首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We report the reconstruction and characterization of a hemicornea (epithelialized stroma), using primary human cells, for use in research and as an alternative to the use of animals in pharmacotoxicology testing. To create a stromal equivalent, keratocytes from human corneas were cultured in collagen–glycosaminoglycan–chitosan foams. Limbal stem cell-derived epithelial cells were seeded on top of these, giving rise to hemi-corneas. The epithelium appeared morphologically similar to its physiological counterpart, as shown by the basal cell expression of p63 isoforms including, in some cases, the stem cell marker p63ΔNα, and the expression of keratin 3 and 14-3-3σ in the upper cell layers. In addition, the cuboidal basal epithelial cells were anchored to a basement membrane containing collagen IV, laminin 5, and hemidesmosomes. In the stromal part, the keratocytes colonized the porous scaffold, formed a network of interconnecting cells, and synthesized an ultrastructurally organized extracellular matrix (ECM) containing collagen types I, V, and VI. Electron microscopy showed the newly synthesized collagen fibrils to have characteristic periodic striations, with diameters and interfibril spacings similar to those found in natural corneas. Compared to existing models for corneal pharmacotoxicology testing, this new model more closely approaches physiological conditions by including the inducing effects of mesenchyme and cell–matrix interactions on epithelial cell morphogenesis.  相似文献   

3.
Among the cellular models used in in vitro renal pharmacotoxicology, isolated kidney tubules, used as suspensions mainly of proximal tubules, offer important advantages. They can be prepared in large amounts under nonsterile conditions within 1–2 h; thus, it is possible to employ a great number of experimental conditions simultaneously and to obtain rapidly many experimental results. Kidney tubules can be prepared from the kidney of many animal species and also from the human kidney; given the very limited availability of healthy human renal tissue, it is therefore possible to choose the most appropriate species for the study of a particular problem encountered in man. Kidney tubules can be used for screening and prevention of nephrotoxic effects and to identify their mechanisms as well as to study the renal metabolism of xenobiotics. When compared with cultured renal cell, a major advantage of kidney tubules is that they remain differentiated. The main limitations of the use of kidney tubules in pharmacotoxicology are (1) the necessity to prepare them as soon as the renal tissue sample is obtained; (2) their limited viability, which is restricted to 2–3 h; (3) the inability to expose them chronically to a potential nephrotoxic drug; (4) the inability to study transepithelial transport; and (5) the uncertainty in the extrapolation to man of the results obtained using animal kidney tubules. These advantages and limitations of the use of human and animal kidney tubules in pharmacotoxicology are illustrated mainly by the results of experiments performed with valproate, an antiepileptic and moderately hyperammonemic agent. The fact that kidney tubules, unlike cultured renal cells, retain key metabolic properties is also shown to be of the utmost importance in detecting certain nephrotoxic effects.  相似文献   

4.
根据表达重组人组织因子基因工程菌的自身特点,在30L发酵罐上,通过控制发酵pH、葡萄糖浓度、诱导物磷酸浓度、搅拌速度及采用分批补料等方法,对重组人组织因子基因工程菌高密度发酵和高效表达的条件进行了研究。实验结果表明:诱导物终浓度低于0.1mmol/L,菌体密度OD60014,发酵周期10.5h,基因工程菌批发酵平均产量为37.41g/L,重组人组织因子表达量为6.56 mg/L。关键词:基因工程菌;高密度发酵;组织因子  相似文献   

5.
Obesity, defined as an excess of adipose tissue that adversely affects health, is a major cause of morbidity and mortality. However, to date, understanding the structure and function of human adipose tissue has been limited by the inability to visualize cellular components due to the innate structure of adipocytes, which are characterized by large lipid droplets. Combining the iDISCO and the CUBIC protocols for whole tissue staining and optical clearing, we developed a protocol to enable immunostaining and clearing of human subcutaneous white adipose tissue (WAT) obtained from individuals with severe obesity. We were able to perform immunolabelling of sympathetic nerve terminals in whole WAT and subsequent optical clearing by eliminating lipids to render the opaque tissue completely transparent. We then used light sheet confocal microscopy to visualize sympathetic innervation of human WAT from obese individuals in a three-dimensional manner. We demonstrate the visualization of sympathetic nerve terminals in human WAT. This protocol can be modified to visualize other structures such as blood vessels involved in the development, maintenance and function of human adipose tissue in health and disease.  相似文献   

6.
Recent evidence suggests that aberrant transglutaminase activity is associated with a wide variety of diseases. Tissue transglutaminase is the most widely distributed of the six well-characterized transglutaminases in humans. We describe a method for expressing hexahistidine-tagged human tissue transglutaminase in Escherichia coli BL21(DE3) using the pET-30 Ek/LIC expression vector. Purification of the expressed enzyme from suspensions of E. coli cells treated with CelLytic B Bacterial Cell Lysis/Extraction Reagent was accomplished by immobilized metal (Ni2+) affinity column chromatography. The procedure typically yields highly purified and highly active recombinant human tissue transglutaminase in about 1 day (about 0.6 mg/from a 1-liter culture).  相似文献   

7.
Sef is a transmembrane protein inhibiting FGF signaling.To determine the correlation of Sef with human diseases,Sef expression patterns were observed in cell lines and human cancer tissues.Western blot using anti-hSef antibodies showed that hSef,when expressed in Cos7 cells gave a molecular mass of 100 KD as compared with 80 KD in an in vitro translation assay suggesting occurrence of glycosylation at the potential N-linked glycosylation sites in the extracellular domain.Northern blot showed that hSef was mainly expressed in human kidney and testis.RT-PCR analysis showed a widely spread expression pattern in several cell lines.Immunohistochemical analysis revealed ahigh expression level of hSef in kidney,testis,and the corresponding carcinoma tissues.Results demonstrated that Sef might be up-regulated in the cancer tissues suggesting a possible role of Sef in pathophysiology of human diseases.  相似文献   

8.
This paper describes a survey undertaken to identify the extent of supply and use of human tissue in research by BATB affiliated tissue banks. Approximately one third of tissue banks registered with the BATB are currently supplying samples that are found to be unsuitable for clinical use, for research. These banks all obtain consent for research and all supply tissue for in-house research. Some tissue is transferred to other public and commercial institutions. A harmonised network approach is proposed as the way forward to meet the increasing demand for human tissue in research.  相似文献   

9.
Human mesenchymal stem cells (hMSCs) have great potential for therapeutic applications. A bioreactor system that supports long-term hMSCs growth and three-dimensional (3-D) tissue formation is an important technology for hMSC tissue engineering. A 3-D perfusion bioreactor system was designed using non-woven poly (ethylene terepthalate) (PET) fibrous matrices as scaffolds. The main features of the perfusion bioreactor system are its modular design and integrated seeding operation. Modular design of the bioreactor system allows the growth of multiple engineered tissue constructs and provides flexibility in harvesting the constructs at different time points. In this study, four chambers with three matrices in each were utilized for hMSC construct development. The dynamic depth filtration seeding operation is incorporated in the system by perfusing cell suspensions perpendicularly through the PET matrices, achieving a maximum seeding efficiency of 68%, and the operation effectively reduced the complexity of operation and the risk of contamination. Statistical analyses suggest that the cells are uniformly distributed in the matrices. After seeding, long-term construct cultivation was conducted by perfusing the media around the constructs from both sides of the matrices. Compared to the static cultures, a significantly higher cell density of 4.22 x 10(7) cell/mL was reached over a 40-day culture period. Cellular constructs at different positions in the flow chamber have statistically identical cell densities over the culture period. After expansion, the cells in the construct maintained the potential to differentiate into osteoblastic and adipogenic lineages at high cell density. The perfusion bioreactor system is amenable to multiple tissue engineered construct production, uniform tissue development, and yet is simple to operate and can be scaled up for potential clinical use. The results also demonstrate that the multi-lineage differentiation potential of hMSCs are preserved even after extensive expansion, thus indicating the potential of hMSCs for functional tissue construct development. The system has important applications in stem cell tissue engineering.  相似文献   

10.
Sef is a transmembrane protein inhibiting FGF signaling. To determine the correlation of Sef with human diseases, Sef expression patterns were observed in cell lines and human cancer tissues. Western blot using anti-hSef antibodies showed that hSef, when expressed in Cos7 cells gave a molecular mass of 100 KD as compared with 80 KD in an in vitro translation assay suggesting occurrence of glycosylation at the potential N-linked glycosylation sites in the extracellular domain. Northern blot showed that hSef was mainly expressed in human kidney and testis. RT-PCR analysis showed a widely spread expression pattern in several cell lines. Immunohistochemical analysis revealed a high expression level of hSef in kidney, testis, and the corresponding carcinoma tissues. Results demonstrated that Sef might be up-regulated in the cancer tissues suggesting a possible role of Sef in pathophysiology of human diseases. __________ Translated from Chinese Journal of Biochemistry and Molecular Biology, 2005, 21 (2) [译自: 中国生物化学与分子生物学报, 2005,21(2)]  相似文献   

11.
Human tissue kallikrein, a trypsin-like serine protease involved in blood pressure regulation and inflammation processes, was expressed in a deglycosylated form at high levels in Pichia pastoris, purified, and crystallized. The crystal structure at 2.0 A resolution is described and compared with that of porcine kallikrein and of other trypsin-like proteases. The active and S1 sites (nomenclature of Schechter I, Berger A, 1967, Biochem Biophys Res Commun 27:157-162) are similar to those of porcine kallikrein. Compared to trypsin, the S1 site is enlarged owing to the insertion of an additional residue, cis-Pro 219. The replacement Tyr 228 --> Ala further enlarges the S1 pocket. However, the replacement of Gly 226 in trypsin with Ser in human tissue kallikrein restricts accessibility of substrates and inhibitors to Asp 189 at the base of the S1 pocket; there is a hydrogen bond between O delta1Asp189 and O gammaSer226. These changes in the architecture of the S1 site perturb the binding of inhibitors or substrates from the modes determined or inferred for trypsin. The crystal structure gives insight into the structural differences responsible for changes in specificity in human tissue kallikrein compared with other trypsin-like proteases, and into the structural basis for the unusual specificity of human tissue kallikrein in cleaving both an Arg-Ser and a Met-Lys peptide bond in its natural protein substrate, kininogen. A Zn+2-dependent, small-molecule competitive inhibitor of kallikrein (Ki = 3.3 microM) has been identified and the bound structure modeled to guide drug design.  相似文献   

12.
13.
Summary The effect of fructose as a substitute for glucose in cell culture media was investigated in human skin fibroblast and liver cell cultures. Cells were grown for between 2 and 10 days in identical flasks in four different media, containing 5.5, mmol·1−1 and 27.5 mmol·I−1 glucose and fructose, respectively. In the presence of fructose, cell growth was stimulated, but less in liver cells than fibroblasts. At Day 6, increases were observed in [3H]thymidine incorporation, protein levels, and amino acid consumption, and a reduction was noted in ATP levels. In media containing 5.5, mmol·1−1 glucose or fructose, consumption of fructose was four times lower than that of glucose at Day 3 and did not rise until Day 6. In fructose media, the lactate production was very low (four to five times less than that of glucose) and the pH values were always higher. Some findings were different for the fibroblasts and liver cells, owing to the specific characteristics of these two cell types in culture; this applied especially to the effects of glucose and fructose concentrations of 27.5 mmol·1−1. Several possible explanation for the stimulation of cell growth in fructose medium were discussed. This work was supported by grants for the Institut National de la Santé et de la Recherche Médicale (ATP 82-79-114) and the Unité d'Enseignement et de Recherche, Le Kremlin-Bicêtre, Université Paris-Sud (C. R. 848).  相似文献   

14.
For clinical application of tissue engineering strategies, the use of animal-derived serum in culture medium is not recommended, because it can evoke immune responses in patients. We previously observed that human platelet-lysate (PL) is favourable for cell expansion, but generates weaker tissue as compared to culture in foetal bovine serum (FBS). We investigated if human serum (HS) is a better human supplement to increase tissue strength. Cells were isolated from venous grafts of 10 patients and expanded in media supplemented with PL or HS, to determine proliferation rates and expression of genes related to collagen production and maturation. Zymography was used to assess protease expression. Collagen contraction assays were used as a two-dimensional (2D) model for matrix contraction. As a prove of principle, 3D tissue culture and tensile testing was performed for two patients, to determine tissue strength. Cell proliferation was lower in HS-supplemented medium than in PL medium. The HS cells produced less active matrix metallo-proteinase 2 (MMP2) and showed increased matrix contraction as indicated by gel contraction assays and 3D-tissue culture. Tensile testing showed increased strength for tissues cultured in HS when compared to PL. This effect was more pronounced if cells were sequentially cultured in PL, followed by tissue culture in HS. These data suggest that sequential use of PL and HS as substitutes for FBS in culture medium for cardiovascular tissue engineering results in improved cell proliferation and tissue mechanical properties, as compared to use of PL or HS apart.  相似文献   

15.
Suemori H 《Human cell》2006,19(2):65-70
Embryonic stem (ES) cell lines, which are derived from the inner cell mass of blastocysts, proliferate indefinitely in vitro, retaining their potency to differentiate into various cell types derived from all of the three embryonic germ layers: the ectoderm, mesoderm and endoderm. Establishment of human ES cell lines in 1998 has indicated the great potential of ES cells for applications in medical research and other purposes such as cell transplantation therapy. Careful assessment of safety and effectiveness using proper animal models is required before such therapies can be attempted on human patients. Monkey ES cell lines provide valuable models for such research.  相似文献   

16.
Summary Liver connective tissue cells (LCTC) isolated from patients with fibrotic livers have morphological and biochemical characteristics of myofibroblasts. We have examined the proliferation of LCTC derived from normal livers and from livers with fibrosis of different etiologies, as well as proliferation of skin fibroblasts. We have compared proliferation rates in the presence of fresh human serum and heat-inactivated serum. While skin fibroblast and LCTC from normal liver showed no difference, proliferation of LCTC from fibrotic livers was markedly decreased in the presence of heat-inactivated serum. We demonstrate that the native complement component C1 is a factor involved in the induction of DNA synthesis and proliferation of LCTC isolated from fibrotic livers. We propose that native C1, acting probably in cooperation with other growth factors, is involved in the expansion of connective tissue cells during the development of liver fibrosis.  相似文献   

17.
Distribution of AQP2 and AQP3 water channels in human tissue microarrays   总被引:5,自引:0,他引:5  
SummaryThe objective of this investigation was to use semi-quantitative immunohistochemistry to determine the distribution and expression levels of AQP2 and AQP3 proteins in normal human Tissue MicroArrays. Expression of the vasopressin regulated AQP2 was observed in a limited number of tissues. AQP2 was prominent in the apical and subapical plasma membranes of cortical and medullary renal collecting ducts. Surprisingly, weak AQP2 immunoreactivity was also noted in pancreatic islets, fallopian tubes and peripheral nerves. AQP2 was also localized to selected parts of the central nervous system (ependymal cell layer, subcortical white matter, hippocampus, spinal cord) and selected cells in the gastrointestinal system (antral and oxyntic gastric mucosa, small intestine and colon). These findings corroborate the restricted tissue distribution of AQP2. AQP3 was strongly expressed in many of the human tissues examined particularly in basolateral membranes of the distal nephron (medullary collecting ducts), distal colon, upper airway epithelia, transitional epithelium of the urinary bladder, tracheal, bronchial and nasopharyngeal epithelium, stratified squamous epithelial cells of the esophagus, and anus. AQP3 was moderately expressed in basolateral membranes of prostatic tubuloalveolar epithelium, pancreatic ducts, uterine endometrium, choroid plexus, articular chondrocytes, subchondral osteoblasts and synovium. Low AQP3 levels were also detected in skeletal muscle, cardiac muscle, gastric pits, seminiferous tubules, lymphoid vessels, salivary and endocrine glands, amniotic membranes, placenta and ovary. The abundance of basolateral AQP3 in epithelial tissues and its expression in many non-epithelial cells suggests that this aquaglyceroporin is a major participant in barrier hydration and water and osmolyte homeostasis in the human body.http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html, NCBI AceView, July 2003  相似文献   

18.

Background  

Cell lines are widely used to monitor drug pharmacokinetics and pharmacodynamics and to investigate a number of biochemical mechanisms. However, little is known about the genetic profile of these in vitro models.  相似文献   

19.
Recent advances in human embryonic stem cell (hESC) biology now offer an alternative cell source for tissue engineers, as these cells are capable of proliferating indefinitely and differentiating to many clinically relevant cell types. Novel culture methods capable of exerting spatial and temporal control over the stem cell microenvironment allow for more efficient expansion of hESCs, and significant advances have been made toward improving our understanding of the biophysical and biochemical cues that direct stem cell fate choices. Effective production of lineage specific progenitors or terminally differentiated cells enables researchers to incorporate hESC derivatives into engineered tissue constructs. Here, we describe current efforts using hESCs as a cell source for tissue engineering applications, highlighting potential advantages of hESCs over current practices as well as challenges which must be overcome.  相似文献   

20.
Summary Data from our in vitro studies indicate a new source of prolactin (PRL)-like activity, normal human connective tissue. Fascial cells from primary culture and subsequent passages produced an extracellular antigen which specifically reacted in a radioimmunoassay RIA developed to detect human pituitary PRL. An initial peak of first surge of fascial PRL-like activity occurred between 4 and 15 d in primary culture. Ibuprofen, cytotoxic levels of 0.01% azide, or 7.5 mM EDTA and medium lacking serum [fetal bovine serum (FBS)] significantly (P≤0.05) reduced PRL-like activity levels, whereas female steroids, 257 to 342 milliosmolarity, 1 to 3.6 mg/ml glucose, 2 to 20% FBS, and dialyzed FBS (MWCO ⊂) 1 kDa) were without effect. Optimum production of PRL-like activity occurred at pH 7.3. A second surge began after 18 d and continued until passage indicating that perhaps two populations of cells produced PRL-like activity in primary culture. Production of PRL-like activity by cells from early passages (1 and 2) became detectable at confluence, was serum-dependent, showed two patterns (tonic, rising to plateau), and averaged 3.2 fg·cell−1·3 d−1 feed interval. Cells from late passages showed morphologic damage from repetitive trypsinization, aging, and reduced production of PRL-like activity with aberrant production pattern. Production of PRL-like activity was maintained in an unusual long-term culture. these in vitro studies demonstrate the most recently recognized and ubiquitous source of human extrapituitary PRL or PRL-like activity, normal connective tissue (fascia). A portion of this paper was presented at the 33rd Annual Meeting of the Society for Gynecologic investigation, Toronto, Ontario, Canada, 19–22 March 1986. This work was supported in part by grant HD21883 (to D. H. R.) from the National Institutes of Health, Bethesda, MD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号