首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ATP-dependent Ca2+ uptake by brain microsomes was classified into two fractions according to the sensitivity to saponin. Properties of each fraction of Ca2+ uptake were examined and compared with those of inside-out membrane vesicles of erythrocyte and cardiac sarcoplasmic reticulum. The concentration of saponin for 50% inhibition (IC50) of major saponin-sensitive Ca2+ uptake was 11 micrograms/ml, and this uptake was enhanced by calmodulin. The minor saponin-insensitive Ca2+ uptake fraction (IC50; 90 micrograms/ml) was not affected by calmodulin but was enhanced by oxalate or 0.1 M KCl. The IC 50 of saponin for inside-out membrane vesicles of erythrocyte and cardiac sarcoplasmic reticulum was 11.3 and 114.8 micrograms/ml, respectively. A characteristic ring-like saponin-cholesterol micellar structure was observed electron microscopically in most membrane vesicles of brain microsomes and erythrocyte membrane vesicles but not in the cardiac sarcoplasmic reticulum. These observations indicate that saponin-sensitive and insensitive Ca2+ uptake was derived from plasma membranes and endoplasmic reticulum, respectively. Saponin proved useful for distinguishing the Ca2+ transport activity of plasma membrane from the Ca2+ uptake of other cellular organelles in the membrane preparations.  相似文献   

2.
Abstract: The subcellular distribution in rat brain cortex of six synaptic membrane antigens (56K, 58K, 62K, 63K, 64K, 66K) was studied by rocket immunoelectrophoresis, using antiserum to a highly purified synaptic plasma membrane fraction. Initial analysis of the insoluble portion of subcellular fractions showed that these antigens were also present in smooth microsomes, rough microsomes, and synaptic vesicles; that only traces were present in synaptic junctions; and that none was present in nuclei, mitochondria, and myelin. A trace amount of activity was also present in synaptic vesicle cytosol, but none in whole brain cytosol. Quantitative measurements of synaptic plasma membranes, smooth microsomes, and synaptic vesicles showed that all six antigens were present in synaptic plasma membranes and smooth microsomes, but that the 66K antigen was absent from synaptic vesicles. The 56K, 58K, 62K, 63K, and 64K antigens were present in highest concentration in synaptic plasma membranes, whereas the 66K antigen content was highest in smooth microsomes. Only the 58K, 62K, and 63K antigens were detectable in the membrane fraction of whole brain. Their enrichments in synaptic plasma membranes were 10.9, 5.4, and 5.9, respectively. We conclude that the 56K, 58K, 62K, 63K and 64K antigens are primary components of synaptic plasma membranes. The presence of synaptic plasma membrane antigens in smooth microsomes and synaptic vesicles probably represents material being actively transported, consistent with the hypothesis that proteins of synaptic plasma membranes and synaptic vesicles are transported via smooth endoplasmic reticulum.  相似文献   

3.
The effect of alkyl resorcin isolated from the cells of Azotobacter chroococcum and of its structural analog devoid of the alkyl chain (resorcin) on liver microsomes and brain synaptosomes of the rat as well as on rabbit skeletal muscle sarcoplasmic reticulum fragments during activation of lipid peroxidation was studied. Alkyl resorcin was shown to produce a much more potent antioxidant effect as compared with resorcin, since it inhibited lipid peroxidation in all the three types of membranes under study at much lower concentrations. Both alkyl resorcin and resorcin which inhibit lipid peroxidation prevented lipid peroxidation-induced structural-functional damages of synaptosomal and sarcoplasmic reticulum fragment membranes. Unlike resorcin, alkyl resorcin exerted an additional effect on brain synaptosomal membranes which consisted in the stabilization of barrier functions of membranes during incomplete inhibition of lipid peroxidation. The cumulative data suggest that stabilization necessitates the presence of both resorcin radical and alkyl chain in the alkyl resorcin molecule.  相似文献   

4.
Saponin, a cell-skinning reagent which perforates the cell membrane via its specific interaction with plasmalemmal cholesterol, was used to identify the subcellular origin of ATP-dependent Ca2+ accumulation in the presence and absence of inorganic phosphate and oxalate by microsomal fractions isolated from rat vas deferens and dog aorta. The purified plasma membranes from rat gastric fundus muscle, which elicit the stimulation of ATP-dependent Ca2+ accumulation by inorganic phosphate but not by oxalate, were used as a control reference. Saponin at concentrations effective for skinning smooth muscle fibres (10-50 micrograms/ml) inhibited Ca2+ binding in the absence of ATP to a similar extent in all fractions, but the inhibition of ATP-dependent Ca2+ accumulation was more pronounced in dog aorta microsomes and rat gastric fundus muscle plasma membranes than in rat vas deferens microsomes. The resistance of phosphate- and oxalate-stimulated ATP-dependent Ca2+ accumulation to inhibition by saponin was much greater in rat vas deferens than in dog aorta microsomes. Our results suggest that phosphate- and oxalate-stimulated ATP-dependent Ca2+ accumulation also occurs in plasma membrane vesicles isolated from smooth muscle and is by no means an unique property of endoplasmic reticulum.  相似文献   

5.
Alamethicin enhanced adenylate cyclase and Na+-K+-ATPase activities in microsomes and purified plasma membranes from pig lymphocytes. As this stimulation was also found in inside-out vesicles obtained from these membranes and as we showed that lymphocyte membrane vesicles are not impermeable to 5′AMP, ATP and concanavalin A, it appears clearly that alamethicin effects are not related to its channel-forming properties, but rather to its detergent-like character. Indeed sodium dodecylsulfate and Lubrol PX mimicked alamethicin effects. Moreover alamethicin treatment of plasma membranes induced protein and phospholipid solubilization.  相似文献   

6.
The localization in the cell of the protein forming the ATP-dependent potassium-selective channels in the bilayer lipid membrane has been studied. The electron microscope investigation of rat liver and heart tissue sections after their incubation with Abs against this protein and the visualization of the protein with secondary Abs conjugated with colloid gold were carried out. Colloid gold particles were observed both in mitochondrial membranes and in membranes of endoplasmic and sarcoplasmic reticulum. In heart mitochondria, these particles were significantly greater than in liver mitochondria. The localization of the channel protein both in mitochondria and reticulum, as well as the structural similarity between the mitochondrial channel and the precursor of calreticulin suggest that the channel protein belongs to the family of calreticulins. The possible function of the protein as a channel subunit of the mitochondrial ATP-dependent potassium channel is discussed.  相似文献   

7.
The linear polypeptide antibiotic alamethicin is known to form channels in artificial lipid membranes. Synthetic 13- and 17-residue alamethicin fragments, labelled with a fluorescent dansyl group at the N-terminus, have been shown to translocate divalent cations across phospholipid membranes and to uncouple oxidative phosphorylation in rat liver mitochondria, in a manner analogous to the parent peptides. From studies of the aqueous phase aggregation behavior of the peptides, as well as their interaction with rat liver mitochondria, it is concluded that the interaction of the peptides with membranes is a complex process, probably involving both aqueous and membrane phase aggregation.  相似文献   

8.
A new method for isolating transverse tubule membranes from rabbit skeletal muscle has been developed. This procedure has the advantage of being mild, fast, and producing with good yields a purified membrane fraction. The transverse tubule membranes are purified by a discontinuous sucrose density centrifugation after loading contaminating light sarcoplasmic reticulum vesicles with calcium phosphate in the presence of ATP. Immunofluorescence staining of cryostat sections of rabbit psoas muscle with purified goat antibodies directed against the purified membranes shows that the reacting antigens are distributed at the boundary of the A and I bands of the myofibrils where transverse tubules are localized in mammalian muscle. The purified antibodies showed no cross-reactivity with sarcoplasmic reticulum, nor did they show any fluorescence staining of the muscle plasma membrane, indicating that the isolated membranes indeed originate from the transverse tubules. The transverse tubule fraction has a characteristic protein composition distinguishable from that of sarcoplasmic reticulum, a much higher cholesterol content than that of the crude microsomes, plasma membrane, and sarcoplasmic reticulum, and a phospholipid content about twice as high as that of sarcoplasmic reticulum and plasma membrane. The purified transverse tubule membrane has a distinct phospholipid composition with high contents of sphingomyelin and phosphatidylserine. A Mg2+-activated ATPase characteristic of the transverse tubule fraction undergoes a 20-30-fold increase in specific activity during purification. The levels of Ca2+-ATPase activity present in the purified transverse tubule fraction remain comparable to those of sarcoplasmic reticulum even after extensive removal of the latter.  相似文献   

9.
Phospholipid and cholesterol amounts, intrinsic protein/lipid ratios in liver, brain and skeletal muscle microsomal membranes of 14 species of vertebrate animals have been studied. No significant differences between phospholipid amounts in tissues as well as vertebrate classes have been discovered. The highest cholesterol amount has been found in brain microsomes, the smallest one in sarcoplasmic reticulum membranes. In reptile brain and muscle microsomes a higher amount of cholesterol compared to that in species of other vertebrate classes has been found. In brain membranes intrinsic protein and lipid amounts are approximately equal, while in liver and muscle microsomes a protein component predominates. Phospholipid/protein ratio is larger in brain membranes than in liver and muscle ones. Cholesterol/protein ratio reaches the highest values in microsomal membranes of reptile tissues. Brain membranes of vertebrate animals are characterized by a greater stability of protein-lipid composition than liver and muscle ones.  相似文献   

10.
The localization in cell of the protein forming in BLM the ATP-dependent potassium-selective channels was studied. The electron-microscopic investigation of rat liver and heart tissue sections after their incubation with Abs against the studied protein and visualization of the protein with secondary Abs conjugated with colloid gold were carried out. The colloid gold particles were observed both in mitochondrial membranes and in membranes of endoplasmic and sarcoplasmic reticulum. In heart mitochondria these particles were significantly greater then in liver mitochondria. The detection of the channel-protein localization both in mitochondria and reticulum, as well as structural similarity between the mitochondrial channel and the precursor of calreticulin suggests that the channel protein belongs to the calreticulin family. The possible function of the studied protein as a channel subunit of the mitochondrial ATP-dependent potassium channel is discussed.  相似文献   

11.
Microsomes were isolated from white rabbit muscle and separated into several fractions by centrifugation in a discontinuous sucrose density gradient. Four membrane fractions were obtained namely surface membrane, light, intermediate and heavy sarcoplasmic reticulum. The origin of these microsomal vesicles was investigated by studying biochemical markers of sarcoplasmic reticulum and surface and T-tubular membranes. The transverse tubule derived membranes were further purified by using a discontinuous sucrose density gradient after loading contaminating light sarcoplasmic reticulum vesicles with calcium phosphate in the presence of ATP. All membrane preparations displayed acetylcholinesterase activity (AChE, EC 3.1.1.7), this being relatively more concentrated in T-tubule membranes than in those derived from sarcoplasmic reticulum. The membrane-bound AChE of unfractioned microsomes notably increased its activity by aging, treatment with detergents and low trypsin concentrations indicating that the enzyme is probably attached to the membrane in an occluded form, the unconstrained enzyme displaying higher activity than the vesicular acetylcholinesterase.Sedimentation analysis of Triton-solubilized AChE from different membrane fractions revealed enzymic multiple forms of 13.5S, 9–10S and 4.5–4.8S, the lightest form being the predominant one in all membrane preparations. Therefore, in both sarcoplasmic reticulum and T-tubule membrane the major component of AChE appears to be a membrane-bound component, probably a G1 form.  相似文献   

12.
The subcellular distribution of rat liver porin was investigated using the immunoblotting technique and monospecific antisera against the protein isolated from the outer membrane of rat liver mitochondria. Subfractionation of mitochondria into inner membranes, outer membranes and matrix fractions revealed the presence of porin only in the outer membranes. Porin was also not detected in highly purified subcellular fractions, including plasma membranes, nuclear membranes, Golgi I and Golgi II, microsomes and lysosomes. Thus, liver porin is located exclusively in the outer mitochondrial membrane.  相似文献   

13.
beta-Hexosaminidase B purified from human fibroblast secretions was used as a ligand to study phosphomannosyl-enzyme receptors in membranes from rat tissues. Enzyme binding to rat liver membranes was saturable, competitively inhibited by mannose 6-phosphate, not dependent on calcium, and destroyed by prior treatment of the hexosaminidase with either alkaline phosphatase or endoglycosidase H. Most (90%) of the phosphomannosyl-enzyme receptors were found in endoplasmic reticulum, Golgi apparatus, and lysosomes; 9.5% in the plasma membrane, and less than 1% in nuclei and mitochondria. Receptors were vesicle-enclosed in all fractions except plasma membrane. Receptors in the endoplasmic reticulum apparently were occupied by endogenous ligands, but most receptors in lysosomes and plasma membrane were unoccupied. Most of the endogenous beta-hexosaminidase was in lysosomes and was released from vesicles by detergent treatment. Displacement of the residual receptor-bound endogenous beta-hexosaminidase (mostly in endoplasmic reticulum and Golgi apparatus) from detergent-treated membranes by mannose 6-phosphate released high uptake enzyme with properties expected for phosphomannosyl-enzymes. Mannose 6-phosphate-inhibitable enzyme receptor activity was found in nine rat organs and correlated roughly with their lysosomal enzyme content. These data support a general model for lysosomal enzyme transport in which the phosphomannosyl-enzyme receptor acts as a vehicle for delivery of newly synthesized acid hydrolases from the endoplasmic reticulum to lysosomes.  相似文献   

14.
Summary Dyads (transverse tubule—junctional sarcoplasmic reticulum complexes) were enriched from rat ventricle microsomes by continuous sucrose gradients. The major vesicle peak at 36% sucrose contained up to 90% of those membranes which possessed dihydropyridine (DHP) binding sites (markers for transverse tubules) and all membranes which possessed ryanodine receptors and the putative junctional foot protein (markers for junctional sarcoplasmic reticulum). In addition, the 36% sucrose peak contained half of the vesicles with muscarine receptors. Vesicles derived from the nonjunctional plasma membrane as defined by a low content of dihydropyridine binding sites per muscarine receptor and from the free sarcoplasmic reticulum as defined by the Mr 102K Ca2+ ATPase were associated with a diffuse protein band (22–30% sucrose) in the lighter region of the gradient. These organelles were recovered in low yield. Putative dyads were not broken by French press treatment at 8,000 psi and only partially disrupted at 14,000 psi. The monoclonal antibody GE4.90 against skeletal muscle triadin, a protein which links the DHP receptor to the junctional foot protein in skeletal muscle triad junctions, cross-reacted with a protein in rat dyads of the same Mr as triadin. Western blots of muscle microsomes from preparations which had been treated with 100mm iodoacetamide throughout the isolation procedure showed that cardiac triadin consisted predominantly of a band of Mr 95 kD. Higher molecular weight polymers were detectable but low in content, in contrast with the ladder of oligomeric forms in rat psoas muscle microsomes. Cardiac triadin was not dissolved from the microsomes by hypertonic salt or Triton X-100, indicating that it, as well as skeletal muscle triadin, was an integral protein of the junctional SR. The cardiac epitope was localized to the junctional SR by comparison of its distribution with that of organelle markers in both total microsome and in French press disrupted dyad preparations. Immunofluorescence localization of triadin using mAb GE4.90 revealed that intact rat ventricular muscle tissue was stained following a well-defined pattern of bands every sarcomere. This spacing of bands was consistent with the interpretation that triadin was present in the dyadic junctional regions.  相似文献   

15.
Human high density lipoprotein (HDL3) binding to rat liver plasma membranes   总被引:3,自引:0,他引:3  
The binding of human 125I-labeled HDL3 to purified rat liver plasma membranes was studied. 125I-labeled HDL3 bound to the membranes with a dissociation constant of 10.5 micrograms protein/ml and a maximum binding of 3.45 micrograms protein/mg membrane protein. The 125I-labeled HDL3-binding activity was primarily associated with the plasma membrane fraction of the rat liver membranes. The amount of 125I-labeled HDL3 bound to the membranes was dependent on the temperature of incubation. The binding of 125I-labeled HDL3 to the rat liver plasma membranes was competitively inhibited by unlabeled human HDL3, rat HDL, HDL from nephrotic rats enriched in apolipoprotein A-I and phosphatidylcholine complexes of human apolipoprotein A-I, but not by human or rat LDL, free human apolipoprotein A-I or phosphatidylcholine vesicles. Human 125I-labeled apolipoprotein A-I complexed with egg phosphatidylcholine bound to rat liver plasma membranes with high affinity and saturability, and the binding constants were similar to those of human 125I-labeled HDL3. The 125I-labeled HDL3-binding activity of the membranes was not sensitive to pronase or phospholipase A2; however, prior treatment of the membranes with phospholipase A2 followed by pronase digestion resulted in loss of the binding activity. Heating the membranes at 100 degrees C for 30 min also resulted in an almost complete loss of the 125I-labeled HDL3-binding activity.  相似文献   

16.
A comprehensive analysis of plasma membrane proteins is essential to in-depth understanding of brain development, function, and diseases. Proteomics offers the potential to perform such a comprehensive analysis, yet it requires efficient protocols for the purification of the plasma membrane compartment. Here, we present a novel and efficient protocol for the separation and enrichment of brain plasma membrane proteins. It lasts only 4 h and is easy to perform. It highly enriches plasma membrane proteins and can be applied to small amounts of brain tissue, such as the cerebellum of a single rat, which was used in the present study. The protocol is based on affinity partitioning of microsomes in an aqueous two-phase system. Marker enzyme assays demonstrated a more than 12-fold enrichment of plasma membranes and a strong reduction of other compartments, such as mitochondria and the endoplasmic reticulum. 506 different proteins were identified when the enriched proteins underwent LC-MS/MS analysis subsequent to protein separation by SDS-PAGE. Using gene ontology, 146 proteins were assigned to a subcellular compartment. Ninety-three of those (64%) were membrane proteins, and 49 (34%) were plasma membrane proteins. A combined literature and database search for all 506 identified proteins revealed subcellular information on 472 proteins, of which 197 (42%) were plasma membrane proteins. These comprised numerous transporters, channels, and neurotransmitter receptors, e.g. the inward rectifying potassium channel Kir7.1 and the cerebellum-specific gamma-aminobutyric acid receptor GABRA6. Surface proteins involved in cell-cell contact and disease-related proteins were also identified. Six of the 146 assigned proteins were derived from mitochondrial membranes and 5 from membranes of the endoplasmic reticulum. Taken together, our protocol represents a simple, rapid, and reproducible tool for the proteomic characterization of brain plasma membranes. Because it conserves membrane structure and protein interactions, it is also suitable to enrich multimeric protein complexes from the plasma membrane for subsequent analysis.  相似文献   

17.
The ultrastructural localization of the Ca2+ + Mg2+-dependent ATPase of sarcoplasmic reticulum in rat gracilis muscle was determined by indirect immunoferritin labeling of ultrathin frozen sections. Simultaneous visualization of ferritin particles and of adsorption- stained cellular membranes showed that the Ca2+ + Mg2+-ATPase was concentrated in the longitudinal sarcoplasmic reticulum and in the nonjunctional regions of the terminal cisternae membrane but was virtually absent from mitochondria, plasma membranes, transverse tubules, and junctional sarcoplasmic reticulum. Ferritin particles were found preponderantly on the cytoplasmic surface of the membrane, in agreement with published data showing an asymmetry of the Ca2+ + Mg2+- ATPase within the sarcoplasmic reticulum membrane. Comparison of the density of ferritin particles in fast and slow myofibers suggested that the density of the Ca2+ + Mg2+-ATPase in the sarcoplasmic reticulum membrane in a fast myofiber is approximately two times higher than in a slow myofiber.  相似文献   

18.
As part of the enterohepatic circulation, hepatocytes take up bile acids from the intestines via the hepatic portal blood using a sodium-dependent carrier mechanism and resecrete the bile acids into the bile. In order to assess whether intracellular organelles are involved in the transcellular secretion of bile acids, we measured directly the ability of purified subcellular fractions of rat liver to take up taurocholate using a Millipore filtration assay. Two distinct uptake mechanisms can be discerned, one localized in the plasma membranes and the other in the Golgi and smooth microsomal fractions. Plasma membranes prepared by the method of Fleischer and Kervina (Fleischer, S., and Kervina, M. (1974) Methods Enzymol. 31, 6) take up taurocholate in a saturable manner with an apparent Vmax of 2.4 nmol min-1 mg protein-1 and a Km of 190 microM at 37 degrees C. After preincubation of the membranes with K+ ions, a sodium gradient (100 mM outside) stimulates the uptake rate by 90% with the observed Km unchanged. The stimulation is inhibited by phalloidin but not by bromosulfophthalein. Bile canalicular plasma membranes made according to Kramer et al. (Kramer, W., Bickel, U., Buscher, H. P., Gerok, W., and Kurz, G. (1982) Eur. J. Biochem. 129, 13-24) do not take up taurocholate. The transport by Golgi vesicles and smooth microsomes differs from that in the plasma membrane fraction in that it is not stimulated by a sodium gradient, has a Vmax of 12 nmol min-1 mg protein-1 and a Km of 440 microM at 37 degrees C, and is inhibited by bromosulfophthalein but not by phalloidin. Taurocholate uptake into smooth microsomes is abolished by filipin, an antibiotic that complexes with cholesterol to disrupt the membrane. This suggests that taurocholate uptake occurs into a nonendoplasmic reticulum subfraction since endoplasmic reticulum membranes contain negligible amounts of cholesterol. Little uptake was observed using rough microsomes or mitochondria. A model of transhepatic transport compatible with our observations is that taurocholate uptake into the cytoplasm occurs via the plasma membranes on the sinusoidal side of the hepatocyte; taurocholate is then taken up into smooth vesicles and the Golgi complex and is secreted into the bile by exocytosis as the vesicles fuse with the canalicular plasma membranes.  相似文献   

19.
Isolated sarcoplasmic reticulum vesicles from rabbit white muscle were separated into a light (15--20% of total microsomes) and a heavy (80--85%) fraction by density gradient centifugation. The ultrastructure, chemical composition, enzymic activities and localization of membrane components in the vesicles of both fractions were investigated. From the following results it was concluded that both fractions are derived from the membranes of the sarcoplasmic reticulum system of the muscle: (i) The protein pattern of both fractions is essentially the same, except for different ratios of acidic, Ca2+-binding proteins. (ii) The 105000 dalton protein of the light fraction cross-reacts immunologically with the Ca2+-dependent ATPase of the heavy fraction. (iii) Ca2+-dependent ATPase, although of different specific activity, is found in both fractions. After rendering the vesicles leaky, specific activities in both fractions reach the same value. The light fraction was found to consist of "inside-out" vesicles by the following criteria: (i) No Ca2+ accumulation can be measured and the Ca2+-dependent ATPase activity is low and variable. (ii) The rate of trypsin digestion is lower and, compared to the heavy microsomes, a different ratio of degradation products is obtained. (iii) The sarcoplasmic reticulum membrane has a highly asymmetrical lipid distribution. This distribution of aminophospholipids is opposite to that in vesicles of heavy fraction. The light sarcoplasmic reticulum fraction has a higher phospholipid to protein ratio than the heavy one. This is consistent with the possibility that the two fractions derive from different parts of the sarcoplasmic reticulum system.  相似文献   

20.
The intramembrane localization of linoleoyl-CoA desaturase in rat liver microsomes was examined by various methods, such as digestion by proteases, effect of detergents, and inhibition by the antibodies against purified terminal desaturase. Exposure of the desaturase on the surface of microsomal vesicles was suggested by the fact that the enzyme activity in the intact microsomes was susceptible to tryptic digestion, and considerably inhibited by anti-desaturase antibodies. When microsomes were previously treated with trypsin, the enzyme became more susceptible to the antibodies. Furthermore, it was demonstrated that the protein fragments cleaved from microsomal membranes by tryptic digestion formed a single precipitin line with the antibodies by the double-immunodiffusion test. These findings suggest the presence of linoleoyl-CoA desaturase on the cytoplasmic surface in the endoplasmic reticulum, since tryptic digestion liberates only the protein components situated on the surface area of membranes. In addition, desaturase activity in the intact microsomes was not stimulated by addition of the detergent, indicating the further outside location of the active site of the enzyme in microsomal vesicles. The pretreatment of microsomes with a low concentration (0.05%) of sodium deoxycholate, which destroys the permeability barrier for macromolecules without membrane disassembly, did not increase the susceptibility to tryptic digestion and the antibodies. These results show that linoleoyl-CoA desaturase is not present in a latent state in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号