首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclear exchange of the U1 and U2 snRNP-specific proteins   总被引:9,自引:1,他引:8       下载免费PDF全文
The snRNP particles include a set of common core snRNP proteins and snRNP specific proteins. In rodent cells the common core proteins are the B, D, D', E, F and G proteins in a suggested stoichiometry of B2D'2D2EFG. The additional U1- and U2-specific proteins are the 70-kD, A and C proteins and the A' and B" proteins, respectively. Previous cell fractionation and kinetic analysis demonstrated the snRNP core proteins are stored in the cytoplasm in large partially assembled snRNA-free intermediates that assemble with newly synthesized snRNAs during their transient appearance in the cytoplasm (Sauterer, R. A., R. J. Feeney, and G. W. Zieve. 1988. Exp. Cell Res. 176:344-359). This report investigates the assembly and intracellular distribution of the U1 and U2 snRNP-specific proteins. Cell enucleation and aqueous cell fractionation are used to prepare nuclear and cytoplasmic fractions and the U1- and U2-specific proteins are identified by isotopic labeling and immunoprecipitation or by immunoblotting with specific autoimmune antisera. The A, C, and A' proteins are found both assembled into mature nuclear snRNP particles and in unassembled pools in the nucleus that exchange with the assembled snRNP particles. The unassembled proteins leak from isolated nuclei prepared by detergent extraction. The unassembled A' protein sediments at 4S-6S in structures that may be multimers. The 70-kD and B" proteins are fully assembled with snRNP particles which do not leak from isolated nuclei. The kinetic studies suggest that the B" protein assembles with the U2 particle in the cytoplasm before it enters the nucleus.  相似文献   

2.
Assembly and intracellular transport of snRNP particles.   总被引:7,自引:0,他引:7  
The assembly of the major small nuclear ribonucleoprotein (snRNP) particles begins in the cytoplasm where large pools of common core proteins are preassembled in several RNA-free intermediate particles. Newly synthesized snRNAs transiently enter the cytoplasm and complex with core particles to form pre-snRNP particles. Subsequently, the cap structure at the 5' end of the snRNA is hypermethylated. The resulting trimethylguanosine (TMG) cap is an integral part of the nuclear localization signal for snRNP particles and the pre-snRNP particles are rapidly transported into the nucleus. SnRNP particles mature when snRNA-specific proteins complex with the particles, in some cases, just before or during nuclear transport, but in most instances after the particles are in the nucleus. In addition, U6 snRNA hybridizes with U4 snRNA to form a U4/U6 snRNP in the nucleus. The transport signals are retained on the snRNP particles and proteins since existing particles and proteins enter the reformed nucleus after mitosis.  相似文献   

3.
The human spliceosomal Sm B/B' proteins are essential for the biogenesis of the snRNP particles. B/B' proteins contain several clusters of the PPPPGM/IR sequence, which occurs within the C-terminus of Sm B/B'. This sequence is very similar to the PPPPPGHR sequence of the cytoplasmic tail of the CD2 receptor and closely resembles the class II of SH3 ligands, suggesting a similarly important role. We report that a monoclonal antibody (3E10) against the PPPPPGHR sequence recognizes spliceosomal Sm B/B' proteins. Proteins that are specifically immunoprecipitated by 3E10 include Sm B, B', D1, D2, D3, E, F, and G. However, unlike Y12 and other anti-Sm immunoprecipitates, 3E10 immunoprecipitates appear to lack the U1 snRNP-specific proteins A and C and U snRNAs. These findings indicate that 3E10 recognizes a subset of Sm protein core and suggest the presence of snRNA-free Sm protein complex(es) in vivo. We propose that the epitope binding for 3E10 may become unaccessible upon interactions of Sm proteins and their subsequent incorporation into the core particles. The Sm proline-rich sequences may have an important role in mediating protein-protein interactions necessary for the proper snRNP core assembly or function, or both. To our knowledge, 3E10 is the first well characterized mAb specific for a subclass of polyproline-arg motif recognizing Sm B/B' and CD2 proteins. 3E10 antibody can be used to further characterize the nature of protein components in the snRNA-free Sm subcore protein complex(es) that are formed during the snRNP core assembly steps.  相似文献   

4.
Five anti-Sm monoclonal antibodies, Y12, 7.13, KSm4, KSm6, and 128, stain similar discrete punctate structures distributed throughout the cytoplasm of hamster fibroblasts in addition to the expected intense nuclear staining. Several criteria suggest the cytoplasmic staining reflects the cytoplasmic pools of snRNP core proteins. The relative intensity of the cytoplasmic staining is similar to the 30% relative abundance of the cytoplasmic snRNP core proteins compared to the nuclear snRNP core proteins based on cell-fractionation studies. Moreover, the cytoplasmic staining is removed by the same extraction conditions that solubilize the pools of cytoplasmic snRNP core proteins. The cytoplasmic sites of staining are typically spherical but heterogeneous in diameter (0.2-0.5 microm). The larger particles greatly exceed the diameter of individual snRNP core particles and are likely to represent centers of many snRNP proteins or snRNP protein complexes. The staining, though punctate, is evenly dispersed throughout the cytoplasm with no evidence of major compartmentalization. The cytoplasmic staining pattern collapses into larger foci of intensely staining structures when cellular energy levels are depleted or when cells are exposed to hypertonic medium. Unlike the normal sites of snRNP protein cytoplasmic staining, these larger collapsed foci resist detergent extraction. These results suggest that the cytoplasmic staining identified with the anti-Sm monoclonal antibodies represents the large pools of snRNP core proteins in the cytoplasm.  相似文献   

5.
The assembly pathway of small nuclear ribonucleoprotein (snRNP) particles in the cytoplasm of L929 mouse fibroblasts was analyzed by observing the nuclear accumulation of snRNP proteins. Immunoprecipitations of nuclear and cytoplasmic fractions after a pulse label and chase indicate that the snRNP D, E, F, and G proteins assemble first, followed by the small nuclear RNA (snRNA), then the snRNP B protein and, in the case of the U1 snRNP, the A and C proteins. The snRNP B' protein is not detected in the L929 cells. The U1-specific A and C proteins can enter the nucleus in the absence of snRNP assembly, suggesting that these proteins exchange on the mature nuclear snRNP particles. Two-dimensional electrophoresis using nonequilibrium pH gradient electrophoresis identifies the A, B, B", C, D, E, F, and G proteins in a distribution similar to that reported previously by immunoprecipitation (Sauterer, R. A., and Zieve, G. W. (1989) J. Biol. Chem., submitted for publication). The D protein appears in multiple isoelectric variants in the cytoplasm and shifts toward more basic variants during maturation. Kinetic experiments analyzed by two-dimensional electrophoresis indicate a quantitative maturation of the cytoplasmic B protein into nuclear particles. Quantitative densitometry of immunoprecipitated stable nuclear snRNPs labeled with [35S] methionine corrected for the published methionine content of the A, B, C, D, and E proteins indicates that the mature nuclear U1 snRNP probably contains four copies of D, two copies each of B, C, and A, and one copy of E.  相似文献   

6.
V A Raker  G Plessel    R Lührmann 《The EMBO journal》1996,15(9):2256-2269
Stable association of the eight common Sm proteins with U1, U2, U4 or U5 snRNA to produce a spliceosomal snRNP core structure is required for snRNP biogenesis, including cap hypermethylation and nuclear transport. Here, the assembly of snRNP core particles was investigated in vitro using both native HeLa and in vitro generated Sm proteins. Several RNA-free, heteromeric protein complexes were identified, including E.F.G, B/B'.D3 and D1.D2.E.F.G. While the E.F.G complex alone did not stably bind to U1 snRNA, these proteins together with D1 and D2 were necessary and sufficient to form a stable U1 snRNP subcore particle. The subcore could be chased into a core particle by the subsequent addition of the B/B'.D3 protein complex even in the presence of free competitor U1 snRNA. Trimethylation of U1 snRNA's 5' cap, while not observed for the subcore, occurred in the stepwise-assembled U1 snRNP core particle, providing evidence for the involvement of the B/B' and D3 proteins in the hypermethylation reaction. Taken together, these results suggest that the various protein heterooligomers, as well as the snRNP subcore particle, are functional intermediates in the snRNP core assembly pathway.  相似文献   

7.
snRNPs, integral components of the pre-mRNA splicing machinery, consist of seven Sm proteins which assemble in the cytoplasm as a ring structure on the snRNAs U1, U2, U4, and U5. The survival motor neuron (SMN) protein, the spinal muscular atrophy disease gene product, is crucial for snRNP core particle assembly in vivo. SMN binds preferentially and directly to the symmetrical dimethylarginine (sDMA)-modified arginine- and glycine-rich (RG-rich) domains of SmD1 and SmD3. We found that the unmodified, but not the sDMA-modified, RG domains of SmD1 and SmD3 associate with a 20S methyltransferase complex, termed the methylosome, that contains the methyltransferase JBP1 and a JBP1-interacting protein, pICln. JBP1 binds SmD1 and SmD3 via their RG domains, while pICln binds the Sm domains. JBP1 produces sDMAs in the RG domain-containing Sm proteins. We further demonstrate the existence of a 6S complex that contains pICln, SmD1, and SmD3 but not JBP1. SmD3 from the methylosome, but not that from the 6S complex, can be transferred to the SMN complex in vitro. Together with previous results, these data indicate that methylation of Sm proteins by the methylosome directs Sm proteins to the SMN complex for assembly into snRNP core particles and suggest that the methylosome can regulate snRNP assembly.  相似文献   

8.
Newly synthesized snRNAs appear transiently in the cytoplasm where they assemble into ribonucleoprotein particles, the snRNP particles, before returning permanently to the interphase nucleus. In this report, bona fide cytoplasmic fractions, prepared by cell enucleation, are used for a quantitative analysis of snRNP assembly in growing mouse fibroblasts. The half-lives and abundances of the snRNP precursors in the cytoplasm and the rates of snRNP assembly are calculated in L929 cells. With the exception of U6, the major snRNAs are stable RNA species; U1 is almost totally stable while U2 has a half-life of about two cell cycles. In contrast, the majority of newly synthesized U6 decays with a half-life of about 15 h. The relative abundances of the newly synthesized snRNA species U1, U2, U3, U4 and U6 in the cytoplasm are determined by Northern hybridization using cloned probes and are approximately 2% of their nuclear abundance. The half-lives of the two major snRNA precursors in the cytoplasm (U1 and U2) are approximately 20 min as determined by labeling to steady state. The relative abundance of the snRNP B protein in the cytoplasm is determined by Western blotting with the Sm class of autoantibodies and is approximately 25% of the nuclear abundance. Kinetic studies, using the Sm antiserum to immunoprecipitate the methionine-labeled snRNP proteins, suggest that the B protein has a half-life of 90 to 120 min in the cytoplasm. These data are discussed and suggest that there is a large pool of more stable snRNP proteins in the cytoplasm available for assembly with the less abundant but more rapidly turning-over snRNAs.  相似文献   

9.
The in vivo synthesis and assembly of human small nuclear ribonucleoproteins (snRNPs) have been studied using pulse/chase analysis. Antibodies derived from patients with systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD) recognize distinguishable subsets of pulse-labeled snRNP peptides. These antibodies were used to immunoprecipitate sucrose gradient fractionated pulse-labeled and pulse/chased snRNP proteins. The results indicate that assembly of the U RNA-containing snRNPs is a multistep process involving prior assembly of an RNA-free 6S core particle. This precursor contains snRNP peptides D, E, F, and G, which are common to all the different U RNA-containing particles. Furthermore, a posttranslational modification of one of the U1 snRNP-specific peptides has been observed, and the kinetics of this process indicates that the modification occurs after particle assembly. Functional and structural implications of a protein core for snRNP particles are discussed.  相似文献   

10.
The addition of urea to sodium dodecyl sulfate (SDS)-polyacrylamide gels has allowed the identification and characterization of the small nuclear ribonucleoprotein particle (snRNP) D' protein and has also improved resolution of the E, F, and G snRNP core proteins. In standard SDS-polyacrylamide gels, the D' and D snRNP core proteins comigrate at approximately 16 kilodaltons. The addition of urea to the separating gel caused the D' protein to shift to a slower electrophoretic mobility that is distinct from that of the D protein. The shift to a slower electrophoretic mobility in the presence of urea suggests that the D' protein has extensive secondary structure that is not totally disrupted by SDS alone. Both N-terminal sequencing and partial peptide maps indicate that the D and D' proteins are distinct gene products, and the sequence data have identified the faster moving of the two proteins as the previously cloned D protein (L. A. Rokeach, J. A. Haselby, and S. O. Hoch, Proc. Natl. Acad. Sci. USA 85:4832-4836, 1988). In the cytoplasm, the D protein is found primarily in the small-nuclear-RNA-free 6S protein complexes, while the D' protein is found primarily in the 20S protein complexes. Like the D protein, the D' protein is an autoantigen in patients with systemic lupus erythematosus and is recognized by some of the Sm class of autoimmune antisera.  相似文献   

11.
We have analyzed the assembly of the spliceosomal U4/U6 snRNP by injecting synthetic wild-type and mutant U4 RNAs into the cytoplasm of Xenopus oocytes and determining the cytoplasmic-nuclear distribution of U4 and U4/U6 snRNPs by CsCl density gradient centrifugation. Whereas the U4 snRNP was localized in both the cytoplasmic and nuclear fractions, the U4/U6 snRNP was detected exclusively in the nuclear fraction. Cytoplasmic-nuclear migration of the U4 snRNP did not depend on the stem II nor on the 5' stem-loop region of U4 RNA. Our data provide strong evidence that, following the cytoplasmic assembly of the U4 snRNP, the interaction of the U4 snRNP with U6 RNA/RNP occurs in the nucleus; furthermore, cytoplasmic-nuclear transport of the U4 snRNP is independent of U4/U6 snRNP assembly.  相似文献   

12.
Spliceosome assembly during pre-mRNA splicing requires the correct positioning of the U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) on the precursor mRNA. The structure and integrity of these snRNPs are maintained in part by the association of the snRNAs with core snRNP (Sm) proteins. The Sm proteins also play a pivotal role in metazoan snRNP biogenesis. We have characterized a Saccharomyces cerevisiae gene, SMD3, that encodes the core snRNP protein Smd3. The Smd3 protein is required for pre-mRNA splicing in vivo. Depletion of this protein from yeast cells affects the levels of U snRNAs and their cap modification, indicating that Smd3 is required for snRNP biogenesis. Smd3 is structurally and functionally distinct from the previously described yeast core polypeptide Smd1. Although Smd3 and Smd1 are both associated with the spliceosomal snRNPs, overexpression of one cannot compensate for the loss of the other. Thus, these two proteins have distinct functions. A pool of Smd3 exists in the yeast cytoplasm. This is consistent with the possibility that snRNP assembly in S. cerevisiae, as in metazoans, is initiated in the cytoplasm from a pool of RNA-free core snRNP protein complexes.  相似文献   

13.
We identified autoantibodies that recognize the U4/U6 snRNPs in a serum from a 63-year-old Japanese patient (TT) with primary Sj?gren's syndrome. This patient's serum immunoprecipitated U4 and U6 sn-RNAs exclusively from 32P-labeled HeLa cell extracts and a newly identified 120-kDa protein along with the Sm core proteins (B'/B, D, E, F, and G) from [35S] methionine-labeled HeLa cell extracts. Immunoblotting demonstrated that only the 120-kDa protein was recognized by this unique serum. In glycerol density gradient centrifugation, the 120-kDa protein reactive with TT serum cosedimented with U4 and U6 snRNAs, suggesting that the 120-kDa protein is a unique component of the U4/U6 snRNP particle. In the same study, the U4/U6 snRNP precipitated by TT serum sedimented only in the lower density, whereas anti-Sm antibodies precipitated U4/U6 snRNAs in a broad range of the gradient. This result suggests the presence of at least two molecular forms of the U4/U6 snRNP particles; larger particles, probably the U4/U5/U6 snRNP complex, and free particles. Thus, the U4/U6 snRNP recognized by TT serum includes the U4 and U6 snRNAs, with Sm core proteins, and the novel 120-kDa protein, and appears to be a free particle not associated with larger complexes.  相似文献   

14.
The biogenesis of the spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4, and U5 involves: (a) migration of the snRNA molecules from the nucleus to the cytoplasm; (b) assembly of a group of common proteins (Sm proteins) and their binding to a region on the snRNAs called the Sm-binding site; and (c) translocation of the RNP back to the nucleus. A first prerequisite for understanding the assembly pathway and nuclear transport of the snRNPs in more detail is the knowledge of all the snRNP proteins that play essential roles in these processes. We have recently observed a previously undetected 69- kD protein in 12S U1 snRNPs isolated from HeLa nuclear extracts under non-denaturing conditions that is clearly distinct from the U1-70K protein. The following evidence indicates that the 69-kD protein is a common, rather than a U1-specific, protein, possibly associating with the snRNP core particles by protein-protein interaction. (a) Antibodies raised against the 69-kD protein, which did not cross-react with any of the Sm proteins B'-G, precipitated not only U1 snRNPs, but also the other spliceosomal snRNPs U2, U4/U6 and U5, albeit to a lower extent. (b) U1, U2, and U5 core RNP particles reconstituted in vitro contain the 69-kD protein. (c) Xenopus laevis oocytes contain an immunologically related homologue of the human 69-kD protein. When U1 snRNA as well as a mutant U1 snRNA, that can bind the Sm core proteins but lacks the capacity to bind the U1-specific proteins 70K, A, and C, were injected into Xenopus oocytes to allow assembly in vivo, they were recognized by antibodies specific against the 69-kD protein in the ooplasm and in the nucleus. The 69-kD protein is under-represented, if present at all, in purified 17S U2 and in 25S [U4/U6.U5] tri-snRNPs, isolated from HeLa nuclear extracts. Our results are consistent with the working hypothesis that this protein may either play a role in the cytoplasmic assembly of the core domain of the snRNPs and/or in the nuclear transport of the snRNPs. After transport of the snRNPs into the nucleus, it may dissociate from the particles as for example in the case of the 17S U2 or the 25S [U4/U6.U5] tri-snRNP, which bind more than 10 different snRNP specific proteins each in the nucleus.  相似文献   

15.
We found serum autoantibodies directed against the proteins binding exclusively to U4/U6 of Sm small nuclear ribonucleoprotein particle (snRNP) in serum from a patient (MaS) with systemic sclerosis. Their specificity, called anti-MaS, is distinct from that of known antibodies against U snRNP. The U4 and U6 small nuclear RNA from a 32P-labeled HeLa cell extract and five proteins with Mr 150,000, 120,000, 80,000, 36,000, and 34,000, in addition to Sm core proteins (B, B', D, E, F, and G) from an [35S] methionine-labeled extract, were immunoprecipitated by anti-MaS in isotonic solution. However, the Sm core proteins and U4 and U6 small nuclear RNA were separated from the protein-A-Sepharose facilitated MaS immunoprecipitate by incubation in a solution containing 500 mM NaCl. In immunoblots, anti-MaS antibodies reacted with one protein of Mr 150,000 from a HeLa cell nuclear extract that was fractionated by SDS-PAGE and transferred to a nitrocellulose sheet. The monospecific immunoaffinity purified antibody eluted from the immunoblot band immunoprecipitated U4 and U6 small nuclear RNA and reblotted the protein with Mr 150,000. These data indicate that anti-MaS antibodies recognize at least one antigenic protein that binds exclusively to the U4/U6 snRNP.  相似文献   

16.
M Cooper  L H Johnston    J D Beggs 《The EMBO journal》1995,14(9):2066-2075
The SDB23 gene of Saccharomyces cerevisiae was isolated in a search for high copy-number suppressors of mutations in a cell cycle gene, DBF2, SDB23 encodes a 21,276 Da protein with significant sequence similarity to characterized mammalian snRNP core proteins. Examination of multiple sequence alignments of snRNP core proteins with Sdb23p indicates that all of these proteins share a number of highly conserved residues, and identifies a novel motif for snRNP core proteins. Sdb23p is essential for cell viability and is required for nuclear pre-mRNA splicing both in vivo and in vitro. Extracts prepared from Sdb23p-depleted cells are unable to support splicing and have vastly reduced levels of U6 snRNA. The stability of U1, U2, U4 and U5 spliceosomal snRNAs is not affected by the loss of Sdb23p. Antibodies raised against Sdb23p strongly coimmunoprecipitate free U6 snRNA and U4/U6 base-paired snRNAs. These results establish that SDB23 encodes a novel U6 snRNA-associated protein that is essential for the stability of U6 snRNA. We therefore propose the more logical name USS1 (U-Six SnRNP) for this gene.  相似文献   

17.
The U5 snRNP plays an essential role in both U2- and U12-dependent splicing. Here, we have characterized a 52-kDa protein associated with the human U5 snRNP, designated U5-52K. Protein sequencing revealed that U5-52K is identical to the CD2BP2, which interacts with the cytoplasmic portion of the human T-cell surface protein CD2. Consistent with it associating with an snRNP, immunofluorescence studies demonstrated that the 52K protein is predominantly located in the nucleoplasm of HeLa cells, where it overlaps, at least in part, with splicing-factor compartments (or "speckles"). We further demonstrate that the 52K protein is a constituent of the 20S U5 snRNP, but is not found in U4/U6.U5 tri-snRNPs. Thus, it is the only 20S U5-specific protein that is not integrated into the tri-snRNP and resembles, in this respect, the U4/U6 di-snRNP assembly factor Prp24p/p110. Yeast two-hybrid screening and pulldown assays revealed that the 52K protein interacts with the U5-specific 102K and 15K proteins, suggesting that these interactions are responsible for its integration into the U5 particle. The N-terminal two-thirds of 52K interact with the 102K protein, whereas its C-terminal GYF-domain binds the 15K protein. As the latter lacks a proline-rich tract, our data indicate that a GYF-domain can also engage in specific protein-protein interactions in a polyproline-independent manner. Interestingly, the U5-102K protein has been shown previously to play an essential role in tri-snRNP formation, binding the U4/U6-61K protein. The interaction of 52K with a tri-snRNP bridging protein, coupled with its absence from the tri-snRNP, suggests it might function in tri-snRNP assembly.  相似文献   

18.
The spinal muscular atrophy disease gene product (SMN) is crucial for small nuclear ribonuclear protein (snRNP) biogenesis in the cytoplasm and plays a role in pre-mRNA splicing in the nucleus. SMN oligomers interact avidly with the snRNP core proteins SmB, -D1, and -D3. We have delineated the specific sequences in the Sm proteins that mediate their interaction with SMN. We show that unique carboxyl-terminal arginine- and glycine-rich domains comprising the last 29 amino acids of SmD1 and the last 32 amino acids of SmD3 are necessary and sufficient for SMN binding. Interestingly, SMN also interacts with at least two of the U6-associated Sm-like (Lsm) proteins, Lsm4 and Lsm6. Furthermore, the carboxyl-terminal arginine- and glycine-rich domain of Lsm4 directly interacts with SMN. This suggests that SMN also functions in the assembly of the U6 snRNP in the nucleus and in the assembly of other Lsm-containing complexes. These findings demonstrate that arginine- and glycine-rich domains are necessary and sufficient for SMN interaction, and they expand further the range of targets of the SMN protein.  相似文献   

19.
The U1 small nuclear ribonucleoprotein particle (snRNP)-specific 70K and A proteins are known to bind directly to stem-loops of the U1 snRNA, whereas the U1-C protein does not bind to naked U1 snRNA, but depends on other U1 snRNP protein components for its association. Focusing on the U1-70K and U1-C proteins, protein-protein interactions contributing to the association of these particle-specific proteins with the U1 snRNP were studied. Immunoprecipitation of complexes formed after incubation of naked U1 snRNA or purified U1 snRNPs lacking their specific proteins (core U1 snRNP) with in vitro translated U1-C protein, revealed that both common snRNP proteins and the U1-70K protein are required for the association of U1-C with the U1 snRNP. Binding studies with various in vitro translated U1-70K mutants demonstrated that the U1-70K N-terminal domain is necessary and sufficient for the interaction of U1-C with core U1 snRNPs. Surprisingly, several N-terminal fragments of the U1-70K protein, which lacked the U1-70K RNP-80 motif and did not bind naked U1 RNA, associated stably with core U1 snRNPs. This suggests that a new U1-70K binding site is generated upon association of common U1 snRNP proteins with U1 RNA. The interaction between the N-terminal domain of U1-70K and the core RNP domain was specific for the U1 snRNP; stable binding was not observed with core U2 or U5 snRNPs, suggesting essential structural differences among snRNP core domains. Evidence for direct protein-protein interactions between U1-specific proteins and common snRNP proteins was supported by chemical crosslinking experiments using purified U1 snRNPs. Individual crosslinks between the U1-70K and the common D2 or B'/B protein, as well as between U1-C and B'/B, were detected. A model for the assembly of U1 snRNP is presented in which the complex of common proteins on the RNA backbone functions as a platform for the association of the U1-specific proteins.  相似文献   

20.
26S蛋白酶体广泛分布于真核细胞中的胞质和胞核,主要是由20S核心复合物(coreparticle,CP)和19S调节复合物(regulatory particle,RP)组成,它负责细胞大多数蛋白质的降解,在几乎所有生命活动中具有关键的调控作用。26S蛋白酶体的组装是一个非常复杂且高度条理的过程,不同的分子伴侣,如PAC1-4、Ump1、p27、p28和s5b等,参与其中发挥识别及调节作用,以确保高效准确地完成蛋白酶体的组装。本文系统总结分析了20S核心复合物和19S调节复合物的组装过程及调控机制的最近研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号