首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of two differentiation antigens, rsa 4.2 and rsa 3.1, were examined. Both appear on the cell surface early in differentiation, but they differ with respect to their cell-type specificity. rsa 4.2 appears 1-2 h after differentiation has begun and is present on all cells during all stages of differentiation. In contrast, rsa 3.1 appears after 1-2 h on all aggregating amebae and later becomes restricted to prestalk cells. The pattern of regulation of rsa 3.1 indicates that this prestalk antigen appears on all cells early in differentiation but disappears in cells that differentiate along the prespore pathway. As a result, only cells in the anterior of migrating slugs carry this antigen. Predictions of two competing models of Dictyostelium pattern formation, i.e., position-dependent differentiation and random, position-independent differentiation, were tested by flow cytometry and immunochemical staining of sections of cells at the mound and mound-with-tip stages. Our results do not rule out either model, although they are incompatible with the simplest interpretation of the model for position-independent differentiation. The results clearly indicate that cells that ultimately differentiate along the spore pathway pass through an earlier cell state that includes the presence of a prestalk cell-surface antigen identified as rsa 3.1.  相似文献   

2.
Although positional information, conveyed by morphogen gradients, is a widely accepted way of forming patterns during development, an alternative method is conceivable, based on the intermingled differentiation of cells with different fates, followed by their sorting into discrete pattern elements. It has been proposed that Dictyostelium prestalk and prespore cells behave in this way at the mound stage of development. However, it has been difficult to conclusively demonstrate that they initially differentiate intermingled, because rapid cell movement within the mound makes it impossible to be sure where prestalk and prespore cells originate. We have taken a novel approach to address this problem by blocking cell movement at different stages in development, using the actin-depolymerizing drug, latrunculin-A. Prestalk and prespore cells differentiate with essentially normal efficiency and timing in such paralyzed structures. When movement is blocked sufficiently early, the major cell types all subsequently differentiate at scattered positions throughout the aggregate, and even in the streams leading into it. Our work strongly supports the idea that the prestalk/prespore pattern in Dictyostelium forms without positional information and demonstrate that latrunculin-A may provide a useful tool for the investigation of patterning in other organisms.  相似文献   

3.
We have studied the expression of c-src and c-abl proto-oncogenes in early mouse development using embryonal carcinoma (EC) cells as a model system, and compared this to the expression pattern in adult tissues. In all three EC lines tested (F9, PC13, and P19), c-src and c-abl mRNA can be detected. When F9 and PC13 are induced to differentiate they form endodermal cells characteristic of the early embryo, and we found no change in c-src or c-abl expression. In contrast, P19 cells showed increased levels of both mRNAs both mRNAs when induced to differentiate along the neural pathway by retinoic acid, whereas differentiation along the muscle pathway by dimethyl sulfoxide resulted in decreased levels of c-abl expression. These results are consistent with the idea that c-src and c-abl have important functions in the differentiation of the cell types of the later embryo, but not in those of the early embryo.  相似文献   

4.
When cells dissociated from Dictyostelium discoideum slugs were cultured in roller tubes, they formed agglomerates in which prestalk cells were initially dispersed but soon sorted out to the center and then moved to the edge to reconstitute the prestalk/prespore pattern. To examine the mechanism of sorting out, individual prestalk cells were traced by a videotape recorder. The radial component of the rate of movement toward the center of the presumptive prestalk region was calculated. Prestalk cells did not move randomly, but rather directionally toward the center. Their movement was pulsatile, with a period of ca. 15 min, and accompanied by occasional formation of cell streams, thus resembling the movement observable during cell aggregation. These results favor the idea that prestalk cells sort out to the prestalk region due to differential chemotaxis rather than differential adhesiveness. After formation of the prestalk/prespore pattern, the prestalk region rotated along the circumference of the agglomerates. This appears comparable to migration of slugs on the substratum, the rate of rotation being similar to that of slug migration. To examine the processes of pattern formation during development, washed vegetative cells were cultured in roller tubes. Prespore cells identified by antispore immunoglobulin initially appeared randomly within the agglomerates, but then nonprespore cells accumulated in the center and finally moved to the edge to establish the prestalk/prespore pattern, the processes being similar to those of pattern reconstruction with differentiated prestalk and prespore cells.  相似文献   

5.
Differentiation of F9 embryonal carcinoma cells   总被引:1,自引:0,他引:1  
We found that monolayer cultures of F9 cells induced to differentiate with trans-retinoic acid (RA) contain two major subpopulations of cells. These two cell types can be distinguished by their cellular morphology, their pattern of laminin accumulation, and their ability to undergo further differentiation in response to N6-O2-dibutyryl adenosine 3':5' cyclic monophosphoric acid (dBcAMP). Furthermore, the developmental pathway induced by RA appears to lead to two alternative pathways, and differentiation at the branch point is either directly or indirectly controlled by cAMP. Differentiation along one branch of this pathway can be induced by 5-bromodeoxyuridine, whereas differentiation along an unrelated pathway is induced by N'-N'-dimethylacetamide. In all cases, differentiation is closely paralleled by suppression of the tumorigenic phenotype, indicating that these two processes are tightly linked and probably share a common step.  相似文献   

6.
Wang B  Kuspa A 《Eukaryotic cell》2002,1(1):126-136
Dictyostelium amoebae accomplish a starvation-induced developmental process by aggregating into a mound and forming a single fruiting body with terminally differentiated spores and stalk cells. culB was identified as the gene disrupted in a developmental mutant with an aberrant prestalk cell differentiation phenotype. The culB gene product appears to be a homolog of the cullin family of proteins that are known to be involved in ubiquitin-mediated protein degradation. The culB mutants form supernumerary prestalk tips atop each developing mound that result in the formation of multiple small fruiting bodies. The prestalk-specific gene ecmA is expressed precociously in culB mutants, suggesting that prestalk cell differentiation occurs earlier than normal. In addition, when culB mutant cells are mixed with wild-type cells, they display a cell-autonomous propensity to form stalk cells. Thus, CulB appears to ensure that the proper number of prestalk cells differentiate at the appropriate time in development. Activation of cyclic AMP-dependent protein kinase (PKA) by disruption of the regulatory subunit gene (pkaR) or by overexpression of the catalytic subunit gene (pkaC) enhances the prestalk/stalk cell differentiation phenotype of the culB mutant. For example, culB pkaR cells form stalk cells without obvious multicellular morphogenesis and are more sensitive to the prestalk O (pstO) cell inducer DIF-1. The sensitized condition of PKA activation reveals that CulB may govern prestalk cell differentiation in Dictyostelium, in part by controlling the sensitivity of cells to DIF-1, possibly by regulating the levels of one or more proteins that are rate limiting for prestalk differentiation.  相似文献   

7.
Abstract. Vital staining of differentiating slime mold cells of Dictyostelium discoideum was studied, with reference to autophagic vacuoles they contain. By microscopically comparing within individual cells neutral-red staining granules with acid phosphatase positive granules, we identified vitally stained granules as autophagic vacuoles. At the early stages of differentiation, although the majority of cells were strongly acid phosphatase positive and there was little difference in the number of autophagic vacuoles between prestalk and prespore cells, only the former (about 25% of the total) were strongly vitally stained. It was thus concluded that autophagic vacuoles of prestalk cells are intensely stained with neutral-red while those of prespore cells are only weakly stained. Strong vital staining of prestalk cells was bleached by lysosomotropic agents such as NH4Cl, methylamine, and chloroquine which are known to increase intra-lysosomal pH. This suggests that autophagic vacuoles of prestalk cells are strongly stained because of their acidity.  相似文献   

8.
Developmental decisions in Dictyostelium discoideum.   总被引:5,自引:0,他引:5       下载免费PDF全文
A few hours after the onset of starvation, amoebae of Dictyostelium discoideum start to form multicellular aggregates by chemotaxis to centers that emit periodic cyclic AMP signals. There are two major developmental decisions: first, the aggregates either construct fruiting bodies directly, in a process known as culmination, or they migrate for a period as "slugs." Second, the amoebae differentiate into either prestalk or prespore cells. These are at first randomly distributed within aggregates and then sort out from each other to form polarized structures with the prestalk cells at the apex, before eventually maturing into the stalk cells and spores of fruiting bodies. Developmental gene expression seems to be driven primarily by cyclic AMP signaling between cells, and this review summarizes what is known of the cyclic AMP-based signaling mechanism and of the signal transduction pathways leading from cell surface cyclic AMP receptors to gene expression. Current understanding of the factors controlling the two major developmental choices is emphasized. The weak base ammonia appears to play a key role in preventing culmination by inhibiting activation of cyclic AMP-dependent protein kinase, whereas the prestalk cell-inducing factor DIF-1 is central to the choice of cell differentiation pathway. The mode of action of DIF-1 and of ammonia in the developmental choices is discussed.  相似文献   

9.
In Dictyostelium discoideum stalk cell formation is induced by cyclic AMP and differentiation-inducing factor (DIF) when cells are plated in in vitro monolayers (Kay et al., 1979, Differentiation 13: 7-14). The in vivo developmental stages at which cells became independent of these factors were determined. Independence was defined as the stage at which dispersed cells no longer required the factors for stalk cell formation in low density monolayers. Cyclic AMP independent cells were first detected at around 12 hr of development, a time that corresponds to the transition between the tipped aggregate and the first finger stages. In contrast cells did not become independent of DIF until late culmination. The prestalk cell-specific isozyme acid phosphatase II and a stalk cell-specific 41,000 Mr antigen (ST 41) were expressed during differentiation in low density monolayers in the presence of both cyclic AMP and DIF, but neither component was expressed in the presence of cyclic AMP alone. This result implies that DIF is essential for both prestalk and stalk cell formation. The two components were expressed within 2 hr of each other during differentiation in vitro, whereas during development in vivo acid phosphatase II was first detected at the first finger stage and ST 41 was first detected during late culmination, 8-12 hr later. These contrasting results suggest that the conversion of prestalk cells to stalk cells is unrestrained in monolayers, following directly after prestalk cell induction, but restrained in vivo until the culmination stage. This interpretation is consistent with the finding that cells become independent of DIF early during in vitro differentiation (A. Sobolewski, N. Neave, and G. Weeks, 1983, Differentiation 25, 93-100), but do not become independent of DIF until the culmination stage when differentiating in vivo.  相似文献   

10.
Taking advantage of the fact that differentiation of the prespore cell of Dictyostelium discoideum is characterized by synthesis of a prespore specific antigen, the process of its differentiation during the course of morphogenesis was quantitatively studied by determining the proportion of prespore cells and their cellular contents of the antigen, using the method of microfluorometry in combination with immunocytochemistry with antispore serum. The cells synthesizing the antigen became first detectable in the early aggregation center which was about to form a papilla. As the papilla elongated, the number of prespore cells rapidly increased up to the stationary level (70–80% of total cells) before completion of slug formation. During the process antigenic contents of prespore cells were gradually increased and leveled off in the early migration stage. When culmination was induced, antigenic contents were markedly increased to the maximum, which was followed by a sudden decrease immediately before spore formation. On the other hand, the proportions of prespore to total cells were kept constant at the stationary level all through the migration and culmination stages, in spite of a persistent decrease during culmination in the total number of cells due to continuous differentiation of the prestalk into the mature stalk cells. These results were discussed in relation to possible mechanisms of differentiation in this organism.  相似文献   

11.
It has been shown that, in Dictyostelium discoideum, conversion of prestalk cells to prespore cells in suspension cultures is inhibited by coexisting prespore cells. To examine whether the inhibition of conversion requires direct cell contact or is mediated by substances secreted by the cells, prestalk cells and prespore cells were incubated in shaken suspension, separated from each other by a dialysis membrane, and conversion of the prestalk cells to prespore cells scored after 24 h. Prestalk-to-prespore conversion was significantly inhibited if the density of the prespore cells was sufficiently high. In contrast, prestalk cells had little influence on prestalk-to-prespore conversion. Media conditioned by prespore cells, but not by prestalk cells, also inhibited the conversion of prestalk cells. Adenosine, propionate, diethylstilboestrol and differentiation inducing factor (DIF), all of which are known to influence the prestalk/prespore differentiation, were examined for their effects on prestalk-to-prespore conversion. Among these, all except adenosine significantly inhibited the conversion. Based on these results, possible mechanisms for maintenance of the constant cell-type ratio in D. discoideum slugs were discussed.  相似文献   

12.
By the use of a prestalk- and stalk-specific monoclonal antibody, production of prestalk antigen was examined with non-glucose grown [G(-)] and glucose grown [G(+)] cells of Dictyostelium discoideum AX2. Unlike wild type (NC4), some growth phase cells of AX2 were reactive with the antibody. However, G(-) cells contained much more antigen than G(+) cells and the difference between the two remained during the preaggregation period. Besides glucose, the addition of metabolizable, but not nonmetabolizable sugars to both growth phase and preaggregation cells suppressed the production of the prestalk antigen on the one hand and stimulated the accumulation of glycogen on the other hand. When mixed, G(-) cells which produced more prestalk antigen during the preaggregation period remained prestalk cells after aggregation, while G(+) cells which produced less antigen were converted to prespore cells. G(+) cells collected at the stationary phase [G(+)st] were stronger in prestalk sorting tendency than G(+) cells but weaker than G(-) cells. The prestalk antigen content of G(+)st cells prior to aggregation was an intermediate between those of G(-) and G(+) cells. These lead to the conclusion that the prestalk antigen content of preaggregation cells reflect the tendency of the cells toward either prestalk or prespore differentiation after aggregation.  相似文献   

13.
Upon starvation, Dictyostelium amoebae aggregate together and then differentiate into either the stalk or spore cells that, respectively, form the stalk and sorus of the fruiting body. During differentiation, the prestalk and prespore cells become spatially segregated in a clearly defined developmental pattern. Several low molecular weight molecules that influence cell type determination during in vitro differentiation have been identified. The possible role of these molecules as morphogens, responsible for the formation of the developmental pattern, is discussed.  相似文献   

14.
At least three distinct types of cell arise from a population of similar amoebae during Dictyostelium development: prespore, prestalk A and prestalk B cells. We report evidence suggesting that this cellular diversification can be brought about by the combinatorial action of two diffusible signals, cAMP and DIF-1. Cells at different stages of normal development were transferred to shaken suspension, challenged with various combinations of signal molecules and the expression of cell-type-specific mRNA markers measured 1-2 h later. pDd63, pDd56 and D19 mRNAs were used for prestalk A, prestalk B and prespore cells respectively. We find the following results. (1) Cells first become responsive to DIF-1 for prestalk A differentiation and to cAMP for prespore differentiation at the end of aggregation, about 2 h before these cell types normally appear. (2) At the first finger stage of development, when the rate of accumulation of the markers is maximal, the expression of each is favoured by a unique combination of effectors: prespore differentiation is stimulated by cAMP and inhibited by DIF-1; prestalk A differentiation is stimulated by both cAMP and DIF-1 and prestalk B differentiation is stimulated by DIF-1 and inhibited by cAMP. (3) Half-maximal effects are produced by 10-70 nM DIF-1, which is in the physiological range. (4) Ammonia and adenosine, which can affect cell differentiation in other circumstances, have no significant pathway-specific effect in our conditions. These results suggest that cell differentiation could be brought about in normal development by the localized action of cAMP and DIF-1.  相似文献   

15.
In submerged monolayer culture, Dictyostelium cells can differentiate into prespore and prestalk cells at high cell densities in response to cAMP but not at low cell densities. However, cells at low densities will differentiate in medium taken from developing cells starved at a high density. The putative factor in the medium was designated CMF for conditioned medium factor (Mehdy and Firtel, Molec. cell. Biology 5, 705-713, 1985). In this report, we size-fractionate conditioned medium and show that the activity that allows low density cells to differentiate can be separated into high and low Mr (relative molecular mass) fractions. Interestingly, the two fractions both have the same activity and do not need to be combined to allow differentiation. The large conditioned medium factor is a protein, as determined by trypsin sensitivity, that can be purified to a single 80 x 10(3) Mr band on a silver-stained SDS-polyacrylamide gel, and has CMF activity at a concentration of approximately 4 pM (0.3 ng ml-1). Our results suggest that CMF is a secreted factor that functions in vivo as an indicator of cell density in starved cells. At high cell densities, the concentration of CMF is sufficient to enable cells to enter the multicellular stage of the developmental cycle. When present below a threshold concentration, cells do not initiate the expression of genes required for early development. This factor plays an essential role in the regulatory pathway necessary for cells to obtain the developmental competence to induce prestalk and prespore gene expression in response to cAMP.  相似文献   

16.
GSK3 is a multifunctional regulator of Dictyostelium development   总被引:1,自引:0,他引:1  
Glycogen synthase kinase 3 (GSK3) is a central regulator of metazoan development and the Dictyostelium GSK3 homologue, GskA, also controls cellular differentiation. The originally derived gskA-null mutant exhibits a severe pattern formation defect. It forms very large numbers of pre-basal disc cells at the expense of the prespore population. This defect arises early during multicellular development, making it impossible to examine later functions of GskA. We report the analysis of a gskA-null mutant, generated in a different parental strain, that proceeds through development to form mature fruiting bodies. In this strain, Ax2/gskA-, early development is accelerated and slug migration greatly curtailed. In a monolayer assay of stalk cell formation, the Ax2/gskA- strain is hypersensitive to the stalk cell-inducing action of DIF-1 but largely refractory to the repressive effect exerted by extracellular cAMP. During normal development, apically situated prestalk cells express the ecmB gene just as they commit themselves to stalk cell differentiation. In the Ax2/gskA- mutant, ecmB is expressed throughout the prestalk region of the slug, suggesting that GskA forms part of the repressive signalling pathway that prevents premature commitment to stalk cell differentiation. GskA may also play an inductive developmental role, because microarray analysis identifies a large gene family, the 2C family, that require gskA for optimal expression. These observations show that GskA functions throughout Dictyostelium development, to regulate several key aspects of cellular patterning.  相似文献   

17.
A study of the incorporation of l-[6-3H]fucose and d-[6-3H]glucosamine hydrochloride was conducted during the development of the cellular slime mold Dictyostelium discoideum 1-H. Autoradiographs revealed that pulse-labeled vegetative amoebae incorporated [3H]fucose intracytoplasmically within 15 min. The majority of the cells had randomly scattered silver grains but the remainder were distinguished by a dense localized labeling which suggested that oligo or polysaccharide synthesis was occurring. The localized pattern of labeling attributed to active synthesis declines at aggregation and early conus formation. As the pseudoplasmodium makes the developmental transition from the conus to the culmination stages the localized pattern of [3H]fucose labeling was restricted to the prespore cells while the prestalk cells were devoid of label. Prespore vacuoles were not present at the onset of this transition and consequently [3H]fucose incorporation occurred in the cells prior to their differentiation into prespore cells. In contrast to cells composing earlier stages, mature spores exhibited [3H]fucose-containing substances at the cell surface. At appropriate stages certain cells actively synthesize slime and stalk sheath which were labeled with either [3H]fucose or [3H]glucosamine.Prestalk isolates were obtained by transecting migrating slugs. [3H]Fucose was incorporated within 10 min among the basal cells of the isolate in the localized pattern typically found in prespore cells. The incorporation of [3H]fucose occurred prior to prespore differentiation as certain preparations were devoid of prespore vacuoles. Prespore isolates differentiate prestalk cells which have lost the capacity to incorporate [3H]fucose. This investigation suggests that cell contacts and interactions may affect the incorporation of [3H]fucose.  相似文献   

18.
Dictyostelium discoideum (Dd) 1-H vegetative amoebae exposed to cAMP differentiate into mature stalk cells within 48 h [6]. It was of interest to monitor the patterns of glycoprotein synthesis in the amoebae during the first 5 h of exposure to cAMP and phosphate buffer (PB) controls. Following the exposure period the amoebae were labeled with -[6-3H]fucose. It was determined by both silver grain counts of autoradiographs and scintillation spectroscopy that within minutes cAMP effects an inhibition of [3H]fucose incorporation. However, by 5 h of exposure both experimentals and controls lose a major amount of their labeling capacity based upon the initial PB control value. Vegetative amoebae exposed to cAMP mimics the sparse labeling found in prestalk cells. Prestalk cells synthesize cellulose as a result of cAMP-induced gluconeogenesis and consequently glycoprotein synthesis is reduced. Cellular interactions promoted by cAMP appears to initiate prestalk cell differentiation during the pre-aggregation phase of development. This event is accompanied by a loss in the ability of the aggregating cells to synthesize glycoprotein.  相似文献   

19.
This paper describes a fast, non-destructive method for the separation of large quantities of Dictyostelium discoideum cells into density classes at all stages of development. The cells were separated by low-speed centrifugation on preformed, linear Percoll density gradients. On these gradients, cells at all developmental stages showed a unimodal variation in density and this variation in density rapidly increased during the first hours of development. The density was affected by the amount of salt present in the gradient medium, which suggests that it is regulated by a permeability property of the cells. Slug cells showed a unimodal variation in density and did not form bands corresponding to the cell types. However, were able to isolate density fractions which showed a good enrichment of prespore and prestalk cells: 95% and 90%, respectively. Preaggregation cells separated on density gradients yielded fractions which contained different amounts of three developmentally regulated enzymes. Hence, cells at this stage are already heterogeneous in their enzymatic content. Sorting experiments showed a strong correlation between density and developmental fate; the least dense (light) cells preferentially became prestalk cells, and the dense (heavy) cells became prespore cells. This was found for cells at all developmental stages; even vegetative-stage cells showed considerable heterogeneity with regard to density, which was related to their developmental fate. The light cells become prestalk cells, and the heavy cells become prespore cells. Vegetative cells from the various density fractions differed in their DNA content and temporal onset of mitotic activity when resuspended in medium. Therefore, we suggest that the separation of vegetative cells on density gradients results in a separation of cells into cell-cycle phases. Hence, there appear to be cell-cycle-linked differences among vegetative cells, which bias their differentiation towards either the spore or stalk pathway.  相似文献   

20.
We describe the alterations of vimentin intermediate filament (IF) expression in human hemopoietic committed precursors as they differentiate into mature cells of the erythroid, granulomonocytic, megacaryocytic and lymphoid lineages. A double labelling fluorescence procedure was used to identify hemopoietic cells expressing lineage-specific antigens and to decorate the vimentin IF network. Whereas very early progenitors from each lineage expressed vimentin, the density and organization of the network differed strikingly as the cells matured on a given pathway. T lymphocytes, monocytes and granulocytes retained vimentin expression at all stages of maturation. In contrast, megakaryoblasts lose vimentin expression at a very early stage of differentiation, erythroblasts at variable steps between the committed erythroid cell and the red cell. Finally, B lymphocytes tend to lose vimentin expression later when they mature into plasma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号