Genomes P, R, and St were grouped in one cluster and genomes H and I in another. Genome W had a distant relationship with all other genomes. These results agree with the conclusions from studies of chromosome pairing and isozyme and DNA sequence analyses. Twenty-nine and 11 RAPD fragments are considered to be genome- and species-specific markers, respectively. One to six genome-specific markers were identified for each genome. These RAPD markers are useful in studies of genome evolution, analysis of genome composition, and genome identification.  相似文献   

12.
应用RAMP分子标记探讨拟鹅观草属的种间关系   总被引:5,自引:0,他引:5  
采用RAMP (random amplified microsatellite polymorphism) 标记技术, 分析了拟鹅观草属9种1亚种和鹅观草属6 种植物之间的遗传变异和亲缘关系。33 个引物组合产生的310 条DNA扩增片段中, 286条(92 25%) 具有多态性, 每个引物组合产生5~13条多态性带, 平均为8 67条。利用310个RAMP标记, 在NTSYS pc软件中, 计算Jaccard遗传相似系数, 建立UPGMA聚类图。结果表明: (1) 物种间遗传差异明显, 具有丰富的遗传多样性; (2) 阿拉善鹅观草和大丛鹅观草与拟鹅观草属的物种聚类在一起, 表明它们与拟鹅观草属的亲缘关系较近, 而与本试验所分析的另外4个鹅观草属物种的亲缘关系较远; (3) RAMP分子标记可以将拟鹅观草属的物种分开, 而且形态相似、地理分布相同或相近的物种聚类在一起;(4) RAMP结果与形态学和细胞学的分析结果一致, 表明RAMP标记是评价拟鹅观草属种间关系十分有效的方法。  相似文献   

13.
利用RAPD特异标记分析东北猬草染色体组成   总被引:1,自引:0,他引:1  
选用5个染色体组特异的RAPD引物(St、H、Ns、Ee、Eb),对东北猬草[Hystrix komarovii (Roshev.) Ohwi]等5个猬草属及其8个近缘属物种进行PCR扩增,以探讨东北猬草的染色体组组成.结果显示:Hy.komarovii具有Ns染色体组特异的RAPD标记,而没有St、H、Ee和Eb特异的RAPD标记.表明Hy.komarovii含有Ns染色体组,而不含St和H染色体组,认为其染色体组组成可能与Hy.duthiei、Hy.coreana和Leymus arenarius一样,具有NsXm染色体组.根据染色体组分类原理,支持将东北猬草归于赖草属中.  相似文献   

14.
Liu Q  Ge S  Tang H  Zhang X  Zhu G  Lu BR 《The New phytologist》2006,170(2):411-420
To estimate the phylogenetic relationship of polyploid Elymus in Triticeae, nuclear ribosomal internal transcribed spacer (ITS) and chloroplast trnL-F sequences of 45 Elymus accessions containing various genomes were analysed with those of five Pseudoroegneria (St), two Hordeum (H), three Agropyron (P) and two Australopyrum (W) accessions. The ITS sequences revealed a close phylogenetic relationship between the polyploid Elymus and species from the other genera. The ITS and trnL-F trees indicated considerable differentiation of the StY genome species. The trnL-F sequences revealed an especially close relationship of Pseudoroegneria to all Elymus species included. Both the ITS and trnL-F trees suggested multiple origins and recurrent hybridization of Elymus species. The results suggested that: the St, H, P, and W genomes in polyploid Elymus were donated by Pseudoroegneria, Hordeum, Agropyron and Australopyrum, respectively, and the St and Y genomes may have originated from the same ancestor; Pseudoroegneria was the maternal donor of the polyploid Elymus; and some Elymus species showed multiple origin and experienced recurrent hybridization.  相似文献   

15.
It has been hypothesized from isozymic and cytological studies of Elymus species that the Old and New World taxa may be of separate origin of the H genome in the StH genome species. To test this hypothesis, and estimate the phylogenetic relationships of polyploid Elymus species within the Triticeae, the second largest subunit of RNA polymerase II (RPB2) sequence of 36 Elymus accessions containing StH or StY genomes was analyzed with those of Pseudoroegneria (St), Hordeum (H), Agropyron (P), Australopyrum (W), Lophopyrum(Ee), Thinopyrum(Eb) and Dasypyrum (V). Our data indicated that the H genome in Elymus species is differentiated in accordance with geographical origin, and that the Eurasian and American StH genome species have independent alloploid origins with different H-genome donors. Phylogenetic analysis of Y genome sequences with other genome donors (St, H, P, W) of Elymus revealed that W and P genomes are sister to Y genome with a 87% bootstrap support, and that StY and StH species group might have acquired their RPB2 St sequences from distinct Pseudoroegneria gene pools. Our data did not support the suggestion that the St and Y genomes have the same origin as put forward in a previous study using ITS data. Our result provides some insight on the origin of Y genome and its relationship to other genomes in Elymus.  相似文献   

16.
The genome constitution of Icelandic Elymus caninus, E. alaskanus, and Elytrigia repens was examined by fluorescence in situ hybridization using genomic DNA and selected cloned sequences as probes. Genomic in situ hybridization (GISH) of Hordeum brachyantherum ssp. californicum (diploid, H genome) probe confirmed the presence of an H genome in the two tetraploid Elymus species and identified its presence in the hexaploid Elytrigia repens. The H chromosomes were painted uniformly except for some chromosomes of Elytrigia repens which showed extended unlabelled pericentromeric and subterminal regions. A mixture of genomic DNA from H. marinum ssp. marinum (diploid, Xa genome) and H. murinum ssp. leporinum (tetraploid, Xu genome) did not hybridize to chromosomes of the Elymus species or Elytrigia repens, confirming that these genomes were different from the H genome. The St genomic probe from Pseudoroegneria spicata (diploid) did not discriminate between the genomes of the Elymus species, whereas it produced dispersed and spotty hybridization signals most likely on the two St genomes of Elytrigia repens. Chromosomes of the two genera Elymus and Elytrigia showed different patterns of hybridization with clones pTa71 and pAes41, while clones pTa1 and pSc119.2 hybridized only to Elytrigia chromosomes. Based on FISH with these genomic and cloned probes, the two Elymus species are genomically similar, but they are evidently different from Elytrigia repens. Therefore the genomes of Icelandic Elymus caninus and E. alaskanus remain as StH, whereas the genomes of Elytrigia repens are proposed as XXH.  相似文献   

17.
用RAPD分子标记探讨鹅观草属的种间关系   总被引:17,自引:0,他引:17  
通过34个10碱基随机引物对鹅观草属(RoegneriaC.Koch)26个物种进行PCR扩增,28个引物能产生多态带。在NTSYS程序中,对16个引物扩增的186条扩增产物,计算Jaccard遗传相似系数,建立UPGMA聚类图。结果表明:(1)物种间遗传差异明显,具有丰富的遗传多样性;(2)StY和StYH基因组的物种存在着一定的遗传差异,并各有一定程度的分化,这种分化是与地理位置相联系的。相距越远,物种相似程度越低;(3)形态差异较小,基因组同源,地理分布一致的物种聚类在一起,表现出较密切的亲缘关系;(4)无芒类群的R.alashanicaKeng和R.magnicaespes(D.F.Cui)L.B.Cai与其余分析的24个Roegneria物种存在着极大的遗传差异;(5)分布于西亚的R.caucasicaC.Koch.与分布于东亚和中亚的物种存在着较大的RAPD变异,亲缘关系较远;(6)在对R.ciliaris(Trin)Nevski和R.japonensis(Honda)Keng、R.tenuispicaJ.L.YangetY.H.Zhou和R.pendulinaNevski、R.tsukushiensis(Honda)Ohwi和R.kamojiOhwi等的分类处理上,基本上与形态学和细胞学的研究结果一致。对RAPD标记在Roegneria系统分类研究中的应用进行了讨论。  相似文献   

18.
Plantains and bananas (Musa spp. sect. eumusa) originated from intra- and interspecific hybridization between two wild diploid species, M. acuminata Colla. and M. balbisiana Colla., which contributed the A and B genomes, respectively. Polyploidy and hybridization have given rise to a number of diploid, triploid, and tetraploid clones with different permutations of the A and B genomes. Thus, dessert and highland bananas are classified mainly as AAA, plantains are AAB, and cooking bananas are ABB. Classification of Musa into genomic groups has been based on morphological characteristics. This study aimed to identify RAPD (random amplified polymorphic DNA) markers for the A and B genomes. Eighty 10-mer Operon primers were used to amplify DNA from M. acuminata subsp. burmannicoides clone 'Calcutta 4' (AA genomes) and M. balbisiana clone 'Honduras' (BB genomes). Three primers (A17, A18, and D10) that produced unique genome-specific fragments in the two species were identified. These primers were tested in a sample of 40 genotypes representing various genome combinations. The RAPD markers were able to elucidate the genome composition of all the genotypes. The results showed that RAPD analysis can provide a quick and reliable system for genome identification in Musa that could facilitate genome characterization and manipulations in breeding lines.  相似文献   

19.
对鹅观草属、披碱草属、猬草属和仲彬草属4属23个物种进行了RAMP分析。结果表明属间变异极大,多态性极高。31个引物组合产生的286条DNA扩增片段均具有多态性。聚类分析显示鹅观草属、披碱草属、猬草属和仲彬草属物种各自聚为一类;Roegneria alashanica、R.elytrigioides和R.magnticaespes聚类在一起;猬草属的模式种Hystrix patula与披碱草属物种聚类在一起,而Hystrix duthiei和H.longearistata单独聚为一类;形态相似、染色体组相同、地理分布一致的物种聚类在一起。本研究结果基本上同形态学和细胞学研究结果相吻合,将鹅观草属、披碱草属和仲彬草属作为属分类等级处理比较恰当,而猬草属的系统地位有待进一步确认。RAMP标记可作为评价多年生小麦族物种遗传多样性和亲缘关系的一种分子标记技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号