首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The B3LYP/6-31G (d) method of density functional theory (DFT) was used to study molecular geometry, electronic structure, infrared spectrum (IR) and thermodynamic properties. The heat of formation (HOF) and calculated density were estimated to evaluate the detonation properties using Kamlet–Jacobs equations. Thermal stability of 3,5,7,10,12,14,15,16-octanitro- 3,5,7,10,12,14,15,16-octaaza-heptacyclo[7.5.1.12,8.01,11.02,6.04,13.06,11]hexadecane (cage-tetranitrotetraazabicyclooctane) was investigated by calculating the bond dissociation energy (BDE) at unrestricted B3LYP/6-31G (d) level. The calculated results show that the N–NO2 bond is a trigger bond during thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM) methods belongs to Pna21 space group, with cell parameters a?=?12.840 Å, b?=?9.129 Å, c?=?14.346 Å, Z?=?6 and ρ?=?2.292 g·cm?3. Both the detonation velocity of 9.96 km·s?1 and the detonation pressure of 47.47 GPa are better than those of CL-20. According to the quantitative standard of energetics and stability, as a high energy density compound (HEDC), cage-tetranitrotetraazabicyclooctane essentially satisfies this requirement.  相似文献   

2.
Multi-tetrazole derivatives with conjugated structures were designed and investigated in this study. Using quantum chemistry methods, the crystal structures, electrostatic potentials (ESPs), multicenter bond orders, HOMO–LUMO energy gaps, and detonation properties of the derivatives were calculated. As expected, these molecules with conjugated structures showed low energies of their crystal structures, molecular layering in their crystals, high average ESPs, high multicenter bond order values, and enhanced detonation properties. The derivative 1,2-di(1H-tetrazol-5-yl)diazene (N2) was predicted to have the best density (1.87 g/cm3), detonation velocity (9006 m/s), and detonation pressure (36.8 GPa) of the designed molecules, while its total crystal energy was low, suggesting that it is relatively stable. Its sensitivity was also low, as the molecular stacking that occurs in its crystal allows external forces to be dissipated into movements of crystal layers. Finally, its multicenter bond order was high, indicating a highly conjugated structure.  相似文献   

3.
Trinitromethyl-substituted aminotetrazoles with –NH2, –NO2, –N3, and –NHC(NO2)3 groups were investigated at the B3LYP/6-31G(d) level of density functional theory. Their sublimation enthalpies, thermodynamic properties, and heats of formation were calculated. The thermodynamic properties of these compounds increase with temperature as well as with the number of nitro groups attached to the tetrazole ring. In addition, the detonation velocities and detonation pressures of these compounds were successfully predicted using the Kamlet–Jacobs equations. It was found that these compounds exhibit good detonation properties, and that compound G (D = 9.2 km/s, P = 38.8 GPa) has the most powerful detonation properties, which are similar to those of the well-known explosive HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocine). Finally, the electronic structures and bond dissociation energies of these compounds were calculated. The BDEs of their C–NO2 bonds were found to range from 101.9 to 125.8 kJ/mol-1. All of these results should provide useful fundamental information for the design of novel HEDMs.  相似文献   

4.
A novel environmentally friendly octahedrally coordinated 2D polymeric complexes bis(1,5-diaminotetrazole) -dichlorozinc(II) (Zn(DAT)2Cl2) was first designed based on the the crystal data of bis(1,5-diaminotetrazole)- dichlorocopper(II) (Cu(DAT)2Cl2). Density functional theory (DFT) was used to predict the optimized geometries at TPSSTPSS/6-311G(d, p) level. Densities and detonation properties were evaluated using the electron cloud enclosed volume and VLW equation of state (VLW EOS), respectively. Calculation results show that the density of Zn(DAT)2Cl2 (2.117 g?·?cm?1) is a bit more than that of Cu(DAT)2Cl2 (2.106 g?·?cm?1). The calculated high positive heat of formation (HOF) predicts that the stabilities of the title compounds decrease in the order Zn(DAT)2Cl2 > Cu(DAT)2Cl2, which agrees with the result of bond dissociation energies (BDE). Even though they have the same molecule structures, their first scission steps are different. Furthermore, the title two compounds show good detonation velocities and pressures compared with that of bis-(5-nitro-2H-tetrazolato-N 2) tetraamminecobalt(III) perchlorates (BNCP), and they are potential candidates for high-energy-density materials (HEDM).  相似文献   

5.
A novel polynitro cage compound 4,8,11,14,15-pentanitro-2,6,9,13-tetraoxa-4,8,11,14,15–pentaazaheptacyclo [5.5.1.13,11.15,9]pentadecane(PNTOPAHP) has been designed and investigated at the DFT-B3LYP/6-31(d) level. Properties, such as electronic structure, IR spectrum, heat of formation, thermodynamic properties and crystal structure have been predicted. This compound is most likely to crystallize in C2/c space group, and the corresponding cell parameters are Z?=?8, a?=?29.78 Å, b?=?6.42 Å, c?=?32.69 Å, α?=?90.00°, β?=?151.05°, γ?=?90.00°and ρ?=?1.94 g/cm3. In addition, the detonation velocity and pressure have also been calculated by the empirical Kamlet-Jacobs equation. As a result, the detonation velocity and pressure of this compound are 9.82 km/s, 44.67 GPa, respectively, a little higher than those of 4,10-dinitro-2,6,8,12–tetraoxa?4,10-diazaisowurtzitane(TEX, 9.28 km/s, 40.72 GPa). This compound has a comparable chemical stability to TEX, based on the N-NO2 trigger bond length analysis. The bond dissociation energy ranges from 153.09 kJ mol–1 to 186.04 kJ mol–1, which indicates that this compound meets the thermal stability requirement as an exploitable HEDM.  相似文献   

6.
We report herein the structure and explosive properties of the possible isomers of 3-amino-1-nitroso-4-nitrotriazol-5-one-2-oxide computed from the B3LYP/aug-cc-pVDZ level. The optimized structures, vibrational frequencies and thermodynamic values for triazol-5-one-N-oxides were obtained in the ground state. Several designed compounds have densities varying from 2.103 to 2.177 g/cm3. The detonation properties were evaluated by the Kamlet-Jacob equations based on the predicted density and the calculated heat of explosion. The detonation properties of triazol-5-one-N-oxides (D 9.87 to 10.11 km s?1 and P 48.95 to 50.61 GPa) appear to be promising compared with those of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (D 9.20 km s?1, P 42.0 Gpa) and octanitrocubane (D 9.90 km s?1, P 48.45 GPa). The substitution of secondary amino hydrogen of the triazole ring by amino group shows better impact sensitivity/or stability however the model compounds seem to be highly sensitive.  相似文献   

7.
Abstract

Equimolar H2O/N2 fluid mixture was studied by molecular dynamics simulations for NVT ensemble. Calculations were performed with the modified Buckingham (exp-6) potentials at T = 2000 K. Particular attention was given to the phase separation at very high pressures relevant to a detonation environment. Calculations of pair correlation functions and local mole fractions clearly indicated the occurrence of the fluid separation into N2-rich and H2O-rich phase. The density at the phase boundary between homogeneous and inhomogeneous phase-separated state was determined to be p = 1.35 g/cm3 on the basis of the static cross correlation factor which is defined by the sum of the local mole fractions. The ratio of the self-diffusion coefficients of N2 and H2O at p < 1.35 g/cm3 was found to be approximately equal to the value predicted by the kinetic theory of the ideal gas, whereas the ratio was close to unity at the phase-separated state (p > 1.35 g/cm3). In addition, two distinctive behaviors of the system could be observed for the relaxation from the initial uniform mixture to the phase-separated fluid: at lower densities (1.35 < p < 2.0 g/cm3) the fluid mixture began to relax into the phase-separated system without obvious incubation time, while clear incubation period was associated for the separation at higher densities. During this incubation period, discontinuous jumps in the mean square displacements were found.  相似文献   

8.
Rice coleoptiles grow under anoxia. When the ultrastructure of anoxic coleoptile cells was examined, it was seen that most organelles maintain their integrity, with the exception of peroxisomes (unspecialized type). The lack of O2 greatly reduced the number of these organelles and altered the ultrastructure of the remaining ones. To examine the effect of O2 on peroxisome development in more detail, coleoptiles grown in air were transferred to N2 and anoxic coleoptiles were transferred to oxygen. Marker enzyme activity was measured in entire coleoptiles as well as in the isolated organelles. As expected, anoxia greatly depressed enzyme activity when imposed from the beginning of the germination process, while it had a lesser effect when imposed for only two days on aerobic seedlings. When coleoptiles were grown constantly under N2, the density of the organelles was 1.216 g/cm3, while the corresponding aerobic organelles showed a buoyant density of 1.241 g/cm3. When transferred to air the anoxic peroxisomes reached the intermediate density of 1.227 g/cm3. The results confirm the particular sensitivity of rice peroxisomes to O2 availability.  相似文献   

9.
We have studied herein the effect of position and the number of -NO, -NO2, -NH2 and -CH3 groups on the structure, stability, impact sensitivity, density, thermodynamic and detonation properties of triazolones by performing density functional theory calculations at the B3LYP/aug-cc-pVDZ level. The optimized structures, vibrational frequencies and thermodynamic values for triazolones have been obtained in their ground state. Kamlet-Jacob equations were used to calculate the detonation velocity and detonation pressure of model compounds. The detonation properties of NNTO (D 8.75 to 9.10 km/s, P 34.0 to 37.57 GPa), DNTO (D 8.80 to 9.05 km/s, P 35.55 to 38.27 GPa), ADNTO (D 9.01 to 9.42 km/s and P 37.81 to 41.10 GPa) and ANNTO (D 8.58 to 9.0 km/s, P 30.81 to 36.25 GPa) are compared with those of 1,3,5-trinitro-1,3,5-triazine (RDX) (D 8.75 km/s, P 34.70 Gpa) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) (D 8.96 km/s, P 35.96 GPa). The designed compounds satisfy the criteria of high energy materials.  相似文献   

10.
Activated carbons were prepared from Chinese fir wood by phosphoric acid activation. The effects of heat pretreatment from 80 to 180 °C during impregnation on the properties of fir wood and its activated carbons were discussed. The crystallinity index and surface chemistry of the pretreated fir wood were characterized by X-ray diffraction and Fourier transform infrared spectroscopy (FT-IR). The porous texture of activated carbons was investigated by N2 adsorption–desorption isotherms. The results showed that with increasing pretreatment temperature, the crystallinity of the pretreated samples decreased, which gave rise to a significant development of pores, especially micropores as high as 97.2 %. FT-IR results revealed that the carbonyl-containing and phosphorus-containing groups of the pretreated samples increased with increasing pretreatment temperature. For a temperature of 140 °C, the specific surface area, the total pore volume, and the micropore volume reached a maximum of 1603.0 m2/g, 0.792 cm3/g, and 0.770 cm3/g, respectively. However, a higher pretreatment temperature was not beneficial for activation. Thus, heat pretreatment during impregnation can be regarded as an excellent method for manufacturing phosphoric acid-activated carbon with a high micropore volume.  相似文献   

11.
Since the middle of 1990s the trend of Lake Balaton towards an increasingly trophic status has been reversed, but N2-fixing cyanobacteria are occasionally dominant, endangering water quality in summer. The sources of nitrogen and its uptake by growing phytoplankton were therefore studied. Experiments were carried out on samples collected from the middle of the Eastern (Siófok) and Western (Keszthely) basins between February and October 2001. Ammonium, urea and nitrate uptake and ammonium regeneration were measured in the upper 5-cm layer of sediment using the 15N-technique. Ammonium was determined by an improved microdiffusion assay. N2 fixation rates were measured by the acetylene-reduction method. Ammonium regeneration rates in the sediment were similar in the two basins. They were relatively low in winter (0.13 and 0.16 μg N cm?3 day?1 in the Eastern and Western basin, respectively), increased slowly in the spring (0.38 and 0.45 μg N cm?3 day?1) and peaked in late summer (0.82 and 1.29 μg N cm?3 day?1, respectively). Ammonium uptake was predominant in spring in the Eastern basin and in summer in the Western basin, coincident with the cyanobacterial bloom. The amount of N2 fixed was less than one third of the internal load during summer when external N loading was insignificant. Potentially, the phytoplankton N demand could be supported entirely by the internal N load via ammonium regeneration in the water column and sediment. However, the quantity of N from ammonium regeneration in the upper layer of sediment combined with that from the water column would limit the standing phytoplankton crop in spring in both basins and in late summer in the Western basin, especially when the algal biomass increases suddenly.  相似文献   

12.
In this work, six (A–F) nitramino (–NHNO2)-substituted ditetrazole 2-N-oxides with different bridging groups (–CH2–, –CH2–CH2–, –NH–, –N=N–, and –NH–NH–) were designed. The six compounds were based on the parent compound tetrazole 2-N-oxide, which possesses a high oxygen balance and high density. The structure, heat of formation, density, detonation properties (detonation velocity D and detonation pressure P), and the sensitivity of each compound was investigated systematically via density functional theory, by studying the electrostatic potential, and using molecular mechanics. The results showed that compounds A–F all have outstanding energetic properties (D: 9.1–10.0 km/s; P: 38.0–46.7 GPa) and acceptable sensitivities (h 50: 28–37 cm). The bridging group present was found to greatly affect the detonation performance of each ditetrazole 2-N-oxide, and the compound with the –NH–NH– bridging group yielded the best results. Indeed, this compound (F) was calculated to have comparable sensitivity to the famous and widely used high explosive 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), but with values of D and P that were about 8.7% and 19.4% higher than those for HMX, respectively. The present study shows that tetrazole 2-N-oxide is a useful parent compound which could potentially be used in the design of new and improved high-energy compounds to replace existing energetic compounds such as HMX.  相似文献   

13.
The design and synthesis of efficient metal‐free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth abundant and environment friendly. As a typical metal‐free semiconductor, g‐C3N4 has received much attention in the field of photocatalytic water splitting. However, the poor photoinduced hole mobility of g‐C3N4 restrains its catalytic performance. Herein, for the first time, graphdiyne (GDY) is used to interact with g‐C3N4 to construct a metal‐free 2D/2D heterojunction of g‐C3N4/GDY as an efficient photoelectrocatalyst for water splitting. The g‐C3N4/GDY photocathode exhibits enhanced photocarriers separation due to excellent hole transfer nature of graphdiyne and the structure of 2D/2D heterojunction of g‐C3N4/GDY, realizing a sevenfold increase in electron life time (610 μs) compared to that of g‐C3N4 (88 μs), and a threefold increase in photocurrent density (?98 μA cm?2) compared to that of g‐C3N4 photocathode (?32 μA cm?2) at a potential of 0 V versus normal hydrogen electrode (NHE) in neutral aqueous solution. The photoelectrocatalytic performance can be further improved by fabricating Pt@g‐C3N4/GDY, which displays an photocurrent of ?133 μA cm?2 at a potential of 0 V versus NHE in neutral aqueous solution. This work provides a new strategy for the design of efficient metal‐free photoelectrocatalysts for water splitting.  相似文献   

14.

Aims

A field experiment was conducted to quantify annual nitrous oxide (N2O) fluxes from control and fertilized plots under open-air and greenhouse vegetable cropping systems in southeast China. We compiled the reported global field annual N2O flux measurements to estimate the emission factor of N fertilizer for N2O and its background emissions from vegetable fields.

Methods

Fluxes of N2O were measured using static chamber-GC techniques over the 2010–2011 annual cycle with multiple cropping seasons.

Results

The mean annual N2O fluxes from the controls were 46.1?±?2.3 μg N2O-N m?2 hr?1 and 68.3?±?4.1 μg N2O-N m?2 hr?1 in the open-air and greenhouse vegetable systems, respectively. For the plots receiving 900 kg?N?ha?1, annual N2O emissions averaged 90.6?±?8.9 μg N2O-N m?2 hr?1 and 106.4?±?6.6 μg N2O-N?m?2 hr?1 in the open-air and greenhouse vegetable systems, respectively. By pooling published field N2O flux measurements taken over or close to a full year, the N2O emission factor for N fertilizer averaged 0.63?±?0.09 %, with a background emission of 2.67?±?0.80 kg N2O-N ha?1 in Chinese vegetable fields. Annual N2O emissions from Chinese vegetable systems were estimated to be 84.7 Gg N2O-N yr?1, consisting of 72.5 Gg N2O-N yr?1 and 12.2 Gg N2O-N yr?1 in the open-air and greenhouse vegetable systems, respectively.

Conclusions

While N2O emissions from the greenhouse vegetable cropping system tended to be slightly higher compared to the open-air system in our experiment, the synthesis of literature data suggests that N2O emissions would be greater at low N-rates but smaller at high N-rates in greenhouse systems than in open-air vegetable cropping systems. The estimates of this study suggest that vegetable cropping systems covering 11.4 % in national total cropping area, contributed 21–25 % to the total N2O emission from Chinese croplands.  相似文献   

15.
Mc Clendon , John H. (U. Delaware, Newark.) The relationship between the thickness of deciduous leaves and their maximum photosynthetie rate. Amer. Jour. Bot. 49(4): 320–322. Illus. 1962.—Data of Willstätter and Stoll (25°, saturating light and CO2) are used to show that it is useful to plot photosynthetie rate per unit area as a function of the density thickness (g/cm2; fresh wt) of the leaves. Data for 23 species were plotted together. If P is photosynthetie rate, T the total density thickness, E the density thickness of the epidermis, a linear relation is found using the maximum values of P, such that P = R (T - E), where R is about 30 (mg CO2) (hr)-1 (g F.W.)-1. Using this expression, 15 species were represented by values of R over 23, while very young leaves, aurea2 leaves and a few others fell in the range 8–16. A mean value of E was taken, from other data, to be about 3 × 10-3 g/cm2, while T ranged from 10 to 40 × 10-3 g/cm2, and P ranged from 0.2 to 0.8 (mg CO2) hr-1 cm-2 for “normal” leaves.  相似文献   

16.
A cell envelope fraction has been prepared after mechanical disruption of lysozyme-EDTA spheroplasts from depigmented Rhodopseudomonas sphaeroides (aerobically grown in the light). On linear sucrose gradients this fraction can be separated in a cytoplasmic membrane fraction and an outer membrane fraction. The cytoplasmic fraction (buoyant density: 1.18 g/cm3) has been characterized by its succinic dehydrogenase activity and by its composition. The outer membrane fraction (buoyant density: 1.21 g/cm3) does not contain any respiratory activity nor hemoproteins. The same fractionation has been done on cells repigmented in the dark by lowering the O2 pressure. In that case the same two fractions have been detected in addition to the chromatophore fraction (buoyant density: 1.14 g/cm3). However both, and specially the outer membrane fraction, were contaminated by chromatophore material.  相似文献   

17.
In order to obtain lipid producing strain with high-yield, the wild type stain Rhodotorula glutinis was treated by low ion implantation, and optimization of fermentation medium for higher lipid yield was carried out using mutant strain. It was found that the strain had a higher positive mutation rate when the output power was 10 keV and the dose of N+ implantation was 80 × 2.6 × 1013 ions/cm2. Then a high-yield mutant strain D30 was obtained through cid-heating coupling ultrasonic method and lipid yield was 3.10 g/L. Additionally, the surface response method was used to optimize fermentation medium. The three significant factors (glucose, peptone, KH2PO4) were optimized using response surface methodology (RSM), and the optimized parameters of fermentation medium were as follows: glucose 73.40 g/L, peptone 1.06 g/L and KH2PO4 3.56 g/L. Finally the fermentation characteristic of high-yield mutation strain D30 was studied, when fermentation time was 10 days, which lipid yield increased to 7.81 g/L. Fatty acid composition of the lipid was determined by GC, and the most represented fatty acids of mutant D30 were C16:0 (11.4 %), C16:1 (5.66 %), C18:1 (49.3 %), and C18:2 (27.0 %).  相似文献   

18.
While the nuclei of many diverse types of tissue can be purified by centrifugation through dense sucrose solutions, Xenopus laevis embryo and liver nuclei present special purification problems due to the presence of large numbers of melanosomes in embryo and liver cells. These melanosomes were removed by isopycnic centrifugation in Metrizamide gradients. In Metrizamide, embryo nuclei banded at an average buoyant density of ρC = 1.288 ± 0.003 g/cm3. Liver nuclei separated into two peaks, one containing nonparenchymal cell nuclei with an average buoyant density of ρC = 1.274 ± 0.003 g/cm3 and the other peak containing parenchymal cell nuclei with an average buoyant density of ρC = 1.284 ± 0.001 g/cm3.  相似文献   

19.
The acaricidal properties of 1,7,7-trimethylbicyclo[2.2.1]heptan-2-one isolated from Artemisia iwayomogi and its structural analogues were evaluated against Dermatophagoides farinae and D. pteronyssinus, and their effects were compared with that of the commercial acaricide benzyl benzoate. Based on the 50 % lethal dose (LD50) values against D. farinae, 1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (0.82 μg/cm2) was 9.71 times more effective than benzyl benzoate (7.96 μg/cm2), followed by (1R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (1.03 μg/cm2), (1S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (1.58 μg/cm2), and (1R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one oxime (3.05 μg/cm2) in a filter paper bioassay. The acaricidal activities of 1,7,7-trimethylbicyclo[2.2.1]heptan-2-one and its structural analogues against D. pteronyssinus were similar to those against D. farinae. These results demonstrate that naturally occurring A. iwayomogi-isolated 1,7,7-trimethylbicyclo[2.2.1]heptan-2-one and its structural analogues are suitable for the production of natural acaricides against house dust mites.  相似文献   

20.
A theoretical study of the magnetic properties, using density functional theory, of a family of trinuclear μ3-OH copper(II) complexes reported in the literature is presented. The reported X-ray crystal structures of [Cu33-OH)(aat)3(H2O)3](NO3)2·H2O (HUKDUM), where aat: 3-acetylamine-1,2,4-triazole; [Cu33-OH)(aaat)3(H2SO4)(HSO4)(H2O)] (HUKDOG), where aaat: 3-acetylamine-5-amine-1,2,4-triazole; [Cu33-OH)(PhPyCNO)3(tchlphac)2] (HOHQUR), where PhPyCNO: phenyl 2-pyridyl-ketoxime and tchlphac: acid 2,4,5-trichlorophenoxyacetic; [Cu33-OH)(PhPyCNO)3(NO3)2(CH3OH)] (ILEGEM); [Cu33-OH)(pz)3(Hpz)3(ClO4)2] (QOPJIP), where Hpz?=?pyrazole; [Cu33-OH)(pz)3(Hpz)(Me3CCOO)2]?2Me3CCOOH (DEFSEN) and [Cu33-OH)(8-amino-4-methyl-5-azaoct-3-en-2-one)3][CuI3] (RITXUO), were used in the calculations. The magnetic exchange constants were calculated using the broken-symmetry approach. The calculated J values are for HUKDUM J1?=??68.6 cm?1, J2?=??69.9 cm?1, J3?=??70.4 cm?1; for HUKDOG, J1?=??73.5 cm?1, J2?=??58.9 cm?1, J3?=??62.1 cm?1; for HOHQUR J1?=??128.3 cm?1, J2?=??134.1 cm?1, J3?=??120.4 cm?1; for ILEGEM J1?=??151.6 cm?1, J2?=??173.9 cm?1, J3?=??186.9 cm?1; for QOPJIP J1?=??118.3 cm?1, J2?=??106.0 cm?1, J3?=??120.6 cm?1; for DEFSEN J1?=??74.9 cm?1, J2?=??64.0 cm?1, J3?=??57.7 cm?1 and for RITXUO J1?=??10.9 cm?1, J2?=?+14.3 cm?1, J3?=??35.4 cm?1. The Kahn-Briat model was used to correlate the calculated magnetic properties with the overlap of the magnetic orbitals. Spin density surfaces show that the delocalization mechanism is predominant in all the studied compounds.
Figure
The Kahn-briat model was used to correlate the calculated magnetic properties with the overlap of the magnetic orbitals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号