首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Retinal Müller glial cells express the inducible isoform (-2) of nitric oxide (NO) synthase (NOS) in vitro after stimulation by lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) or in vivo in some retinal pathologies. Because NO may have beneficial or detrimental effects in the retina, we have used cocultures of retinal neurons with retinal Müller glial (RMG) cells from mice disrupted for the gene of NOS-2 [NOS-2 (-/-)] to clarify the role of NO in retinal neurotoxicity. We first demonstrated that NO produced by activated RMG cells was not toxic for RMG cells themselves. Second, the NO released from LPS/IFN-gamma-stimulated RMG cells induced neuronal cell death, because no neuronal cell death has been observed in cocultures with RMG cells from NOS-2 (-/-) mice and because inhibition of NOS-2 induction by transforming growth factor-beta or blockade of NO release by different NOS inhibitors prevented neuronal cell death. Addition of urate, a peroxynitrite scavenger, or superoxide dismutase partially prevented neuronal cell death induced by NO, whereas the presence of a poly(ADP-ribose) synthetase inhibitor, caspase inhibitors, or a guanylate cyclase inhibitor had no significant effect on cell death. These results demonstrated that a large release of NO from RMG cells is responsible for retinal neuronal cell death in vitro, suggesting a neurotoxic role for NO and peroxynitrite during retinal inflammatory or degenerative diseases, where RMG cells were activated.  相似文献   

2.
3.
Abstract The growth of Mycobacterium microti was inhibited within J774A. 1 macrophage cells activated with either interferon-γ or tumor necrosis factor-α. Activation with interferon-γ or tumor necrosis factor-α alone did not stimulate the production of nitrite in J774A. 1 cells. Interferon-γ but not tumor necrosis factor-a increased the production of hydrogen peroxide in a concentration dependent manner but scavengers of reactive oxygen species did not influence the growth inhibiting effect of interferon-γ within J774A.1 cells. Both interferon-γ and tumor necrosis factor-α enhanced the fusion of M. microti containing phagosomes with lysosomes and the ultimate degradation of bacteria. Our results showed that growth inhibition of M. microti within interferon-γ or tumor necrosis factor-a stimulated J774A. 1 cells was independent of reactive oxygen intermediate and reactive nitrogen intermediate production.  相似文献   

4.
Induction of Nitric Oxide Synthase in Rat C6 Glioma Cells   总被引:9,自引:1,他引:8  
Abstract: We have examined the induction of nitric oxide syhthase (NOS) activity in the rat astrocyte-derived C6 glioma cell line. In contrast to the previous results with primary astrocyte cultures, incubation of C6 cells with bacterial endotoxin lipopolysaccharide (LPS; 1 μg/ml for 24 h) did not stimulate NO2 production. However, addition of either tumor necrosis factor-a (TNF-α) or interferon-γ (IFN-γ), cytokines that by themselves had no effect on NOS activity, imparted LPS responsiveness onto these cells in a dose-dependent manner (EC50 values of 39 ng/ml of TNF-α and 9.4 U/ml of IFN-γ), and the effect of TNF-α could be further potentiated (twofold) by the presence of interleukin-1β. The simultaneous presence of TNF-α and IFN-γ yielded a greater response than either cytokine alone; however, the respective EC50 values were not affected. A cytoplasmic extract from induced C6 cells catalyzed the Ca2+-independent conversion of l -arginine to l - citrulline, with an apparent K m of 51.2 n M , and this activity could be blocked by l -arginine analogues in the potency order amino > methyl > nitroarginine. Immunoblot analysis revealed an apparent molecular mass of 125 kDa for the NOS protein induced in C6 cells. These results indicate that the combination of LPS plus cytokines can induce NOS activity in C6 glioma cells with properties similar to those of the enzyme expressed in primary astrocyte cultures.  相似文献   

5.
Abstract: Adrenomedullin, originally discovered from pheochromocytoma, is a member of the calcitonin gene-related peptide family. The production and secretion of adrenomedullin by cultured human astrocytes were studied by northern blot analysis and radioimmunoassay. Northern blot analysis showed the expression of adrenomedullin mRNA in cultured human astrocytes. Immunoreactive adrenomedullin concentrations in the culture medium were 29.6 ± 1.2 fmol/105 cells/24 h (mean ± SEM, n = 4). Treatment with interferon-γ (100 U/ml), tumor necrosis factor-α (1 and 10 ng/ml), or interleukin-1β (1 and 10 ng/ml) for 24 h caused >20-fold increases in immunoreactive adrenomedullin levels in the culture medium of human astrocytes. On the other hand, northern blot analysis showed only small increases (∼40%) in the adrenomedullin mRNA expression of human astrocytes with either 100 U/ml interferon-γ or 10 ng/ml interleukin-1β and no noticeable change with tumor necrosis factor-α. Reverse phase HPLC of the medium extracts of human astrocytes treated with interferon-γ, tumor necrosis factor-α, or interleukin-1β showed that most of immunoreactive adrenomedullin was eluted in the position of adrenomedullin-(1-52). On the other hand, immunoreactive adrenomedullin in the medium of human astrocytes without cytokine treatment was eluted earlier than the adrenomedullin standard, suggesting that this immunoreactive adrenomedullin represents adrenomedullin with some modifications or fragments of the adrenomedullin precursor. The present study has shown the production and secretion of adrenomedullin by human astrocytes and increased secretion of adrenomedullin by cytokines.  相似文献   

6.
Abstract: Bidirectional communication occurs between neuroendocrine and immune systems through the action of various cytokines. Responses to various inflammatory mediators include increases in intracellular reactive oxygen species (ROS), notably, superoxide anion (O2) and nitric oxide (NO). Neurotoxicity mediated by NO may result from the reaction of NO with O2, leading to formation of peroxynitrite (ONOO). ROS are highly toxic, potentially contributing to extensive neuronal damage. We, therefore, evaluated the effects of a variety of inflammatory mediators on the regulation of mRNA levels for manganese superoxide dismutase (MnSOD) and inducible nitric oxide synthase (iNOS) in primary cultures of rat neuronal and glial cells. To determine age-dependent variation of mRNA expression, we used glial cells derived from newborn, 3-, 21-, and 95-day-old rat brains. Interleukin-1β, interferon-γ (IFN-γ), bacterial lipopolysaccharide (LPS), and tumor necrosis factor-α showed significant induction of MnSOD in both glial and neuronal cells. However, only LPS and IFN-γ increased iNOS mRNA. These data demonstrate that these two genes are similarly regulated in two cells of the nervous system, further suggesting that the oxidative state of a cell may dictate a neurotoxic or neuroprotective outcome.  相似文献   

7.
Abstract: Recent studies have shown that the stimulatory effects of bacterial endotoxin [lipopolysaccharide (LPS)] on inducible nitric oxide (NO) synthase (iNOS) in astroglia are significantly reduced by the peptide angiotensin II (Ang II). In the present study we have compared the modulatory actions of Ang II on cytokine- and LPS-stimulated iNOS in astroglia cultured from adult rat brain. Incubation of astroglia with LPS (100 ng/ml; 24 h) and/or combinations of interleukin-1β (IL-1β; 10 ng/ml, 24 h), interferon-γ (IFN-γ; 100 U/ml, 24 h), or tumor necrosis factor-α (TNF-α; 100 ng/ml, 24 h) resulted in significant increases of iNOS mRNA, iNOS protein, and NO production, with the latter indicated by increased nitrite accumulation. The effects of LPS, IL-1β, and TNF-α were significantly decreased by coincubation with Ang II (100 ng/ml, 24 h). In contrast, Ang II did not alter the stimulation of iNOS mRNA levels and NO production elicited by IFN-γ. Therefore, Ang II differentially modulates the stimulatory actions of LPS and cytokines on iNOS, and subsequently NO production, in astroglia. These data suggest that Ang II may have an important modulatory role in intracerebral immune responses that involve production of NO by astroglia.  相似文献   

8.
Abstract: Tumor necrosis factor-α is a pluripotent cytokine that is reportedly mitogenic to astrocytes. We examined expression of the astrocyte intermediate filament component glial fibrillary acidic protein in astrocyte cultures and the U373 glioblastoma cell line after treatment with tumor necrosis factor-α. Treatment with tumor necrosis factor-α for 72 h resulted in a decrease in content of glial fibrillary acidic protein and its encoding mRNA. At the same time, tumor necrosis factor-α treatment increased the expression of the cytokine interleukin-6 by astrocytes. The decrease in glial fibrillary acidic protein expression was greater when cells were subconfluent than when they were confluent. Thymidine uptake studies demonstrated that U373 cells proliferated in response to tumor necrosis factor-α, but primary neonatal astrocytes did not. However, in both U373 cells and primary astrocytes tumor necrosis factor-α induced an increase in total cellular protein content. Treatment of astrocytes and U373 cells for 72 h with the mitogenic cytokine basic fibroblast growth factor also induced a decrease in glial fibrillary acidic protein content and an increase in total protein level, demonstrating that this effect is not specific for tumor necrosis factor-α. The decrease in content of glial fibrillary acidic protein detected after tumor necrosis factor-α treatment is most likely due to dilution by other proteins that are synthesized rapidly in response to cytokine stimulation.  相似文献   

9.
Abstract: Exposure of neuronal PC12 cells, differentiated by nerve growth factor, to tumor necrosis factor-α (TNF-α) and bacterial lipopolysaccharide (LPS) resulted in de novo synthesis of inducible nitric oxide synthase (iNOS) mRNA and protein with an increase up to 24 h. Brain NOS expression was unaffected. The induction of iNOS in differntiated PC12 cells was associated with cell death characterized by features of apoptosis, The NOS inhibitors N -monomethylarginine, aminoguanidine, and 2-amino-5,6-dihydro-6-methyl-4 H -1,3-thiazine HCl prevented TNF-α/LPS-induced cell death and DNA fragmentation, suggesting that the TNF-α/LPS-induced cell death is mediated by iNOS-derived NO. This hypothesis is supported by the finding that addition of l -arginine, which serves as a precursor and limiting factor of enzyme-derived NO production, potentiated TNF-α/LPS-induced loss of viability.  相似文献   

10.
Abstract: It is recognized that tumor necrosis factor-α (TNF-α), a pleiotropic cytokine, influences hormone secretion and transmitter release from central neurons. To examine the role of TNF-α as a modulator of autonomic function of the PNS, we measured [3H]norepinephrine ([3H]NE) secretion evoked by 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), a nicotinic agonist, in cultures from neonatal rat superior cervical ganglia (SCG). We found that (1) DMPP-evoked [3H]NE secretion was enhanced in SCG mixed cultures treated for 48 h with recombinant human TNF-α (rhTNF-α) plus rat interferon-γ (IFN-γ) but not in cultures treated with either cytokine alone; (2) an increase in [3H]NE secretion was also observed in mixed cultures treated with recombinant murine TNF-α (rmTNF-α) alone; and (3) the presence of nonneuronal cells or soluble factors released by them was required for the effect of these cytokines on secretion. Electrophysiologic experiments revealed an increase in nicotinic receptor current density in neurons from mixed cultures treated with rhTNF-α plus IFN-γ or with rmTNF-α when compared with control cultures. We conclude that prolonged exposure to rhTNF-α plus IFN-γ or rmTNF-α regulates nicotinic responses in SCG cultures via a soluble factor or factors secreted by nonneuronal cells.  相似文献   

11.
Abstract: In certain pathologic states, cytokine production may become spatially and temporally dysregulated, leading to their inappropriate production and potentially detrimental consequences. Tumor necrosis factor-α (TNF-α), interleukin (IL)-1, IL-6, and transforming growth factor-β (TGF-β) mediate a range of host responses affecting multiple cell types. To study the role of cytokines in the early stages of brain injury, we examined alterations in the 17-day-old mouse hippocampus during trimethyltin-induced neurodegeneration characterized by neuronal necrosis, microglia activation in the dentate, and astrocyte reactivity throughout the hippocampus. By 24 h after dosing, elevations in mRNA levels for TNF-α, IL-1α, IL-1β, and IL-6 mRNA were seen. TGF-β1 mRNA was elevated at 72 h. In situ hybridization showed that TNF-α and IL-1α were localized to the microglia, whereas TGF-β1 was expressed predominantly in hippocampal pyramidal cells. Intercellular adhesion molecule-1, EB-22, Mac-1, and glial fibrillary acidic protein mRNA levels were elevated within the first 3 days of exposure in the absence of increased inducible nitric oxide synthetase and interferon-γ mRNA. These data suggest that pro-inflammatory cytokines contribute to the progression and pattern of neuronal degeneration in the hippocampus.  相似文献   

12.
Abstract: Mast cells are pleiotropic bone marrow-derived cells found in mucosal and connective tissues and in close apposition to neurons, where they play important roles in tissue inflammation and in neuroimmune interactions. Connective tissue mast cells, with which intracranial mast cells share many characteristics, contain cytokines that can cause inflammation. Here, we report that myelin basic protein, a major suspected immunogen in multiple sclerosis, as well as an antigenic stimulus, provokes mast cells to trigger a delayed cytotoxicity for neurons in mixed neuron-glia cultures from hippocampus. Neurotoxicity required a prolonged period (12 h) of mast cell incubation, and appeared to depend largely on elaboration of the free radical nitric oxide by astrocytes. Activation of astrocytes was mediated, in part, by mast cell-secreted tumor necrosis factor-α. Myelin basic protein and 17β-estradiol had a synergistic action on the induction of mast cell-associated neuronal injury. The cognate mast cell line RBL-2H3, when subjected to an antigenic stimulus, released tumor necrosis factor-α which, together with exogenous interleukin-1β (or interferon-γ), induced astroglia to produce neurotoxic quantities of nitric oxide. A small but significant proportion of mast cell-derived neurotoxicity under the above conditions occurred independently of glial nitric oxide synthase induction. Further, palmitoylethanolamide, which has been reported to reduce mast cell activation by a local autacoid mechanism, decreased neuron loss resulting from mast cell stimulation in the mixed cultures but not that caused by direct cytokine induction of astrocytic nitric oxide synthase. These results support the notion that brain mast cells could participate in the pathophysiology of chronic neurodegenerative and inflammatory diseases of the nervous system, and suggest that down-modulation of mast cell activation in such conditions could be of therapeutic benefit.  相似文献   

13.
Abstract : The induction of inducible nitric oxide synthase (iNOS) by proinflammatory cytokines was studied in an oligodendrocyte progenitor cell line in relation to mitogen-activated protein kinase (MAPK) activation and cytokine-mediated cytotoxicity. When introduced individually to cultures of CG4 cells, the cytokines, i.e., tumor necrosis factor-α (TNFα), interleukin-1 (IL-1), and interferon-γ (IFNγ), had either minimal (TNFα) or no (IL-1 and IFNγ) detectable stimulatory effect on the production of nitric oxide. However, combinations of these factors, in particular, TNFα plus IFNγ, elicited a strong enhancement of nitric oxide synthesis and, as revealed by western blot and RT-PCR analysis, the expression of iNOS. TNFα and IL-1 were able to activate p38 MAPK in a time- and dose-dependent manner and together showed a combinatorial effect. In contrast, IFNγ neither activated on its own nor enhanced the activation of p38 MAPK in response to TNFα and IL-1. However, a specific inhibitor of p38 MAPK, i.e., SB203580, inhibited the induction of iNOS in cytokine combination-treated cells in a dose-dependent manner, thereby suggesting a role for the MAPK cascade in regulating the induction of iNOS gene expression in cytokine-treated cells. Blocking of nitric oxide production by an inhibitor of iNOS, i.e., nitro-L-arginine methyl ester, had a minimal protective effect against cytokine-mediated cytotoxicity that occurred before the elevation of nitric oxide levels, thereby indicating temporal and functional dissociation of nitric oxide production from cell killing.  相似文献   

14.
Abstract: Activation of monocyte-derived macrophages with cytokines leads to the induction of nitric oxide synthase. Much less is known about the effects of cytokines on microglia, resident brain macrophages, or on astrocytes. In this study, we compared the induction by lipopolysaccharide, interferon-γ, and tumor necrosis factor-α of nitric oxide production and synthesis of tetrahydrobiopterin, the required cofactor for nitric oxide synthase, in microglia and peritoneal macrophages. Activation of microglia induced parallel increases in nitric oxide and intracellular tetrahydrobiopterin levels, although induction of the latter appears to be somewhat more sensitive to diverse stimulators. As with macrophages, inducible nitric oxide production in microglia was blocked by inhibitors of tetrahydrobiopterin biosynthesis. Interleukin-2, an important component of the neuroimmunomodulatory system, was only a weak activator of microglia by itself but potently synergized with interferon-γ to stimulate production of both nitric oxide and tetrahydrobiopterin. Astrocytes were also activated by lipopolysaccharide and combinations of cytokines but showed a somewhat different pattern of responses than microglia. Biopterin synthesis was increased to higher levels in astrocytes than in microglia, but maximal induction of nitric oxide production required higher concentrations of cytokines than microglia and the response was much lower. These results suggest that tetrahydrobiopterin synthesis in glial cells is a potential target for therapeutic intervention in acute CNS infections whose pathology may be mediated by overproduction of nitric oxide.  相似文献   

15.
Abstract: Tumor necrosis factor-a (TNF-α), interferon-γ (IFN-7), and interleukin-6 (IL-6), but not TNF-β, can induce the in vitro differentiation of the neuroblastoma cell line N103 in a dose-dependent manner. Differentiation of N103 was accompanied by the arrest of cell growth and neurite formation. The induction of neuroblastoma cell differentiation by TNF-α and IFN-γ can be specifically inhibited by a nitric oxide (NO) synthase inhibitor, l -NG-monomethylarginine. In contrast, the differentiation of N103 cells by IL-6 was not affected by l -NG-monomethylarginine. These results indicate that TNF-α and IFN-γ, but not IL-6, induce the differentiation of neuroblastoma cells via NO. This is confirmed by the finding that the culture super- natants of N103 cells induced by TNF-α and IFN-γ, but not that by IL-6, contained high levels of NO2, the production of which was inhibited by l - N G-monomethylarginine. Furthermore, the differentiation of N103 cells can be induced directly in a dose-dependent manner by the addition of nitroprusside, a generator of NO, into the culture medium. These data therefore indicate that NO may be an important mediator in the induction of neuronal cell differentiation by certain cytokines such as TNF-α and IFN-γ and that neuronal cells, in addition to the macrophagelike brain cells, can be induced by immunological stimuli to produce large quantities of NO.  相似文献   

16.
Glial cells are proposed to play a major role in the ionic and osmotic homeostasis in the CNS. Swelling of glial cells contributes to the development of edema in neural tissue under pathological conditions such as trauma and ischemia. In this study, we compared the osmotic swelling characteristics of murine hippocampal astrocytes, cerebellar Bergmann glial cells, and retinal Müller glial cells in acutely isolated tissue slices in response to hypoosmotic stress and pharmacological blockade of Kir channels. Hypoosmotic challenge induced an immediate swelling of somata in the majority of Bergmann glial cells and hippocampal astrocytes investigated, whereas Müller cell bodies displayed a substantial delay in the onset of swelling and hippocampal astroglial processes remained unaffected. Blockade of Kir channels under isoosmotic conditions had no swelling-inducing effect in Müller cell somata but caused a swelling in brain astrocytic somata and processes. Blockade of Kir channels under hypoosmotic conditions induced an immediate and strong swelling in Müller cell somata, but had no cumulative effect to brain astroglial somata. No regulatory volume decrease could be observed in all cell types. The data suggest that Kir channels are differently implicated in cell volume homeostasis of retinal Müller cells and brain astrocytes and that Müller cells and brain astrocytes differ in their osmotic swelling properties.  相似文献   

17.
Abstract: Several pieces of evidence suggest a major role for brain macrophages in the overproduction of neuroactive kynurenines, including quinolinic acid, in brain inflammatory conditions. In the present work, the regulation of kynurenine pathway enzymes by interferon-γ (IFN-γ) was studied in immortalized murine macrophages (MT2) and microglial (N11) cells. In both cell lines, IFN-γ induced the expression of indoleamine 2,3-dioxygenase (IDO) activity. Whereas tumor necrosis factor-α did not affect enzyme induction by IFN-γ, lipopolysaccharide modulated IDO activity differently in the two IFN-γ-activated cell lines, causing a reduction of IDO expression in MT2 cells and an enhancement of IDO activity in N11 cells. Kynurenine aminotransferase, kynurenine 3-hydroxylase, and 3-hydroxyanthranilic acid dioxygenase appeared to be constitutively expressed in both cell lines. Kynurenine 3-hydroxylase activity was stimulated by IFN-γ. It was notable that basal kynureninase activity was much higher in MT2 macrophages than in N11 microglial cells. In addition, IFN-γ markedly stimulated the activity of this enzyme only in MT2 cells. IFN-γ-treated MT2 cells, but not N11 cells, were able to produce detectable amounts of radiolabeled 3-hydroxyanthranilic acid quinolinic acids from l -[5-3H]tryptophan. These results support the notion that activated invading macrophages may constitute one of the major sources of cerebral quinolinic acid during inflammation.  相似文献   

18.
19.
A comparative study was done using J774A.1 and J774A. 1-derived transfected cells (J774A.1 C.1) containing antisense tumor necrosis factor α (TNF-α) plasmid to determine the role of endogenous TNF-α on nitric oxide production as well as on the growth ofMycobacterium microti in interferon γ (IFN-γ)- and lipopolysaccharide (LPS)-treated cells. On stimulation with IFN-γ and LPS a higher level of NO was observed in J774A.1 cells compared to J774A.1 C.1 which indicated that endogenous TNF-α is required for the production of NO. Comparing the effect of IFN-γ and LPS on the intracellular growth ofM. microti, the growth-reducing activity was higher in J774A.1 cells than in J774A.1 C.1 cells and was not completely abrogated in the presence of the nitric oxide inhibitorN G-methyl-l-arginine (l-NMA). J774A.1 C.1 cells infected withM. microti produced a significant amount of NO when exogenous TNF-α was added along with IFN-γ and LPS and the concentration of intracellular bacteria decreased almost to that in IFN-γ and LPS treated parental J774A.1 cells. Addition of exogenous TNF-α even in the presence ofl-NMA in J774.1 C.1 cells could also partially restore intracellular growth inhibition ofM. microti caused by IFN-γ and LPS. TNF-α is probably required for the production of NO in J774A.1 cells by IFN-γ and LPS but TNF-α and NO are independently involved in the killing of intracellularM. microti with IFN-γ and LPS.  相似文献   

20.
Abstract: To determine whether cytokines or lipopolysaccharide (LPS) are involved in the induction of superoxide dismutase (SOD) in the nervous system, we examined the effects of these substances on the levels of SOD in cultured mouse astrocytes. Treatment of astrocytes with 102 to 104 U/ml tumor necrosis factor-α for 3 days increased the levels of Mn SOD in a dose- and time-dependent manner to as much as six times the level under nontreated conditions. Treatment with 1.0 µg/ml LPS for 3 days elicited a fourfold increase in levels of Mn SOD, and the effect of LPS was also dose dependent. Furthermore, Mn SOD in astrocytes was induced by a 3-day exposure to interleukin-1α at concentrations of 102 or 103 U/ml. However, these stimuli had no effect on levels of copper-zinc SOD (Cu/Zn SOD) in astrocytes. By contrast, interferon-γ did not change the levels of either Mn or Cu/Zn SOD in the cells. The results indicate that the selective induction of Mn SOD by cytokines and LPS, which has been observed in nonnervous tissues, may also occur in nervous tissues. The induction of Mn SOD may represent a mechanism for protection of cells from oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号