首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of the enzymes of cellulose and xylan metabolism namely endo-beta-1,4-glucanase, beta-glucosidase, endo-beta-1,4-xylanase and beta-xylosidase activities, in Reticulitermes speratus (Kolbe) was measured both in the salivary glands and in the major gut sections and along the length of the gut in freshly collected termites. The majority of the endo-beta-1,4-glucanase activity (77.8%) was found in the salivary glands which also contained 23.9% of the beta-glucosidase activity. At least 70% of the remaining activity was located in the anterior section of the hindgut. A small amount of endo-beta-1,4-xylanase activity (2.4%), but no beta-xylosidase activity, was present in the salivary glands. The majority of these activities were in the anterior section of the hindgut. The RQ of freshly collected termites at 25 degrees C was 1.03+/-0.01. Maintaining termites for 16 days on wood, cellulose and xylan showed that the RQ values of termites fed on wood or xylan were not significantly different from those of freshly collected termites but significantly increased when maintained on cellulose. The RQ of starved termites after 11 days was 0.81+/-0.02. There were three effects on protozoan populations of feeding termites xylan for 20 days. One species, Dinenympha parva was not affected, while five others, Pyrsonympha grandis, Holomastigotes elongatum, Dinenympha rugosa, Dinenympha leidy and Dinenympha porteri survived for 20 days but slowly decreased in numbers. The numbers of P. grandis and D. leidy surviving for 20 days were significantly different from those in starved termites. The third group comprising the two large species, Teratonympha mirabilis and Trichonympha agilis and three small species, Pyrsonympha modesta, Dinenympha exilis and Dinenympha nobilis disappeared within 15 days as in starved termites. It is suggested that protozoa in the first two groups are xylanolytic. Protozoan populations on wood and cellulose diets were not markedly affected. Selective removal of the protozoa by u.v. irradiation led to the loss of xylanolytic activity and a life span comparable to starved termites. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

2.
The phylogenetic diversity of parabasalian flagellates was examined based on the sequences of small subunit ribosomal RNA genes amplified directly from the mixed population of flagellates in the hindgut of lower termites. In total, 33 representative sequences of parabasalids were recovered from eight termite species. Fluorescent-labeled oligonucleotide probes specific for certain sequences were designed and used for the in situ identification of parabasalian species by whole-cell hybridization. The hypermastigotes, Pseudotrichonympha grassii, Spirotrichonympha leidyi, and Holomastigotoides mirabile in the hindgut of Coptotermes formosanus, and Spirotrichonympha sp. and Trichonympha spp. in Hodotermopsis sjoestedti were identified. In the phylogenetic tree constructed, the sequences from the termites were dispersed within the groups of known members of parabasalids, reflecting the presence of diverse parabasalids in the hindgut of termites. There were three paraphyletic lineages of hypermastigotes represented by Pseudotrichonympha, Trichonympha, and Spirotrichonympha, in agreement with the morphology-based taxonomic groups. The analysis of the tree-root suggested that the Pseudotrichonympha group is the most probable ancient lineage of parabasalids and that the Trichonympha group is the secondly deep-branching lineage. The Spirotrichonympha group and the Trichomonadida may have emerged later.  相似文献   

3.
Abstract Many termite species rely on intestinal protozoan symbionts to digest their cellulosic foods. We examined cellulose acquisition by the symbionts of the Eastern subterranean termite Reticulitermes flavipes Kollar (Isoptera; Rhinotermitidae) by following their phagocytosis of red paper fed to the termite host. The effects of termite host starvation and environmental temperature on feeding activity were studied in the zooflagellates Trichonympha agilis Leidy (Trichonymphidae), Pyrsonympha vertens Leidy, Dinenympha fimbriata Kirby, and D. gracilis Leidy (Pyrsonymphidae), which are among the largest residents in R. flavipes' hindguts. Protozoans in termites starved for 24 h ingested red paper significantly sooner than protozoans in termites with continuous access to food. Trichonympha, Pyrsonympha, and Dinenympha all ingested red paper particles at approximately the same rate. Red paper appeared significantly sooner in protozoans in termites maintained at 32°C than in those maintained at 22°C or 26°C. At 32°C, numbers of Trichonympha per gut remained constant over 96 h. Pyrsonympha and Dinenympha cells were absent or significantly reduced in number by 72 h at that temperature. These results provide insight into the environmental factors that shape the termite–protozoan symbiosis. They may aid in the development of protozoicides used to control pest termites. Received: 1 August 1997; Accepted: 26 November 1997  相似文献   

4.
Symbiotic flagellates play a major role in the digestion of lignocellulose in the hindgut of lower termites. Many termite gut flagellates harbour a distinct lineage of bacterial endosymbionts, so-called Endomicrobia, which belong to the candidate phylum Termite Group 1. Using an rRNA-based approach, we investigated the phylogeny of Trichonympha , the predominant flagellates in a wide range of termite species, and of their Endomicrobia symbionts. We found that Trichonympha species constitute three well-supported clusters in the Parabasalia tree. Endomicrobia were detected only in the apical lineage (Cluster I), which comprises flagellates present in the termite families Termopsidae and Rhinotermitidae, but apparently absent in the basal lineages (Clusters II and III) consisting of flagellates from other termite families and from the wood-feeding cockroach, Cryptocercus punctulatus . The endosymbionts of Cluster I form a monophyletic group distinct from many other lineages of Endomicrobia and seem to have cospeciated with their flagellate host. The distribution pattern of the symbiotic pairs among different termite species indicates that cospeciation of flagellates and endosymbionts is not simply the result of a spatial separation of the flagellate lineages in different termite species, but that Endomicrobia are inherited among Trichonympha species by vertical transmission. We suggest extending the previously proposed candidatus name ' Endomicrobium trichonymphae ' to all Endomicrobia symbionts of Trichonympha species, and estimate that the acquisition by an ancestor of Trichonympha Cluster I must have occurred about 40–70 million years ago, long after the flagellates entered the termites.  相似文献   

5.
The relictual Mastotermes darwiniensis is one of the world's most destructive termites. Like all phylogenetically basal termites, it possesses protozoa in its hindgut, which are believed to help it digest wood. L. Li, J. Frohlich, P. Pfeiffer, and H. Konig (Eukaryot. Cell 2:1091-1098, 2003) recently cloned the genes encoding cellulases from the protozoa of M. darwiniensis; however, they claimed that these genes are essentially inactive, not contributing significantly to cellulose digestion. Instead, they suggested that the protozoa sequester enzymes produced by the termite in its salivary glands and use these to degrade cellulose in the hindgut. We tested this idea by performing gel filtration of enzymes in extracts of the hindgut, as well as in a combination of the salivary glands, foregut, and midgut. Three major cellulases were found in the hindgut, each of which had a larger molecular size than termite-derived salivary gland enzymes. N-terminal amino acid sequencing of one of the hindgut-derived enzymes showed that it was identical to the putative amino acid sequence of one mRNA sequence isolated by Li et al. (Eukaryot. Cell 2:1091-1098, 2003). The overall activity of the hindgut cellulases was found to be of approximately equal magnitude to the termite-derived cellulases detected in the mixture of salivary gland, foregut, and midguts. Based on these results, we conclude that, contrary to Li et al. (Eukaryot. Cell 2:1091-1098, 2003), the hindgut protozoan fauna of M. darwiniensis actively produce cellulases, which play an important role in cellulose digestion of the host termite.  相似文献   

6.
The termite is a good model of symbiosis between microbes and hosts and possesses an effective cellulose digestive system. Oxygen-tolerant bacteria, such as Dyella sp., Chryseobacterium sp., and Bacillus sp., were isolated from Reticulitermes speratus gut. Notably, the endo-β-1,4-glucanase (EG) activity of all 16 strains of isolated bacteria was low. Due to the combined activity of EG from the termites and their symbiotic protozoa, the bacteria might not be compelled to express EG. This observation demonstrates how well intestinal bacteria have assimilated themselves into the efficient cellulose digestive systems of termites.  相似文献   

7.
For novel biotechnology-based termite control, we developed a cellulose bait containing freeze-dried genetically engineered yeast which expresses a protozoacidal lytic peptide attached to a protozoa-recognizing ligand. The yeast acts as a ‘Trojan-Horse’ that kills the cellulose-digesting protozoa in the termite gut, which leads to the death of termites, presumably due to inefficient cellulose digestion. The ligand targets the lytic peptide specifically to protozoa, thereby increasing its protozoacidal efficiency while protecting non-target organisms. After ingestion of the bait, the yeast propagates in the termite''s gut and is spread throughout the termite colony via social interactions. This novel paratransgenesis-based strategy could be a good supplement for current termite control using fortified biological control agents in addition to chemical insecticides. Moreover, this ligand-lytic peptide system could be used for drug development to selectively target disease-causing protozoa in humans or other vertebrates.  相似文献   

8.
Cellulose, a main structural constituent of plants, is the major nutritional component for wood-feeding termites. Enzymatic hydrolysis of cellulose to glucose occurs by the action of cellulases, a mixture of the three major classes of enzymes including endo-1,4-beta-glucanases, exo-1,4-beta-glucanases, and beta-glucosidase. Lower termites, such as the Formosan subterranean termite, Coptotermes formosanus Shiraki, require cellulolytic protozoa to efficiently digest cellulose for survival. Inhibitors developed against any of these cellulase system enzymes would be a potential termite treatment avenue. Our effort was to develop a screening system to determine whether termites could be controlled by administration of cellulase system inhibitors. Some reported compounds such as gluconolactone, conduritol B epoxide, and 1-deoxynojirimycin are potential beta-glucosidase inhibitors, but they have only been tested in vitro. We describe an in vivo method to test the inhibitory ability of the designated chemicals to act on beta-1,4-glucosidases, one member of the cellulase system that is the key step that releases glucose for use as an energy and carbon source for termites. Inhibition in releasing glucose from cellooligosaccharides might be sufficient to starve termites. Fluorescein di-beta-D-glucopyranoside was used as the artificial enzyme substrate and the fluorescent intensity of the reaction product (fluorescein) quantified with an automated fluorescence plate reader. Several known in vitro beta-1,4-glucosidase inhibitors were tested in vivo, and their inhibitory potential was determined. Endogenous and protozoan cellulase activities are both assumed to play a role.  相似文献   

9.
The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival.  相似文献   

10.
The hindgut of the lower termites, Mastotermes darwiniensis and Coptotermes lacteus and the higher termite Nasutitermes exitiosus were made aerobic by exposure of the termites to pure oxygen, a procedure which killed their spirochaetes and their protozoa (lower termites only). The time taken for the hindgut to become anaerobic after the termites were restored to normal atmospheric conditions ranged from 2 to 4.5 hr. After oxygen treatment the number of gut bacteria increased some six- to ten-fold in all termite species, indicating that the bacteria are poised to use oxygen entering the gut. Removal of all the hindgut microbiota by feeding tetracycline caused the hindgut to become aerobic in M. darwiniensis and N. exitiosus. The transferring of M. darwiniensis to fresh wood, free of antibiotic, resulted in the return of the normal flora and the eventual establishment of anaerobic conditions in the hindgut. Thus the bacteria appear to be important in maintaining anaerobic conditions in the gut. Attempts to determine whether the protozoa (in the lower termites) played any part in maintaining the Eh of the hindgut were unsuccessful. Serratia marcescens failed to colonise the gut of normal C. lacteus and transiently colonized (for 5 days) the gut of normal N. exitiosus. Transient colonization by S. marcescens (from 6 to 10 days) occurred in N. exitiosus when its hindgut spirochaetes were killed and in C. lacteus when its spirochaetes and protozoa were killed, indicating a possible role for the spirochaetes and/or protozoa in influencing the bacteria allowed to reside in the hindgut. Exposure of normal termites to Serratia provoked an increase in the numbers of the normal gut bacteria.  相似文献   

11.
A case for ancestral transfer of symbionts between cockroaches and termites   总被引:3,自引:0,他引:3  
Living species of the cockroach family Cryptocercidae have intestinal symbionts that are congeneric with some of the gut protozoa found in Isoptera. Presence of such closely related symbionts in cryptocercids and in termites has been frequently interpreted as a uniquely derived homologous character shared between the two xylophagous groups. This may not be the most parsimonious interpretation. Cryptocercus nymphs placed into Zootermopsis (dampwood termite) colonies were killed and eaten by the termites. Termites placed into a Cryptocercus nest box were also fully consumed. Modern Cryptocercus punctulatus and Zootermopsis are often found in the same decaying logs in the Pacific Northwest of the U.S.A., and it is likely that their ancestors also cohabited in at least a portion of their ranges. By occasionally killing and consuming an intruder from the other group, gut protozoa could have been acquired and exchanged between termites and Cryptocercus or their ancestors, under natural conditions and before the life histories of the protozoa became specialized within the host orders. Implications for assessing the phylogeny of the two dictyopteroid groups are also discussed.  相似文献   

12.
In many animals, sex differences in hormones, behavior, and immunity lead to differences in their gut microbial communities. One of the best-known examples of mutualistic symbiosis is that between lower termites and their intestinal protozoa. Although differences in the protozoan communities of different castes have been studied in lower termites, nothing is known about the sex differences in protozoan communities in neuter castes. Here, we show that termite workers have different protozoan communities according to sex depending on the colony. We investigated the communities of symbiotic protozoa living in lower termites, Reticulitermes speratus, and how they are affected by sex and caste. Workers had the largest numbers of protozoa, followed by soldiers, whereas reproductives (primary kings and secondary queens) had no protozoa. Workers showed colony-dependent sex differences in the total abundance of protozoa, whereas soldiers showed no such sex differences. There were significant sex effect and/or interaction effect between colony and sex in abundances of five species of protozoa in workers. Workers also showed significant sex differences and/or colony-dependent sex differences in proportion of six species of protozoa. These may result in sex differences in the host–symbiont interaction due to physiological or behavioral sex differences in workers that have not been recognized previously. This study has an important implication: although workers are not engaged in reproduction, their potential sex difference may affect various aspects of social interactions.  相似文献   

13.
Cellulose digestion in lower termites, mediated by carbohydrases originating from both termite and endosymbionts, is well characterized. In contrast, limited information exists on gut proteases of lower termites, their origins and roles in termite nutrition. The objective of this study was to characterize gut proteases of the Formosan subterranean termite (Coptotermes formosanus Shiraki) (Isoptera: Rhinotermitidae). The protease activity of extracts from gut tissues (fore-, mid- and hindgut) and protozoa isolated from hindguts of termite workers was quantified using hide powder azure as a substrate and further characterized by zymography with gelatin SDS-PAGE. Midgut extracts showed the highest protease activity followed by the protozoa extracts. High level of protease activity was also detected in protozoa culture supernatants after 24 h incubation. Incubation of gut and protozoa extracts with class-specific protease inhibitors revealed that most of the proteases were serine proteases. All proteolytic bands identified after gelatin SDS-PAGE were also inhibited by serine protease inhibitors. Finally, incubation with chromogenic substrates indicated that extracts from fore- and hindgut tissues possessed proteases with almost exclusively trypsin-like activity while both midgut and protozoa extracts possessed proteases with trypsin-like and subtilisin/chymotrypsin-like activities. However, protozoa proteases were distinct from midgut proteases (with different molecular mass). Our results suggest that the Formosan subterranean termite not only produces endogenous proteases in its gut tissues, but also possesses proteases originating from its protozoan symbionts.  相似文献   

14.
Hidden cellulases in termites: revision of an old hypothesis   总被引:1,自引:0,他引:1  
The intestinal flagellates of termites produce cellulases that contribute to cellulose digestion of their host termites. However, 75% of all termite species do not harbour the cellulolytic flagellates; the endogenous cellulase secreted from the midgut tissue has been considered a sole source of cellulases in these termites. Using the xylophagous flagellate-free termites Nasutitermes takasagoensis and Nasutitermes walkeri, we successfully solubilized cellulases present in the hindgut pellets. Zymograms showed that the hindguts of these termites possessed several cellulases and contained up to 59% cellulase activity against crystalline cellulose when compared with the midgut. Antibiotic treatment administered to N. takasagoensis significantly reduced cellulase activity in the hindgut, suggesting that these cellulases were produced by symbiotic bacteria.  相似文献   

15.
Closely related cellulolytic protozoa reside in the hindguts of extant woodroaches (Cryptocercidae) and termites (Isoptera). The evolutionary origin of these symbiotic relationships in the two lineages is uncertain. Transfer of protozoa between ancestors of modern Cryptocercus and termites remains a valid alternative theory to the established hypothesis of symbiont inheritance from a common ancestor. Nalepa's (Proc. R. Soc. Lond. B 246, 185 (1991] concerns regarding the protozoan transfer hypothesis focus on the biology of modern species, and neglect to consider the evolutionary framework of an ancestral dynamic postulated to occur among Palaeozoic insects. Legitimacy of the symbiont transfer theory removes the constraint of interpreting presence of cellulolytic protozoa as a synapomorphy between Cryptocercidae and Isoptera, with potential impact on objective resolution of dictyopteran phylogeny.  相似文献   

16.
The aim of this work was to determine the effect of yeast extract and of its vitamin contents on autotrophic and heterotrophic growth and metabolism of four acetogenic bacteria from the human colon. Yeast extract exerted a stimulatory effect on autotrophic growth of the colonic acetogens, but concentration of this compound above 1–2 g. L−1 in the medium did not enhance utilization of H2/CO2. Vitamins provided by yeast extract were shown to be essential cofactors of the reductive pathway of acetate synthesis except for one Clostridium strain. Yeast extract was also necessary to maintain heterotrophic growth and acetate synthesis from glucose in acetogenic species, except in the Streptococcus strain. In the absence of yeast extract, vitamins could efficiently restore glucose fermentation via acetate. The reductive and oxidative pathways of acetate synthesis might, therefore, depend on vitamin cofactors supplied by yeast extract in most of the human acetogenic bacteria. Non-vitaminic factors appeared also to be involved in the metabolism of some of these acetogenic species. Received: 6 March 1998 / Accepted: 3 April 1998  相似文献   

17.
A cellulolytic, acetic acid producing anaerobic bacterial isolate, Gram negative, rod-shaped, motile, terminal oval shaped endospore forming bacterium identified as Clostridium lentocellum SG6 based on physiological and biochemical characteristics. It produced acetic acid as a major end product from cellulose fermentation at 37°C and pH 7.2. Acetic acid production was 0.67 g/g cellulose substrate utilized in cellulose mineral salt (CMS) medium. Yeast extract (0.4%) was the best nitrogen source among the various nitrogenous nutrients tested in production medium containing 0.8% cellulose as substrate. No additional vitamins or trace elemental solution were required for acetic acid fermentation. This is the highest acetic acid fermentation yield in monoculture fermentation for direct conversion of cellulose to acetic acid.  相似文献   

18.
The rates of uptake, clearance, insect-to-insect transfer, and metabolism of [14C] hexaflumuron [N-(((3,5-dichloro-4-(1,1,2,2-tetrafluroethoxy)phenyl)- amino)carbonyl)-2,6-diflurobenzamide] were measured in eastern subterranean termite workers, Reticulitermes flavipes (Kollar), fed cellulose diets containing either 0.1 or 0.5% (wt:wt) hexaflumuron. The rate of uptake, level of maximum uptake, and amount of insect-to-insect transfer were concentration dependent. The clearance rate constant for hexaflumuron was independent of concentration, with a mean value of 3.2 x 10(-3)/h. This corresponds to a mean half-life for hexaflumuron inside termites of 9 d. No evidence of metabolism of hexaflumuron to additional products was detected when extracting and examining the radioactivity contained in the fecal and regurgitated material within the termite holding apparatus 40 d after exposure to the chemical. Hexaflumuron was efficiently transferred from treated to untreated termites, through trophallaxis, resulting in spread of the toxicant throughout the insect population. The combination of uptake and efficient transfer of hexaflumuron between treated and untreated termites ensures broad distribution of the material even to insects not directly exposed to the toxicant. The distribution of hexaflumuron by termite workers, along with their minimal ability to metabolize the compound to other metabolites, and their slow ability to clear the material from the termite population results in death of the entire group of termites contained within the holding apparatus.  相似文献   

19.
Paratransgenesis targeting the gut protozoa is being developed as an alternative method for the control of the Formosan subterranean termite (FST). This method involves killing the cellulose‐digesting gut protozoa using a previously developed antiprotozoal peptide consisting of a target specific ligand coupled to an antimicrobial peptide (Hecate). In the future, we intend to genetically engineer termite gut bacteria as “Trojan Horses” to express and spread ligand‐Hecate in the termite colony. The aim of this study was to assess the usefulness of bacteria strains isolated from the gut of FST as “Trojan Horses.” We isolated 135 bacteria from the guts of workers from 3 termite colonies. Sequencing of the 16S rRNA gene identified 20 species. We tested 5 bacteria species that were previously described as part of the termite gut community for their tolerance against Hecate and ligand‐Hecate. Results showed that the minimum concentration required to inhibit bacteria growth was always higher than the concentration required to kill the gut protozoa. Out of the 5 bacteria tested, we engineered Trabulsiella odontotermitis, a termite specific bacterium, to express green fluorescent protein as a proof of concept that the bacteria can be engineered to express foreign proteins. Engineered T. odontotermitis was fed to FST to study if the bacteria are ingested. This feeding experiment confirmed that engineered T. odontotermitis is ingested by termites and can survive in the gut for at least 48 h. Here we report that T. odontotermitis is a suitable delivery and expression system for paratransgenesis in a termite species.  相似文献   

20.
Abstract.  Throughout the history of studies on cellulose digestion in termites, carboxymethyl-cellulose has been preferably used as a substrate for measuring cellulase activity in termites due to its high solubility. However, carboxymethyl-cellulose degradation is not directly related to digestibility of naturally occurring cellulose because many noncellulolytic organisms can also hydrolyse carboxymethyl-cellulose. To address this issue, a comparative study of microcrystalline cellulose digestion is performed in diverse xylophagous termites, using gut homogenates. For those termites harbouring gut flagellates , the majority of crystalline cellulose appears to be digested in the hindgut, both in the supernatant and the pellet. For Nasutitermes takasagoensis , a termite free of gut flagellates, crystalline cellulose is degraded primarily in the midgut supernatant, and partially in the pellet of the hindgut. The fungus-growing termite Odontotermes formosanus , which also does not possess intestinal flagellates, shows only a trace of crystalline cellulose hydrolysis throughout the gut. Comparison of levels of activity against crystalline cellulose with previously reported levels of activity against carboxymethyl-cellulose in the gut of each termite reveals significant differences between these activities. The results suggest that the hindgut flagellates produce commonly cellobiohydrolases in addition to endo-β-1,4-glucanases, which presumably act synergistically to digest cellulose. Preliminary evidence for the involvement of bacteria in the cellulose digestion of N. takasagoensis is also found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号