首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Epidermal growth factor receptor (EGFR), member of the human epidermal growth factor receptor (HER) family, plays a critical role in regulating multiple cellular processes including proliferation, differentiation, cell migration and cell survival. Deregulation of the EGFR signaling has been found to be associated with the development of a variety of human malignancies including lung, breast, and ovarian cancers, making inhibition of EGFR the most promising molecular targeted therapy developed in the past decade against cancer. Human non small cell lung cancers (NSCLC) with activating mutations in the EGFR gene frequently experience significant tumor regression when treated with EGFR tyrosine kinase inhibitors (TKIs), although acquired resistance invariably develops. Resistance to TKI treatments has been associated to secondary mutations in the EGFR gene or to activation of additional bypass signaling pathways including the ones mediated by receptor tyrosine kinases, Fas receptor and NF-kB. In more than 30–40% of cases, however, the mechanisms underpinning drug-resistance are still unknown. The establishment of cellular and mouse models can facilitate the unveiling of mechanisms leading to drug-resistance and the development or validation of novel therapeutic strategies aimed at overcoming resistance and enhancing outcomes in NSCLC patients. Here we describe the establishment and characterization of EGFR TKI-resistant NSCLC cell lines and a pilot study on the effects of a combined MET and EGFR inhibitors treatment. The characterization of the erlotinib-resistant cell lines confirmed the association of EGFR TKI resistance with loss of EGFR gene amplification and/or AXL overexpression and/or MET gene amplification and MET receptor activation. These cellular models can be instrumental to further investigate the signaling pathways associated to EGFR TKI-resistance. Finally the drugs combination pilot study shows that MET gene amplification and MET receptor activation are not sufficient to predict a positive response of NSCLC cells to a cocktail of MET and EGFR inhibitors and highlights the importance of identifying more reliable biomarkers to predict the efficacy of treatments in NSCLC patients resistant to EGFR TKI.  相似文献   

3.
Metastasis is a multistep process and the main cause of mortality in lung cancer patients. We previously showed that EGFR mutations were associated with a copy number gain at a locus encompassing the TWIST1 gene on chromosome 7. TWIST1 is a highly conserved developmental gene involved in embryogenesis that may be reactivated in cancers promoting both malignant conversion and cancer progression through an epithelial to mesenchymal transition (EMT). The aim of this study was to investigate the possible implication of TWIST1 reactivation on the acquisition of a mesenchymal phenotype in EGFR mutated lung cancer. We studied a series of consecutive lung adenocarcinoma from Caucasian non-smokers for which surgical frozen samples were available (n = 33) and showed that TWIST1 expression was linked to EGFR mutations (P<0.001), to low CDH1 expression (P<0.05) and low disease free survival (P = 0.044). To validate that TWIST1 is a driver of EMT in EGFR mutated lung cancer, we used five human lung cancer cell lines and demonstrated that EMT and the associated cell mobility were dependent upon TWIST1 expression in cells with EGFR mutation. Moreover a decrease of EGFR pathway stimulation through EGF retrieval or an inhibition of TWIST1 expression by small RNA technology reversed the phenomenon. Collectively, our in vivo and in vitro findings support that TWIST1 collaborates with the EGF pathway in promoting EMT in EGFR mutated lung adenocarcinoma and that large series of EGFR mutated lung cancer patients are needed to further define the prognostic role of TWIST1 reactivation in this subgroup.  相似文献   

4.
Costa DB  Halmos B  Kumar A  Schumer ST  Huberman MS  Boggon TJ  Tenen DG  Kobayashi S 《PLoS medicine》2007,4(10):1669-79; discussion 1680

Background

Epidermal growth factor receptor (EGFR) mutations are present in the majority of patients with non-small cell lung cancer (NSCLC) responsive to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib or erlotinib. These EGFR-dependent tumors eventually become TKI resistant, and the common secondary T790M mutation accounts for half the tumors with acquired resistance to gefitinib. However, the key proapoptotic proteins involved in TKI-induced cell death and other secondary mutations involved in resistance remain unclear. The objective of this study was to identify the mechanism of EGFR TKI-induced apoptosis and secondary resistant mutations that affect this process.

Methods and Findings

To study TKI-induced cell death and mechanisms of resistance, we used lung cancer cell lines (with or without EGFR mutations), Ba/F3 cells stably transfected with EGFR mutation constructs, and tumor samples from a gefitinib-resistant patient. Here we show that up-regulation of the BH3-only polypeptide BIM (also known as BCL2-like 11) correlated with gefitinib-induced apoptosis in gefitinib-sensitive EGFR-mutant lung cancer cells. The T790M mutation blocked gefitinib-induced up-regulation of BIM and apoptosis. This blockade was overcome by the irreversible TKI CL-387,785. Knockdown of BIM by small interfering RNA was able to attenuate apoptosis induced by EGFR TKIs. Furthermore, from a gefitinib-resistant patient carrying the activating L858R mutation, we identified a novel secondary resistant mutation, L747S in cis to the activating mutation, which attenuated the up-regulation of BIM and reduced apoptosis.

Conclusions

Our results provide evidence that BIM is involved in TKI-induced apoptosis in sensitive EGFR-mutant cells and that both attenuation of the up-regulation of BIM and resistance to gefitinib-induced apoptosis are seen in models that contain the common EGFR T790M and the novel L747S secondary resistance mutations. These findings also suggest that induction of BIM may have a role in the treatment of TKI-resistant tumors.  相似文献   

5.
6.
Activating mutations in the EGFR gene influence cell proliferation, angiogenesis, and increases metastatic ability of non-small cell lung cancer (NSCLC) cells; they have a significant impact on the choice of medical therapy of NSCLC. The use of targeted therapy with tyrosine kinase inhibitors requires performance of appropriate genetic tests in NSCLC patients. The aim of this study was to develop a real-time PCRbased diagnostic test-system for rapid and cost-effective analysis of EGFR mutations in paraffin blocks and plasma and to perform comparative estimation of diagnostic characteristics features of real-time wild type blocking PCR and digital PCR. The study included 156 patients with different degrees of lung adenocarcinoma differentiation. A simple and efficient real-time PCR-based method for detection of L858R activating mutation and del19 deletion in the EGFR gene in DNA isolated from paraffin blocks or blood has been developed. The test system for EGFR mutations has been validated using 411 samples of paraffin blocks. The proposed system demonstrated high efficiency for DNA testing from paraffin blocks: a concordance with results of testing by means a Therascreen® EGFR RGQ PCR Kit (Qiagen, Germany) was 100%. Applicability of this test system has been also demonstrated for detection of mutations in plasma.  相似文献   

7.
Clinical resistance to gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), in patients with lung cancer has been linked to acquisition of the T790M resistance mutation in activated EGFR or amplification of MET. Phosphatase and tensin homolog (PTEN) loss has been recently reported as a gefitinib resistance mechanism in lung cancer. The aim of this study was to evaluate the efficacy of radiotherapy in non‐small‐cell lung cancer (NSCLC) with acquired gefitinib resistance caused by PTEN deficiency to suggest radiotherapy as an alternative to EGFR TKIs. PTEN deficient‐mediated gefitinib resistance was generated in HCC827 cells, an EGFR TKI sensitive NSCLC cell line, by PTEN knockdown with a lentiviral vector expressing short hairpin RNA‐targeting PTEN. The impact of PTEN knockdown on sensitivity to radiation in the presence or absence of PTEN downstream signaling inhibitors was investigated. PTEN knockdown conferred acquired resistance not only to gefitinib but also to radiation on HCC827 cells. mTOR inhibitors alone failed to reduce HCC827 cell viability, regardless of PTEN expression, but ameliorated PTEN knockdown‐induced radioresistance. PTEN knockdown‐mediated radioresistance was accompanied by repression of radiation‐induced cytotoxic autophagy, and treatment with mTOR inhibitors released the repression of cytotoxic autophagy to overcome PTEN knockdown‐induced radioresistance in HCC827 cells. These results suggest that inhibiting mTOR signaling could be an effective strategy to radiosensitize NSCLC harboring the EGFR activating mutation that acquires resistance to both TKIs and radiotherapy due to PTEN loss or inactivation mutations. J. Cell. Biochem. 114: 1248–1256, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.  相似文献   

9.
Osimertinib, as the third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs), is a first-line molecularly targeted drug for non-small cell lung cancer (NSCLC). However, the emergence of therapeutic resistance to osimertinib markedly impairs its efficiency and efficacy, leading to the failure of clinical applications. Novel molecular targets and drugs are urgently needed for reversing osimertinib resistance in NSCLC. Protease-activated receptor 2 (PAR2) that belongs to a subfamily of G protein-coupled receptors can stimulate the transactivation of EGFR to regulate multiple cellular signalling, actively participating in tumour progression. This study firstly discovered that PAR2 expression was notably enhanced when NSCLC cells became resistant to osimertinib. A PAR2 inhibitor facilitated osimertinib to attenuate EGFR transactivation, ERK phosphorylation, EMT and PD-L1 expression which were associated to osimertinib resistance. The combination of the PAR2 inhibitor and osimertinib also notably blocked cell viability, migration, 3D sphere formation and in vivo tumour growth whereas osimertinib itself lost such inhibitory effects in osimertinib-resistant NSCLC cells. Importantly, this reversal effect of PAR2 blockade was uncovered to depend on ERK-mediated EMT and PD-L1, since inhibition of β-arrestin or ERK, which could be modulated by PAR2, sensitized osimertinib to prevent EMT, PD-L1 expression and consequently overcame osimertinib resistance. Thus, this study demonstrated that PAR2 antagonism could limit ERK-mediated EMT and immune checkpoints, consequently attenuating EGFR transactivation and reactivate osimertinib. It suggested that PAR2 may be a novel drug target for osimertinib resistance, and PAR2 inhibition may be a promising strategy candidate for reversing EGFR-TKI resistance in NSCLC.  相似文献   

10.
Epithelial-mesenchymal transition (EMT) is one mechanism of acquired resistance to inhibitors of the epidermal growth factor receptor-tyrosine kinases (EGFR-TKIs) in non-small cell lung cancer (NSCLC). The precise mechanisms of EMT-related acquired resistance to EGFR-TKIs in NSCLC remain unclear. We generated erlotinib-resistant HCC4006 cells (HCC4006ER) by chronic exposure of EGFR-mutant HCC4006 cells to increasing concentrations of erlotinib. HCC4006ER cells acquired an EMT phenotype and activation of the TGF-β/SMAD pathway, while lacking both T790M secondary EGFR mutation and MET gene amplification. We employed gene expression microarrays in HCC4006 and HCC4006ER cells to better understand the mechanism of acquired EGFR-TKI resistance with EMT. At the mRNA level, ZEB1 (TCF8), a known regulator of EMT, was >20-fold higher in HCC4006ER cells than in HCC4006 cells, and increased ZEB1 protein level was also detected. Furthermore, numerous ZEB1 responsive genes, such as CDH1 (E-cadherin), ST14, and vimentin, were coordinately regulated along with increased ZEB1 in HCC4006ER cells. We also identified ZEB1 overexpression and an EMT phenotype in several NSCLC cells and human NSCLC samples with acquired EGFR-TKI resistance. Short-interfering RNA against ZEB1 reversed the EMT phenotype and, importantly, restored erlotinib sensitivity in HCC4006ER cells. The level of micro-RNA-200c, which can negatively regulate ZEB1, was significantly reduced in HCC4006ER cells. Our results suggest that increased ZEB1 can drive EMT-related acquired resistance to EGFR-TKIs in NSCLC. Attempts should be made to explore targeting ZEB1 to resensitize TKI-resistant tumors.  相似文献   

11.
12.

Background

Oncogenic mutations are powerful predictive biomarkers for molecularly targeted cancer therapies. For mutation detection patients have to undergo invasive tumor biopsies. Alternatively, archival samples are used which may no longer reflect the actual tumor status. Circulating tumor cells (CTC) could serve as an alternative platform to detect somatic mutations in cancer patients. We sought to develop a sensitive and specific assay to detect mutations in the EGFR gene in CTC from lung cancer patients.

Methods

We developed a novel assay based on real-time polymerase chain reaction (PCR) and melting curve analysis to detect activating EGFR mutations in blood cell fractions enriched in CTC. Non-small-cell lung cancer (NSCLC) was chosen as disease model with reportedly very low CTC counts. The assay was prospectively validated in samples from patients with EGFR-mutant and EGFR-wild type NSCLC treated within a randomized clinical trial. Sequential analyses were conducted to monitor CTC signals during therapy and correlate mutation detection in CTC with treatment outcome.

Results

Assay sensitivity was optimized to enable detection of a single EGFR-mutant CTC/mL peripheral blood. CTC were detected in pretreatment blood samples from all 8 EGFR-mutant lung cancer patients studied. Loss of EGFR-mutant CTC signals correlated with treatment response, and its reoccurrence preceded relapse.

Conclusions

Despite low abundance of CTC in NSCLC oncogenic mutations can be reproducibly detected by applying an unbiased CTC enrichment strategy and highly sensitive PCR and melting curve analysis. This strategy may enable non-invasive, specific biomarker diagnostics and monitoring in patients undergoing targeted cancer therapies.  相似文献   

13.
Although cancers can be initially treated with the epidermal growth factor receptor (EGFR) inhibitor, gefitinib, continued gefitinib therapy does not benefit the survival of patients due to acquired resistance through EGFR mutations, c-MET amplification, or epithelial-mesenchymal transition (EMT). It is of further interest to determine whether mesenchymal-like, but not epithelial-like, cancer cells can become resistant to gefitinib by bypassing EGFR signaling and acquiring alternative routes of proliferative and survival signaling. Here we examined whether gefitinib resistance of cancer cells can be caused by transmembrane 4 L six family member 5 (TM4SF5), which has been shown to induce EMT via cytosolic p27Kip1 stabilization. Gefitinib-resistant cells exhibited higher and/or sustained TM4SF5 expression, cytosolic p27Kip1 stabilization, and mesenchymal phenotypes, compared with gefitinib-sensitive cells. Conversion of gefitinib-sensitive to -resistant cells by introduction of the T790M EGFR mutation caused enhanced and sustained expression of TM4SF5, phosphorylation of p27Kip1 Ser10 (responsible for cytosolic location), loss of E-cadherin from cell-cell contacts, and gefitinib-resistant EGFR and survival signaling activities. Additionally, TM4SF5 overexpression lessened the sensitivity of NSCLC cells to gefitinib. Suppression of TM4SF5 or p27Kip1 in gefitinib-resistant cells via the T790M EGFR mutation or TM4SF5 expression rendered them gefitinib-sensitive, displaying more epithelial-like and less mesenchymal-like characteristics. Together, these results indicate that TM4SF5-mediated EMT may have an important function in the gefitinib resistance of cancer cells.  相似文献   

14.
15.

Background

Basal-like and triple negative breast cancer (TNBC) share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR) occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR) have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown.

Materials and Methods

Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed.

Results

Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer.

Conclusions

Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non-small cell lung cancer, accompanying mutations in PIK3CA may confer gefitinib resistance.  相似文献   

16.
Mutations in epithelial growth factor receptor (EGFR), as well as in the EGFR downstream target KRAS are frequently observed in non-small cell lung cancer (NSCLC). Chronic obstructive pulmonary disease (COPD), an independent risk factor for developing NSCLC, is associated with an increased activation of EGFR. In this study we determined presence of EGFR and KRAS hotspot mutations in 325 consecutive NSCLC patients subjected to EGFR and KRAS mutation analysis in the diagnostic setting and for whom the pulmonary function has been determined at time of NSCLC diagnosis. Information about age at diagnosis, sex, smoking status, forced vital capacity (FVC) and forced expiratory volume in 1 sec (FEV1) was collected. Chronic obstructive pulmonary disease(COPD) was defined according to 2013 GOLD criteria. Chi-Square, student t-test and multivariate logistic regression were used to analyze the data. A total of 325 NSCLC patients were included, 193 with COPD and 132 without COPD. COPD was not associated with presence of KRAS hotspot mutations, while EGFR mutations were significantly higher in non-COPD NSCLC patients. Both female gender (HR 2.61; 95% CI: 1.56–4.39; p<0.001) and smoking (HR 4.10; 95% CI: 1.14–14.79; p = 0.03) were associated with KRAS mutational status. In contrast, only smoking (HR 0.11; 95% CI: 0.04–0.32; p<0.001) was inversely associated with EGFR mutational status. Smoking related G>T and G>C transversions were significantly more frequent in females (86.2%) than in males (61.5%) (p = 0.008). The exon 19del mutation was more frequent in non-smokers (90%) compared to current or past smokers (36.8%). In conclusion, KRAS mutations are more common in females and smokers, but are not associated with COPD-status in NSCLC patients. EGFR mutations are more common in non-smoking NSCLC patients.  相似文献   

17.
18.
Non–small cell lung cancer (NSCLC) with activating EGFR mutations in exon 19 and 21 typically responds to EGFR tyrosine kinase inhibitors (TKI); however, for some patients, responses last only a few months. The underlying mechanisms of such short responses have not been fully elucidated. Here, we sequenced the genomes of 16 short-term responders (SR) that had progression-free survival (PFS) of less than 6 months on the first-generation EGFR TKI and compared them to 12 long-term responders (LR) that had more than 24 months of PFS. All patients were diagnosed with advanced lung adenocarcinoma and harbored EGFR 19del or L858R mutations before treatment. Paired tumor samples collected before treatment and after relapse (or at the last follow-up) were subjected to targeted next-generation sequencing of 416 cancer-related genes. SR patients were significantly younger than LR patients (P < .001). Collectively, 88% of SR patients had TP53 variations compared to 13% of LR patients (P < .001). Additionally, 37.5% of SR patients carried EGFR amplifications compared to 8% of LR patients. Other potential primary resistance factors were also identified in the pretreatment samples of 12 SR patients (75%), including PTEN loss; BIM deletion polymorphism; and amplifications of EGFR, ERBB2, MET, HRAS, and AKT2. Comparatively, only three LR patients (25%) were detected with EGFR or AKT1 amplifications that could possibly exert resistance. The diverse preexisting resistance mechanisms in SR patients revealed the complexity of defining treatment strategies even for EGFR-sensitive mutations.  相似文献   

19.

Background

During the past decade, the incidence of EGFR mutation has been shown to vary across different ethnicities. It occurs at the rate of 10–15% in North Americans and Europeans, 19% in African-Americans, 20–30% in various East Asian series including Chinese, Koreans, and Japanese. Frequency of EGFR mutations in India however remains sparsely explored.

Methodology/Principal Findings

We report 23% incidence of Epidermal growth factor receptor (EGFR) mutations in 907 Non small cell lung cancer (NSCLC) patients of Indian ethnicity, in contrast to 10–15% known in Caucasians and 27–62% among East Asians. In this study, EGFR mutations were found to be more common in never-smokers 29.4% as compared to smokers 15.3%. Consistent with other populations, mutation rates among adenocarcinoma-males were predominantly lower than females with 32% incidence. However unlike Caucasians, EGFR mutation rate among adenocarcinoma-never-smoker females were comparable to males suggesting lack of gender bias among never smokers likely to benefit from EGFR targeted therapy.

Conclusions/Significance

This study has an overall implication for establishing relevance for routine EGFR mutation diagnostics for NSCLC patients in clinics and emphasizes effectiveness for adoption of EGFR inhibitors as the first line treatment among Indian population. The intermediate frequency of EGFR mutation among Indian population compared to Caucasians and East Asians is reminiscent of an ancestral admixture of genetic influence from Middle Easterners, Central Asians, and Europeans on modern- Indian population that may confer differential susceptibility to somatic mutations in EGFR.  相似文献   

20.
The development of epithelial-to-mesenchymal transition (EMT) like features is emerging as a critical factor involved in the pathogenesis of acute myeloid leukaemia (AML). However, the extracellular signals and the signalling pathways in AML that may regulate EMT remain largely unstudied. We found that the bone marrow (BM) mesenchymal/fibroblastic cell line HS5 induces an EMT-like migratory phenotype in AML cells. AML cells underwent a strong increase of vimentin (VIM) levels that was not mirrored to the same extent by changes of expression of the other EMT core proteins SNAI1 and SNAI2. We validated these particular pattern of co-expression of core-EMT markers in AML cells by performing an in silico analysis using datasets of human tumours. Our data showed that in AML the expression levels of VIM does not completely correlate with the co-expression of core EMT markers observed in epithelial tumours. We also found that vs epithelial tumours, AML cells display a distinct patterns of co-expression of VIM and the actin binding and adhesion regulatory proteins that regulate F-actin dynamics and integrin-mediated adhesions involved in the invasive migration in cells undergoing EMT. We conclude that the BM stroma induces an EMT related pattern of migration in AML cells in a process involving a distinctive regulation of EMT markers and of regulators of cell adhesion and actin dynamics that should be further investigated. Understanding the tumour specific signalling pathways associated with the EMT process may contribute to the development of new tailored therapies for AML as well as in different types of cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号