首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendrotoxin, a snake-venom polypeptide, is a potent convulsant that facilitates transmitter release apparently by inhibition of voltage-sensitive K+ channels responsible for A-currents. A biologically active 125I-iodinated derivative of this toxin was prepared and used to characterize kinetically homogeneous non-interacting high-affinity acceptors in synaptic membranes from rat cerebral cortex and hippocampus. Binding of radiolabelled toxin from Dendroaspis angusticeps to its membrane acceptor protein was inhibitable by homologous polypeptides from other mamba snakes; most importantly, their rank order of potency was identical with that for their central neurotoxicities in rats, furnishing evidence for involvement of this binding component in the convulsive symptoms observed. Beta-Bungarotoxin, a presynaptically acting neurotoxin whose action on neurotransmitter release at the neuromuscular junction and effects on brain synaptosomes are antagonized by dendrotoxin, was only able to inhibit the binding of the 125I-labelled toxin with low efficacy, although dendrotoxin apparently interacts avidly with the acceptor sites for beta-bungarotoxin. This weak interaction of beta-bungarotoxin with the acceptor was not attributable to its phospholipolytic action. Other neurotoxins and ion-channel antagonists failed to affect the binding of dendrotoxin. The findings presented here, together with recent electrophysiological data, favour the interpretation that dendrotoxin binds to a membrane protein comprising, or closely associated with, this one group of voltage-dependent K+ channels.  相似文献   

2.
Using chick synaptic membranes, proteinaceous acceptors were characterized for dendrotoxin, a polypeptide from Dendroaspis angusticeps with convulsant activity due to its facilitation of transmitter release, resulting from inhibition of A-current K+ channels in brain. Both equilibrium and kinetic measurements of radioiodinated toxin binding showed that two populations of membraneous acceptors were discernible with different affinities (Kd approximately 0.5 nM and 15 nM; Bmax approximately 90 and 400 fmol/mg protein). Only the high-affinity component interacted avidly with beta-bungarotoxin, an inhibitory presynaptic neurotoxin whose lighter chain is homologous to dendrotoxin. Facilitatory homologues of dendrotoxin from Dendroaspis species antagonised its binding to both acceptor sub-types in proportion to their central neurotoxicities, whereas various other toxins (crotoxin, apamin), trypsin inhibitors and lectins proved ineffective. Cross-linking of toxin specifically bound to its membrane acceptors, using bis-imido esters followed by electrophoretic analysis in the presence of sodium dodecyl sulphate, revealed a polypeptide with Mr of 75,000 together with lesser amounts of a 69,000-Mr component. Notably, the covalent labelling of each of these bands was inhibited partially by low concentrations of beta-bungarotoxin, indicating that they are derived from both acceptor species. The demonstrated existence of an acceptor form shared by dendrotoxin and beta-bungarotoxin, together with another sub-type selective for dendrotoxin, is discussed in relation to the known pharmacological interactions of these toxins which exert opposite effects on transmitter release.  相似文献   

3.
Both the bee venom toxin, mast cell degranulating peptide (MCD peptide) and the mamba toxin dendrotoxin I are potent central convulsants. The two specific receptor sites for these two types of polypeptide toxins are in allosteric interaction in brain membranes. Occupation of the dendrotoxin I binding site (KI = 0.4 nM) prevents binding of the 125I-MCD peptide to its own receptor (KI = 0.23 nM). This inhibition is of the non-competitive type. Autoradiography has shown that a high enough dendrotoxin I concentration (30 nM) prevented binding of 125I MCD peptide to all brain structures where specific receptors had been identified. A lower concentration of the mamba toxin led to a nearly selective inhibition of MCD peptide binding to the hippocampal region which is responsible for the convulsant properties of the 2 types of polypeptide toxins.  相似文献   

4.
The effects of Leiurus quinquestriatus hebraeus (LQH) venom, mamba venom, Buthus tamulus (BT) venom, purified apamin and synthetic charybdotoxin on the membrane hyperpolarization induced by extracellular ATP were examined in Madin-Darby canine kidney cells. For this we used a membrane potential probe (bisoxonol) to determine the potential variations. The relation between bisoxonal fluorescence and membrane potential was established by treating Madin-Darby canine kidney cells suspended in solutions containing various external sodium concentrations with gramicidin. Extracellular ATP induced a rapid hyperpolarization that was blocked by LQH venom and synthetic charybdotoxin. BT venom also blocked the response but at a much higher concentration than that of LQH. Mamba venom (Dendroaspis polylepis) and apamin did not modify the ATP-induced hyperpolarization. We concluded that the ATP induced hyperpolarization was due to the augmentation of the potassium conductance probably through Ca(2+)-activated K+ channels sensitive to charybdotoxin but not to mamba venom. The interaction previously described between charybdotoxin and dendrotoxin (the main toxin of mamba venom) was not observed in our case.  相似文献   

5.
6.
Two protein toxins that displace the muscarinic antagonist quinuclidinyl benzilate from rat cortex synaptosomal membranes have been isolated from the green mamba (Dendroaspis angusticeps) venom by gel filtration on sephadex G-50, chromatography on the ion-exchangers Bio-Rex 70 and Sulphopropyl-Sephadex C-25 and reversed-phase HPLC. Toxin 1 has 64 amino acids and four disulfides and a formula weight of 7200 and the corresponding values for toxin 2 are 63, 4 and 6840, respectively. Ultracentrifugation gave a molecular weight of 6900 for toxin 1 and 6700 for toxin 2, Quinuclidinyl benzilate that binds to all types of muscarinic cholinergic receptor was displaced to about 50% by both toxins. This partial displacement indicates that the toxins might be specific for one subtype of receptor.  相似文献   

7.
Dendrotoxin, a lijow molecular weight protein from the venom of Dendroaspis angusticeps, is known to be a potent convulsant that attenuates one type of voltage-sensitive K+ channel in guinea-pig hippocampus. A biologically active preparation of 125I-labelled dendrotoxin has been cross-linked to its high-affinity protein acceptor in synaptic plasma membranes from rat cerebral cortex. On SDS gel electrophoresis, a complex with a Mr of 72,000 was observed which, assuming one toxin molecule is attached, yields an apparent size of 65,000 for this subunit of the acceptor. Unlike dendrotoxin, low concentrations of β-bungarotoxin, another pre-synaptically acitve toxin, do not inhibit its labelling.  相似文献   

8.
1. beta-Bungarotoxin, a presynaptically active neurotoxin from the venom of Bungarus multicinctus, was radiolabelled with 125I and its binding to synaptic membranes from rat brain was analyzed. The interaction of these binding sites with those for dendrotoxin (a convulsant polypeptide from mamba venom) and mast-cell-degranulating peptide (from bee venom) was examined in the light of the known effects of all three toxins on voltage-dependent K+ currents. 2. When measured in Krebs/phosphate buffer, the binding appeared monotonic at low concentrations of radioiodinated beta-bungarotoxin (Kd 0.4 nM; Bmax 0.42 pmol/mg protein); higher concentrations of labelled toxin revealed an additional binding component of lower affinity, but computer analysis of the data failed to provide well-defined estimates of its Kd and Bmax values. 3. Equilibrium binding experiments conducted in imidazole-based buffers yielded distinctly biphasic Scatchard plots; computer analysis of the data revealed two populations of sites [Kd 0.26 (+/- 0.30) nM and 6.14 (+/- 5.68) nM; Bmax 0.16 (+/- 0.20) and 2.65 (+/- 1.21) pmol/mg protein]. 4. In Krebs medium, beta-bungarotoxin was a very weak antagonist of the binding of 125I-labelled dendrotoxin. In imidazole medium, however, the efficacy of the inhibition was markedly increased; analysis of this inhibition showed it to be non-competitive. 5. Dendrotoxin inhibited the binding of radioiodinated beta-bungarotoxin in Krebs medium with high potency, although the interaction was by a complex, non-competitive mechanism. 6. Mast-cell-degranulating peptide inhibited non-competitively the binding of both radiolabelled dendrotoxin and beta-bungarotoxin but with relatively low potency. 7. A speculative schematic model of the dendrotoxin/beta-bungarotoxin/mast-cell-degranulating peptide binding component(s) is proposed. Findings are discussed in terms of the likely involvement of these sites with voltage-dependent K+-channel proteins.  相似文献   

9.
A polypeptide was identified in the venom of the scorpion Leiurus quinquestriatus hebraeus by its potency to inhibit the high-affinity binding of the radiolabeled snake venom toxin dendrotoxin I (125I-DTX1) to its receptor site. It has been purified, and its properties investigated by different techniques were found to be similar to those of MCD and DTXI, two polypeptide toxins active on a voltage-dependent K+ channel. However, its amino acid sequence was determined, and it was shown that this toxin is in fact charybdotoxin (ChTX), a toxin classically used as a specific tool to block one class of Ca2+-activated K+ channels. ChTX, DTXI, and MCD are potent convulsants and are highly toxic when injected intracerebroventricularly in mice. Their toxicities correlate well with their affinities for their receptors in rat brain. These three structurally different toxins release [3H]GABA from preloaded synaptosomes, the efficiency order being DTXI greater than ChTX greater than MCD. Both binding and cross-linking experiments of ChTX to rat brain membranes and to the purified MCD/DTXI binding protein have shown that the alpha-subunit (Mr = 76K-78K) of the MCD/DTXI-sensitive K+ channel protein also contains the ChTX binding sites. Binding sites for DTXI, MCD, and ChTX are in negative allosteric interaction. Our results show that charybdotoxin belongs to the family of toxins which already includes the dendrotoxins and MCD, which are blockers of voltage-sensitive K+ channels. ChTX is clearly not selective for Ca2+-activated K+ channel.  相似文献   

10.
Action of botulinum A toxin and tetanus toxin on synaptic transmission   总被引:1,自引:0,他引:1  
Intracellular recordings of the spontaneous activity from mammalian spinal cord neurons in culture demonstrated different sensitivities of excitatory and inhibitory synaptic transmission for the action of tetanus toxin (Tetx) and botulinum toxin type A (Botx). The effects of Tetx and Botx on spontaneous and nerve-evoked transmitter release were compared under identical experimental conditions in experiments on in vitro poisoned mouse diaphragms. At 37 degrees C completely paralyzed endplates are characterized by a very low frequency of spontaneous miniature endplate potentials (m.e.p.p.s) and by a 100% failure to evoke endplate potentials (e.p.p.s) in response to single nerve stimuli. Striking differences in the action of both toxins have been observed when the very low transmitter release probabilities of paralyzed nerve-muscle preparations were increased by tetanic nerve stimulation and/or application of potent K+-channel blockers and/or by reduction of temperature to 25 degrees C. While Botx did not change the short latency between nerve impulse and postsynaptic response, Tetx produced a temporal dispersion of the quantal release suggesting that the toxins act at different sites in the chain of events that result in transmitter release. To find further evidence to support the different actions of the toxins the spontaneous transmitter release was studied in more detail. Tetx blocked preferentially the release of so-called large mode m.e.p.p.s without affecting the frequency of the small mode ones. In contrast, Botx strongly inhibited both the small and large mode m.e.p.p.s.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Dendrotoxin I (DpI) from black mamba venom (Dendroaspis polylepis) has high affinity binding sites on rat brain synaptic membranes. Native DpI displaced [125I]-DpI binding with a Ki of 1 x 10(-10) M, and over 90% of specific binding was displaceable. Charybdotoxin isolated from the Israeli scorpion venom (Leiurus quinquestriatus hebraeus), also displaced [125I]-DpI binding, with a Ki of approximately 3 x 10(-9) M, although the displacement curve was shallower than with native DpI. Both toxins are thought to be high affinity blockers of specific K+ currents. Charybdotoxin selectively blocks some types of Ca2+-activated K+ channels, whereas dendrotoxins only block certain voltage-dependent K+ channels. The interaction between the two types of toxin at the DpI binding site is unexpected and may suggest the presence of related binding sites on different K+ channel proteins.  相似文献   

12.
R R Schmidt  H Betz  H Rehm 《Biochemistry》1988,27(3):963-967
The presynaptically active snake venom neurotoxin beta-bungarotoxin (beta-Butx) is known to affect neurotransmitter release by binding to a subtype of voltage-activated K+ channels. Here we show that mast cell degranulating (MCD) peptide from bee venom inhibits the binding of 125I-labeled beta-Butx to chick and rat brain membranes with apparent Ki values of 180 nM and 1100 nM, respectively. The mechanism of inhibition by MCD peptide is noncompetitive, as is inhibition of 125I-beta-Butx binding by the protease inhibitor homologue from mamba venom, toxin I. Beta-Butx and its binding antagonists thus bind to different sites of the same membrane protein. Removal of Ca2+ by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid inhibits the binding of 125I-beta-Butx by lowering its affinity to brain membranes.  相似文献   

13.
《The Journal of cell biology》1983,97(6):1737-1744
The crude extract of venom glands of the polychaete annelid Glycera convoluta triggers a large Ca2+-dependent acetylcholine release from both frog motor nerve terminals and Torpedo electric organ synaptosomes. This extract was partially purified by Concanavalin A affinity chromatography. The biological activity was correlated in both preparations to a 300,000-dalton band, as shown by gel electrophoresis. This confirmed previous determinations obtained with chromatographic methods. This glycoprotein binds to presynaptic but not postsynaptic plasma membranes isolated from Torpedo electric organ. Pretreatment of intact synaptosomes by pronase abolished both the binding and the venom- induced acetylcholine release without impairing the high K+-induced acetylcholine release. Pretreatment of nerve terminal membranes by Concanavalin A similarly prevented the binding and the biological response. Binding to Torpedo membranes was still observed in the presence of EGTA. An antiserum directed to venom glycoproteins inhibited the neurotoxin so we could directly follow its binding to the presynaptic membrane. Glycera convoluta neurotoxin has to bind to a ectocellularly oriented protein of the presynaptic terminal to induce transmitter release.  相似文献   

14.
1. Toxin F7, a toxin isolated from Dendroaspis angusticeps (green mamba) venom, exhibited a potent inhibition on the acetylcholinesterase of Bungarus snake venoms and homogenized brains and muscles of Bungarus and Trimeresurus snakes as well as that of mammalian tissues. 2. The acetylcholinesterase in the venoms and tissues of Naja (cobra) species as well as that in avian tissues, however, was found to be about 1000 times less susceptible towards inhibition by toxin F7. 3. It is concluded that there exist at least two subtypes of acetylcholinesterase isoenzymes distinguishable by an angusticeps-type toxin F7.  相似文献   

15.
The neuromuscular effects of four purified toxins and crude venom from the scorpion Androctonus australis were investigated in the extensor tibiae nerve-muscle preparation of the locust Locusta migratoria. Insect and crustacean toxin and the mammal toxins I and II which have previously been shown to act on fly larvae, isopods, and mice all paralyse locust larvae. The paralytic potencies decrease in the following order: insect toxin → mammal toxin I → crustacean toxin → mammal toxin II.The toxins and crude venom cause repetitive activity of the motor axons. This leads to long spontaneous trains of junction potentials in the case of crude venom and insect toxin. The other toxins chiefly cause short bursts of action and junction potentials following single stimuli.The ‘slow’ excitatory motor axon invariably is affected sooner than the inhibitory or the ‘fast’ excitatory one. The minimal doses of toxins required to affect the ‘slow’ motor axon decrease in an order somewhat different from that established for their paralytic potencies: insect toxin → crustacean toxin → mammal toxin I → mammal toxin II.Crude venom depolarises and destabilises the muscle membrane potential at low doses. At high doses it decreases the membrane resistance, whereas insect toxin leads to an increase.Crude venom and insect toxin enhance the frequency of mejps, whereas mammal toxin I leads to the occurrence of ‘giant’ mejps.The pattern of axonal activities indicates that the various peripheral branches of the motor nerve are the primary target of the toxins.The time course of nerve action potentials is affected by mammal toxin I and crustacean toxin which cause anomalous shapes and prolongations not caused by insect toxin.The results with other animals suggest that only the insect toxin is selective in its activity. The way it affects the axon might be quite different from that previously reported for scorpion venoms or toxins.  相似文献   

16.
The actions of tetanus toxin, botulinum A toxin, and black widow spider venom on the release of methionine-enkephalin-like immunoreactivity have been studied; a particulate fraction prepared from rat striata was used. Depending on the duration of preincubation, tetanus toxin diminished the release evoked by veratridine (50 microM final concentration), and abolished it at final concentrations between 0.1 and 1 micrograms/ml. Botulinum A toxin was about 10 to 20 times less potent. Heating or pretreatment with antitoxin inactivated the clostridial toxins. The particulate fraction pretreated with V. cholerae neuraminidase retained its toxin sensitivity. Tetanus toxin also depressed the release due to sea anemone toxin II and high K+. Spider venom stimulated the release in a concentration-dependent manner and required the presence of Ca2+; its effects were depressed by tetanus toxin. These results support the view that both clostridial toxins and spider venom act as broad-range presynaptic neurotoxins on peptidergic transmitter systems.  相似文献   

17.
Injection of 0.2 ng of cRNA encoding the brain Kv1.2 channel into Xenopus oocytes leads to the expression of a very slowly inactivating K+ current. Inactivation is absent in oocytes injected with 20 ng of cRNA although activation remains unchanged. Low cRNA concentrations generate a channel which is sensitive to dendrotoxin I (IC50 = 2 nM at 0.2 ng of cRNA/oocyte) and to less potent analogs of this toxin from Dendroaspis polylepis venom. A good correlation is found between blockade of the K+ current and binding of the different toxins to rat brain membranes. High cRNA concentrations generate another form of the K+ channel which is largely insensitive to dendrotoxin I (IC50 = 200 nM at 20 ng of cRNA per oocyte). At low cRNA concentrations, the expressed Kv1.2 channel is also blocked by other polypeptide toxins such as MCD peptide (IC50 = 20 nM), charybdotoxin (IC50 = 50 nM), and beta-bungarotoxin (IC50 = 50 nM), which bind to distinct and allosterically related sites on the channel protein. The pharmacologically distinct type of K+ channel expressed at high cRNA concentrations (20 ng of cRNA/oocyte) is nearly totally resistant to 100 nM MCD peptide and hardly altered by charybdotoxin and beta-bungarotoxin at concentrations as high as 1 microM. Both at low and at high cRNA concentrations, the expressed Kv1.2 channel is blocked by an increase in intracellular Ca2+ from the inositol trisphosphate sensitive pools and by the phorbol ester PMA that activates protein kinase C.  相似文献   

18.
1. The biological properties of twelve samples of venoms from all four species of Dendroaspis (mamba) were investigated. 2. Dendroaspis venoms generally exhibited very low levels of protease, phosphodiesterase and alkaline phosphomonoesterase; low to moderately low level of 5'-nucleotidase and very high hyaluronidase activities, but were devoid of L-amino acid oxidase, phospholipase A, acetylcholinesterase and arginine ester hydrolase activities. The unusual feature in venom enzyme content can be used to distinguish Dendroaspis venoms from other snake venoms. 3. All Dendroaspis venoms did not exhibit hemorrhagic or procoagulant activity. Some Dendroaspis venoms, however, exhibited strong anticoagulant activity. The intravenous median lethal dose of the venoms ranged from 0.5 microgram/g mouse to 4.2 micrograms/g mouse. 4. Venom biological activities are not very useful for the differentiation of the Dendroaspis species. The four Dendroaspis venoms, however, can be differentiated by their venom SDS-polyacrylamide gel electrophoretic patterns.  相似文献   

19.
Depressant insect-selective neurotoxins derived from scorpion venoms (a) induce in blowfly larvae a short, transient phase of contraction similar to that induced by excitatory neurotoxins followed by a prolonged flaccid paralysis and (b) displace excitatory toxins from their binding sites on insect neuronal membranes. The present study was undertaken in order to examine the basis of these similarities by comparing the primary structures and neuromuscular effects of depressant and excitatory toxins. A new depressant toxin (LqhIT2) was purified from the venom of the Israeli yellow scorpion. The effects of this toxin on a prepupal housefly neuromuscular preparation mimic the effects on the intact animal; i.e., a brief period of repetitive bursts of junction potentials is followed by suppression of their amplitude and finally by a block of neuromuscular transmission. Loose patch clamp recordings indicate that the repetitive activity has a presynaptic origin in the motor nerve and closely resembles the effect of the excitatory toxin AaIT. The final synaptic block is attributed to neuronal membrane depolarization, which results in an increase in spontaneous transmitter release; this effect is not induced by excitatory toxin. The amino acid sequences of three depressant toxins were determined by automatic Edman degradation. The depressant toxins comprise a well-defined family of polypeptides with a high degree of sequence conservation. This group differs considerably in primary structure from the excitatory toxin, with which it shares identical or related binding sites, and from the two groups of scorpion toxins that affect sodium conductance in mammals. The two opposing pharmacological effects of depressant toxins are discussed in light of the above data.  相似文献   

20.
Two toxins that are potent inhibitors of acetylcholinesterase have been isolated from the venom of the green mamba, Dendroaspis angusticeps. The toxins have been called fasciculins since after injection into mice (i.p. 0.5-3 micrograms/g body weight) they cause severe, generalized and long-lasting (5-7 h) fasciculations. Homogenates of diaphragm, tibialis anterior and gastrocnemius muscles from mice injected with fasciculins showed a decrease in acetylcholinesterase activity by 45-60% compared to muscles from control animals. Histochemical staining revealed a greatly reduced acetylcholinesterase activity at neuromuscular junctions. Fasciculins have 61 amino acid residues and four disulfides. The molecular weights are 6765 (fasciculin 1) and 6735 (fasciculin 2). The sequences of the two toxins differ probably only at one position by a replacement of Tyr with Asp/Asn. 1 g of venom contained about 40 mg of fasciculins, 2/3 of which was fasciculin 2. A similar inhibitor has also been isolated from D. polylepis (black mamba) venom. The sequence of fasciculin 2 is known. Most of the positive charges are concentrated in a small section of the central part of the molecule, and most of the negative charges are in the C-terminal region. Fasciculins appear to have a pronounced dipole character. Fasciculin binds to the peripheral anionic site, since it can displace propidium, a probe for that site, from acetylcholinesterase. In vitro, in Krebs-Henseleit solution containing 2 mM NaH2PO4 (pH 7.4), fasciculin 2 inhibits acetylcholinesterase from human erythrocytes (Ki = 1.1 X 10(-10) M, 37 degrees C), rat muscle (Ki = 1.2 X 10(-10) M, 37 degrees C) and Electrophorus electricus (Ki = 3.0 X 10(-10) M, 22 degrees C).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号