首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unknown force-field parameters for metal organic beryllium complexes used in emitting and electron transporting layers of OLED structures are determined. These parameters can be used for the predictive atomistic simulations of the structure and properties of amorphous organic layers containing beryllium complexes. The parameters are found for the AMBER force field using a relaxed scan procedure and quantum-mechanical DFT calculations of potential energy curves for specific internal (angular) coordinates in a series of three Be complexes (Bebq2; Be(4-mpp)2; Bepp2). The obtained parameters are verified in calculations of some molecular and crystal structures available from either quantum-mechanical DFT calculations or experimental data.
Graphical Abstract Beryllium complexes in amorphous layers?
  相似文献   

2.
The ternary complexes ML???PyZX2???NH3 (ML?=?CuCl, CuCN, AgCN, and AuCN; Z?=?P, As, and Sb; X?=?H and F) have been investigated with quantum chemical calculations. The results showed that the existence of coordination interaction has a prominent enhancing effect on the strength of pnicogen bonding. Even in ML???PySbH2???NH3, ML???PyAsF2???NH3, and ML???PySbF2???NH3, the pnicogen bond varies from a purely closed-shell interaction to a partially covalent interaction. The coordination interaction results in the enlargement of the σ-hole on the pnicogen atom and thus the enhancement of pnicogen bonding. In addition, the contribution of orbital interaction is also important.
Graphical Abstract The pnicogen bond is strengthened by the coordinaiton bond
  相似文献   

3.
The structure and stability of various ternary complexes in which an extended aromatic system such as coronene interacts with ions/atoms/molecules on opposite faces of the π-electron cloud were investigated using ab initio calculations. By characterizing the nature of the intermolecular interactions using an energy decomposition analysis, it was shown that there is an interplay between various types of interactions and that there are co-operativity effects, particularly when different types of interactions coexist in the same system.
Graphical abstract Weak OH-π, π-π and van der Waals-π ternary systems are stabilized through dispersion interactions. Cation-π ternary systems are stabilized by through-space electrostatic interactions.
  相似文献   

4.
5.
In this article, we explore the capacity of formed Schiff base complexes to trap metal atoms or ions, using their aromatic ends. The intrinsic geometry of each complex defines the process of substitution. Two cases were studied; one involving a trans Schiff base complex and the other considering how a salen ligand, with nickel systems traps chromium. We also assessed the nature of the new bonds and the frontier molecular orbitals.
Graphical abstract Two salen nickel compounds are joint by a Cr(0) atom forming an organometallic interaction.
  相似文献   

6.
7.
MP2/aug-cc-pVTZ calculations were performed for complexes linked by hydrogen bonds. Three types of proton donating species were taken into account: H2O, CCl3H, and H3O+. These calculations are supported by the natural bond orbital (NBO) method and the quantum theory of atoms in molecules (QTAIM) approach. Numerous correlations between parameters of H-bonded systems were found. The most important are those which show the response of the system on the H-bond formation; for example, the increase of polarization of the A-H bond correlates with the strength of the hydrogen bond. Similar relationships were found for the σ-hole bonds while the π-hole bonds do not follow the trends known for the hydrogen bonds.
Graphical abstract Hydrogen bonds and other interactions as a response to protect doublet/octet electron structure?
  相似文献   

8.
Density functional theory (DFT) calculations are performed to study the hydrogen-bonding in the DMSO-water and DMF-water complexes. Quantitative molecular electrostatic potential (MESP) and atoms-in-molecules (AIM) analysis are applied to quantify the relative complexation of DMSO and DMF with water molecules. The interaction energy of DMSO with water molecules was higher than in DMF-water complexes. The existence of cooperativity effect helps in the strong complex formation. A linear dependence was observed between the hydrogen bond energies EHB, and the total electron densities in the BCP’s of microsolvated complexes which supports the existence of cooperativity effect for the complexation process. Due to the stronger DMSO/DMF and water interaction, the water molecules in the formed complexes have a different structure than the isolated water clusters. NCI analysis shows that the steric area is more pronounced in DMF-water complex than the DMSO-water complex which accounts for the low stability of DMF-water complexes compared to the DMSO-water complex.
Graphical abstract NCI analysis shows that the steric area is more pronounced in DMF-water complex than the DMSO-water complex which accounts for the low stability of DMF-water complexes compared to the DMSO-water complex.
  相似文献   

9.
Mechanisms for the activation of water, ammonia, and other small molecules by the PCcarbeneP nickel pincer complex were studied computationally with the aid of density functional theory. The calculation results indicate that the strongly donating, nucleophilic carbene center can engage in a variety of heterolytic splitting of E?H (E=H, C, N, O) bonds, some of which are reversible. The cleavage of E?H bonds across the Ni=C bond represents a new mode of bond activation by ligand cooperativity in nickel pincer complex. On the basis of the calculations, we also demonstrate that reversible H2 activation across the Ir=C bond via the PCcarbeneP iridium pincer complex was observed in the experiments, while other E?H (E=C, N, O) bonds were not activated. Our calculations are in good agreement with experimental observations and could provide new insights into ligand cooperativity in nickel pincer complexes.
Graphical Abstract Synopsis TOC
  相似文献   

10.
Density functional theory calculations were carried out to investigate the formation mechanism of the thymine-thymine (6–4) dimer ((6–4)TT), which is one of the main DNA lesions induced by ultraviolet radiation and is closely related to skin cancers. The DNA backbone was found to have nonnegligible effects on the triplet reaction pathway, particularly the reaction steps involving substantial base rotations. The mechanism for the isomerization from (6–4)TT to its Dewar valence isomer (DewarTT) was also explored, confirming the necessity of absorbing a second photon. In addition, the solvation effects were examined and showed considerable influence on the potential energy surface.
Graphical Abstract DFT calculations on the influence of DNA backbone on the mechanism of UV-induced thymine-thymine (6–4) dimer formation.
  相似文献   

11.
Phthalocyanines represent a crucial class of organic compounds with high technological appeal. By doping the center of these systems with metals, one obtains the so-called metal-phthalocyanines, whose property of being an effective electron donor allows for potentially interesting uses in organic electronics. In this sense, investigating optical and electronic structure changes in the phthalocyanine profiles in the presence of different metals is of fundamental importance for evaluating the appropriateness of the resulting system as far as these uses are concerned. In the present work, we carry out this kind of effort for phthalocyanines doped with different metals, namely, copper, nickel, and magnesium. Density functional theory was applied to obtain the absorption spectra, and electronic and structural properties of the complexes. Our results suggest that depending on the dopant, a different level of change is achieved. Moreover, electrostatic potential energy mapping shows how the charge distribution can be affected by solar radiation. Our contribution is crucial in describing the best possible candidates for use in different organic photovoltaic applications.
Graphical Abstract Representation of meta-phthalocyanine systems. All calculations of this work are based on varying metal position along z axis, considering the z-axis has its zero point matching with the center of phthalocyanine cavityconsidering.
  相似文献   

12.
High-level ab initio calculations on the complexes between noble gas atoms (He, Ne, Ar, Kr, and Xe) and dihalogen molecules (F2, Cl2, Br2, and I2) reveal trends, both in interaction energies and the energy difference between the linear and T-shaped structures, that can be explained well in terms of dispersion interactions enhanced by polar flattening of the halogens. The partial discrepancies with experimental findings are discussed.
Graphical abstract The molecular electrostatic potential (red positive, blue negative) of Cl2...Br2 projected onto the 0.003 a.u. isodensity surface.
  相似文献   

13.
In this study, the doped defects in nitromethane crystals were investigated using first-principles calculations for the first time. We introduce dopant atoms in the interstitial sites of the nitromethane lattice, aiming to study the effects of element-doping on the structural properties, electronic properties, and sensitivity characteristics. The obtained results show that doped defects obviously affect the neighboring nitromethane molecules. The modification of electronic properties shows that the band gaps are significantly influenced by doped defects. Partial density of states and population analysis further reveal the mechanism for sensitivity control of nitromethane. It is shown that the new electronic states were introduced in the forbidden bands and the doped defects resulted in charge redistributions in the systems.
Graphical abstract The valence and conduction band edge positions as well as defect levels of pure and X-doped NM
  相似文献   

14.
A post-calculation correction is established for PM7 band gaps of transition-metal oxides. The correction is based on the charge on the metal cation of interest, as obtained from MOPAC PM7 calculations. Application of the correction reduces the average error in the PM7 band gap from ~3 eV to ~1 eV. The residual error after correction is shown to be uncorrelated to the Hartree–Fock method upon which PM7 is based.
Graphical Abstract Comparison between calculated band gaps and experimental band gaps for binary oxides. The orange crosses are for corrected PM7 band gaps. Blue squares are uncorrected values. The orange crosses fall closer to the diagonal dashed line, showing an overall improvement of the accuracy of calculated values
  相似文献   

15.
The factors that explain the competition between intramolecular NO linkage photoisomerization and NO photorelease in five ruthenium nitrosyl complexes were investigated. By applying DFT-based methods, it was possible to characterize the ground states and lowest triplet potential energy surfaces of these species, and to establish that both photoisomerization and photorelease processes can occur in the lowest triplet state of each species. This work highlights the crucial role of the sideways-bonded isomer, a metastable state also known as the MS2 isomer, in the photochemical loss of NO, while the results obtained also indicate that the population of the triplet state of this isomer is compulsory for both processes and show how photoisomerization and photorelease interfere.
Graphical Abstract Illustration of the crucial role of the 3MS2 state in the photoreactivities of ruthenium nitrosyl complexes
  相似文献   

16.
The aldol reaction in the presence of L-proline acting as an organocatalyst is a well-known example of asymmetric synthesis. Many theoretical and experimental studies have been carried out to probe the mechanism of this reaction. In this work, two levels of density functional theory in the gas phase and DMSO were used to elucidate the best pathways for this reaction, with the enamine and enol considered intermediates and L-proline considered either a reactant or a facilitator. The calculations indicated that both intermediates are formed simultaneously in the reaction medium. Interestingly, the formation of the enamine intermediate predominates in DMSO at room temperature, whereas the enol becomes the predominant intermediate upon the addition of water.
Graphical Abstract The dual role of L-proline leads to single stereoisomeric aldol product via two completely different pathways.
  相似文献   

17.
18.
In this article, we explore, both theoretically and experimentally, the general reactivity of alkyl hydrogeno-phenylphosphinates with alcohols. We show that alcohol molecules act exclusively as nucleophilic species, and add to alkyl hydrogeno-phenylphosphinates, leading to pentacoordinated intermediates. These intermediates are shown to subsequently competitively undergo alcohol eliminations and/or Berry pseudorotations. This offers several possible routes for racemizations and/or alcohol exchange reactions. Transition standard Gibbs free energies predicted from DFT calculations for the overall alcohol exchange mechanism are shown to be compatible with those experimentally measured in case ethanol reacts with ethyl hydrogeno-phenylphosphinate (134.5~136.0 kJ mol?1 at 78 °C).
Graphical abstract ?
  相似文献   

19.
For the first time, the structures, stabilities and electronic properties of alkaline-earth metal doped B44 fullerenes were investigated by means of density functional theory calculations. Our results reveal that M@B44 (M = Ca, Sr, Ba) possess endohedral configurations as their lowest energy structures, whereas the exohedral form is favored when metal is Be or Mg. The large binding energies and sizable HOMO–LUMO gap energies of Ca@B44, Sr@B44 and Ba@B44 suggest the considerable possibility to achieve these novel endohedral borofullerenes experimentally. Born-Oppenheimer molecular dynamics (BO-MD) simulations at various temperatures further confirmed the extreme dynamic stabilities of these endohedral complexes. Their bonding patterns were also analyzed in detail. Finally, we simulated their infrared absorption spectra and 11B nuclear magnetic resonance spectra to help future structural characterization.
Graphical Abstract Stuffing B44 fullerene with metals
  相似文献   

20.
Molecularly imprinted polymers can be anticipated as synthetic imitation of natural antibodies, receptors and enzymes. In case of successful imprinting the selectivity and affinity of the imprint for substrate molecules are comparable with those of natural counterparts. The selection of the optimal functional monomer, monomer/template ratio as well as choosing of polymerization solvent is crucial determinants of the successful imprinting. In the present study the simulation approach to the development of molecular imprinting polymers for the extraction of new protein kinase ATP-competitive inhibitors is presented. By imprinting tri-O-acetyladenosine into polymer matrix the synthetic reproduction of adenosine triphosphate binding site to protein kinases can be fabricated and further used for adenosine triphosphate analogs screening in different sources. The optimized geometrical structure and energy of the pre-polymerization complexes of tri-O-acetyladenosine (template) with three different monomers—methacrylic acid, 3-vinyl benzoic acid and acrylamide in vacuum were calculated using hybrid quantum mechanical/molecular mechanical (QM/MM) approach. These calculations demonstrate that methacrylic acid forms the most stable complex with template, the next is 3-vinyl benzoic acid complex and the third—acrylamide one. The bond energies of the complexes are shown to increase monotonically as more monomers are linked to the template. The same conclusions are made from purely quantum self-consistent field calculations of pre-polymerization complex energy and structure. Hybrid calculation is shown to be effective and can substantially accelerate the development of the imprinting technology.
Figure Pre-polymerization complex of MIP with tri-O-acetiladenosine template with 5 metacrylic acid monomers
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号