首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glioblastoma multiforme (GBM) is recognized as the most common and lethal form of central nervous system cancer. Currently used surgical techniques, chemotherapeutic agents, and radiotherapy strategies have done very little in extending the life expectancies of patients diagnosed with GBM. The difficulty in treating this malignant disease lies both in its inherent complexity and numerous mechanisms of drug resistance. In this review, we summarize several of the primary mechanisms of drug resistance. We reviewed available published literature in the English language regarding drug resistance in glioblastoma. The reasons for drug resistance in glioblastoma include drug efflux, hypoxic areas of tumor cells, cancer stem cells, DNA damage repair, and miRNAs. Many potential therapies target these mechanisms, including a series of investigated alternative and plant-derived agents. Future research and clinical trials in glioblastoma patients should pursue combination of therapies to help combat drug resistance. The emerging new data on the potential of plant-derived therapeutics should also be closely considered and further investigated.  相似文献   

2.
The nervous system has been recently shown to exert impact on gastric cancer directly and indirectly. Gastric cancer cells invade nerve fibers to induce outgrowth and branching of neural cells, and nerve fibers in turn infiltrate into tumor microenvironment to promote progression of gastric cancer. Additionally, the neuro-immune interaction also plays an important role in gastric cancer development. The interplay of nerves and gastric cancer is mediated by many nervous system-associated factors, which can not only be synthesized and released by both cancer cells and nerve terminals, but also participate in regulation of many aspects of gastric cancer such as cell proliferation, angiogenesis, metastasis and recurrence. Furthermore, clinical researches indicate that some of these factors are significant diagnosis and prognosis biomarkers for gastric cancer. Herein, we reviewed recent advances and future prospects of the interaction between nervous system and gastric cancer.  相似文献   

3.
Neurotrophins (NTs) family was first discovered in nervous system and it regulates the proliferation and differentiation of many neural cell types in the peripheral and central nervous system.Due to their perineural invasive characters, certain part of malignant tumor cases was first diagnosed because of nerve paralysis or idiopathic neuralgia caused by perineural invasion. For this reason, the study on the association between NTs and perineural invasion of malignant tumor aroused the attention of many researchers. Increasing evidence indicates that NTs and their receptors, Trks, play important roles in malignant cells, especially the exhibiting perineural invasive phenotype. It was suggested that NTs produced by neural tissue can act as a chemotactic factor, and tumor cells in which the overexpression of Trks' exists seem to be selected to invade the perineural space. Except for contributing to perineural invasion of malignant tumor, accumulated evidence proved NTs now also significantly associated with the metastasis of malignant tumor. Overexpression of NTs or Trks often correlated with the tumorigenesis, angiogenesis and anoikis resistance in these malignancies, contributing significantly to the metastasis and poor prognosis.In summary, besides its role in development and function of nervous system, NTs also play an important role in the perineural invasion and metastasis of malignant tumor. Considering the role that NTs played in malignant tumor, we believe that further studies between NTs and malignant tumor are necessary. Research on the role of NTs pathway might allow advancements in this field.  相似文献   

4.
Glioblastomas (GBMs) are highly lethal primary brain tumors. Despite current therapeutic advances in other solid cancers, the treatment of these malignant gliomas remains essentially palliative. GBMs are extremely resistant to conventional radiation and chemotherapies. We and others have demonstrated that a highly tumorigenic subpopulation of cancer cells called GBM stem cells (GSCs) promotes therapeutic resistance. We also found that GSCs stimulate tumor angiogenesis by expressing elevated levels of VEGF and contribute to tumor growth, which has been translated into a useful therapeutic strategy in the treatment of recurrent or progressive GBMs. Furthermore, stem cell-like cancer cells (cancer stem cells) have been shown to promote metastasis. Although GBMs rarely metastasize beyond the central nervous system, these highly infiltrative cancers often invade into normal brain tissues preventing surgical resection, and GSCs display an aggressive invasive phenotype. These studies suggest that targeting GSCs may effectively reduce tumor recurrence and significantly improve GBM treatment. Recent studies indicate that cancer stem cells share core signaling pathways with normal somatic or embryonic stem cells, but also display critical distinctions that provide important clues into useful therapeutic targets. In this review, we summarize the current understanding and advances in glioma stem cell research, and discuss potential targeting strategies for future development of anti-GSC therapies.  相似文献   

5.
The development of resistance to anti-cancer therapies in bones is a major hurdle preventing long-lasting clinical responses to anti-cancer therapies in hormone refractory prostate cancer. Herein, we present the major signal transduction pathways, which are activated in prostate cancer cells residing at bone metastasis microenvironment. These intracellular signal transduction pathways can inhibit anti-cancer therapy-induced apoptosis of metastatic prostate cancer cells, thereby optimizing their survival, locally. Employment of this knowledge in a clinical setting provides the conceptual framework for the development of bone-targeted therapies for advanced prostate cancer. Indeed, bone metastasis microenvironment-targeted therapies illustrate a novel paradigm in cancer treatment: anti-tumor treatment strategies may not only aim at directly inducing cancer cell apoptosis, but can also target the tumor metastasis microenvironment, and neutralize the protection it confers on metastatic cancer cells.  相似文献   

6.
神经系统损伤会导致脑内神经干细胞(neural stem cells,NSCs)的扩增以实现自我修复功能,而通过外源细胞移植的方式来加速这一进程,可能是一种更有效的治疗手段。当前,神经干细胞临床研究所面临的主要问题是如何评价细胞在移植后的行为和功能。该文综述了近几年使用神经干细胞移植治疗几种主要神经系统疾病的临床研究成果,并着重关注了干细胞移植后的示踪研究。  相似文献   

7.

Background

The genetic diversity of cancer and the dynamic interactions between heterogeneous tumor cells, the stroma and immune cells present daunting challenges to the development of effective cancer therapies. Although cancer biology is more understood than ever, this has not translated into therapies that overcome drug resistance, cancer recurrence and metastasis. The future development of effective therapies will require more understanding of the dynamics of homeostatic dysregulation that drives cancer growth and progression.

Results

Cancer dynamics are explored using a model involving genes mediating the regulatory interactions between the signaling and metabolic pathways. The exploration is informed by a proposed genetic dysregulation measure of cellular processes. The analysis of the interaction dynamics between cancer cells, cancer associated fibroblasts, and tumor associate macrophages suggests that the mutual dependence of these cells promotes cancer growth and proliferation. In particular, MTOR and AMPK are hypothesized to be concurrently activated in cancer cells by amino acids recycled from the stroma. This leads to a proliferative growth supported by an upregulated glycolysis and a tricarboxylic acid cycle driven by glutamine sourced from the stroma. In other words, while genetic aberrations ignite carcinogenesis and lead to the dysregulation of key cellular processes, it is postulated that the dysregulation of metabolism locks cancer cells in a state of mutual dependence with the tumor microenvironment and deepens the tumor’s inflammation and immunosuppressive state which perpetuates as a result the growth and proliferation dynamics of cancer.

Conclusions

Cancer therapies should aim for a progressive disruption of the dynamics of interactions between cancer cells and the tumor microenvironment by targeting metabolic dysregulation and inflammation to partially restore tissue homeostasis and turn on the immune cancer kill switch. One potentially effective cancer therapeutic strategy is to induce the reduction of lactate and steer the tumor microenvironment to a state of reduced inflammation so as to enable an effective intervention of the immune system. The translation of this therapeutic approach into treatment regimens would however require more understanding of the adaptive complexity of cancer resulting from the interactions of cancer cells with the tumor microenvironment and the immune system.
  相似文献   

8.
Drug and radiation resistance represent a challenge for most anticancer therapies. Diverse experimental approaches have provided evidence that the tumor-associated microenvironment constitutes both a protective shell that impedes drug or radiation access and a permissive or promotive microenvironment that encourages a nurturing cancer (i.e., cancer stem cell) niche where tumor cells overcome treatment- and cancer-induced stresses. Better understanding of the effects of the tumor microenvironment on cancer cells before, during and immediately after chemo- or radiotherapy is imperative to design new therapies aimed at targeting this tumor-protective niche. This review summarizes some of the known mesenchymal stromal effects that account for drug resistance, the main signal transduction pathways associated with this resistance and the therapeutic efforts directed to increase the success of current therapies. Special emphasis is given to environment-mediated drug resistance in general and to cell adhesion-mediated drug resistance in particular.  相似文献   

9.
Drug and radiation resistance represent a challenge for most anticancer therapies. Diverse experimental approaches have provided evidence that the tumor-associated microenvironment constitutes both a protective shell that impedes drug or radiation access and a permissive or promotive microenvironment that encourages a nurturing cancer (i.e., cancer stem cell) niche where tumor cells overcome treatment- and cancer-induced stresses. Better understanding of the effects of the tumor microenvironment on cancer cells before, during and immediately after chemo- or radiotherapy is imperative to design new therapies aimed at targeting this tumor-protective niche. This review summarizes some of the known mesenchymal stromal effects that account for drug resistance, the main signal transduction pathways associated with this resistance and the therapeutic efforts directed to increase the success of current therapies. Special emphasis is given to environment-mediated drug resistance in general and to cell adhesion-mediated drug resistance in particular.  相似文献   

10.
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine protein kinase that regulates a number of diverse biologic processes important for cell growth and proliferation, including ribosomal biogenesis and protein translation. In this regard, hyperactivation of the mTOR signaling pathway has been demonstrated in numerous human cancers, including a number of inherited cancer syndromes in which individuals have an increased risk of developing benign and malignant tumors. Three of these inherited cancer syndromes (Lhermitte-Duclos disease, neurofibromatosis type 1, and tuberous sclerosis complex) are characterized by significant central nervous system dysfunction and brain tumor formation. Each of these disorders is caused by a genetic mutation that disrupts the expression of proteins which negatively regulate mTOR signaling, indicating that the mTOR signaling pathway is critical for appropriate brain development and function. In this review, we discuss our current understanding of the mTOR signaling pathway and its role in promoting ribosome biogenesis and cell growth. We suggest that studies of this pathway may prove useful in identifying molecular targets for biologically-based therapies of brain tumors associated with these inherited cancer syndromes as well as sporadic central nervous system tumors.  相似文献   

11.
谭晓红  杨晓 《生命科学》2011,(4):353-358
针对表皮生长因子受体(EGFR)和血管生成(angiogenesis)信号通路的靶向治疗已经在晚期非小细胞肺癌的治疗上取得成功,但由于抗药性的存在,大多数晚期患者的生存时间仍然提高有限。继发性的EGFR T790M突变和原癌基因肝细胞生长因子受体(MET)的扩增被鉴定为两种主要的抗药机制。最近转化生长因子-β(TGF-β)/白介素-6信号通路被报道能介导选择性和适应性地对erlotinib的抗药。另一方面,Kras突变所致肺癌的靶向治疗方面也取得了一些进展。双重抑制磷脂酰肌醇3-激酶(PI3K)和促分裂素原活化蛋白激酶激酶(MEK)信号通路可导致Kras突变肿瘤的显著消退,联合抑制SRC、PI3K和MEK可使丝氨酸/苏氨酸蛋白激酶11(Lkb1)缺失,Kras突变的肺癌小鼠的肿瘤明显消退,抑制核因子-κB(NF-κB)信号通路导致p53缺失,Kras突变的肿瘤发展显著减慢。这些发现都为发展非小细胞肺癌患者的靶向治疗提供了有力的支持。  相似文献   

12.
Development of drug resistance has considerably limited the efficacy of cancer treatments, including chemotherapy and targeted therapies. Hence, understanding the molecular mechanisms underpinning the innate or the acquired resistance to these therapies is critical to improve drug efficiency and clinical outcomes. Several studies have implicated microRNAs (miRNA) in this process. MiRNAs repress gene expression by specific binding to complementary sequences in the 3' region of target messenger RNAs (mRNAs), followed by target mRNA degradation or blocked translation. By targeting molecules specific to a particular pathway within tumor cells, the new generation of cancer treatment strategies has shown significant advantages over conventional chemotherapy. However, the long-term efficacy of targeted therapies often remains poor, because tumor cells develop resistance to such therapeutics. Targeted therapies often involve monoclonal antibodies (mAbs), such as those blocking the ErB/HER tyrosine kinases, epidermal growth factor receptor (cetuximab) and HER2 (trastuzumab), and those inhibiting vascular endothelial growth factor receptor signaling (e.g., bevacizumab). Even though these are among the most used agents in tumor medicine, clinical response to these drugs is reduced due to the emergence of drug resistance as a result of toxic effects in the tumor microenvironment. Research on different types of human cancers has revealed that aberrant expression of miRNAs promotes resistance to the aforementioned drugs. In this study, we review the mechanisms of tumor cell resistance to mAb therapies and the role of miRNAs therein. Emerging treatment strategies combine therapies using innovative miRNA mimics or antagonizers with conventional approaches to maximize outcomes of patients with cancer.  相似文献   

13.
王欣  关锋 《遗传》2014,36(8):739-746
神经粘附分子(Neural cell adhesion molecule, NCAM)是免疫球蛋白家族中的一员,在细胞粘附和细胞通信,尤其是神经系统的生长和塑型中起重要作用。而多聚唾液酸(Polysialic acid, PSA)则是控制NCAM粘附能力形成与神经系统分化的重要因素。研究发现,多种肿瘤细胞中存在PSA以及多聚唾液酸化的神经粘附分子(PSA-NCAM)再表达的现象,预示PSA及PSA-NCAM与多种肿瘤细胞的粘附性、迁移性和侵袭性等特性密切相关,影响肿瘤细胞的生长与转移,并通过介导多种细胞信号通路影响癌症的发生与发展。文章综述了NCAM以及PSA对癌症的发生与发展、预后的作用及其功能对细胞下游信号传导的影响。  相似文献   

14.
Glioblastoma (GBM) is a hypervascular neoplasia of the central nervous system with an extremely high rate of mortality. Owing to its hypervascularity, anti-angiogenic therapies (AAT) have been used as an adjuvant to the traditional surgical resection, chemotherapy, and radiation. The benefits of AAT have been transient and the tumors were shown to relapse faster and demonstrated particularly high rates of AAT therapy resistance. Alternative neovascularization mechanisms were shown to be at work in these resilient tumors to counter the AAT therapy insult. Vascular Mimicry (VM) is the uncanny ability of tumor cells to acquire endothelial-like properties and lay down vascular patterned networks reminiscent of host endothelial blood vessels. The VM channels served as an irrigation system for the tumors to meet with the increasing metabolic and nutrient demands of the tumor in the event of the ensuing hypoxia resulting from AAT. In our previous studies, we have demonstrated that AAT accelerates VM in GBM. In this review, we will focus on the origins of VM, visualizing VM in AAT-treated tumors and the development of VM as a resistance mechanism to AAT.  相似文献   

15.
The calcium signal is implicated in a variety of processes important in tumor progression (e.g. proliferation and invasiveness). The calcium signal has also been shown to be important in other processes important in cancer progression including the development of resistance to current cancer therapies. In this review, we discuss how Ca2+ channels, pumps and exchangers may be drug targets in some cancer types. We consider what factors should be taken into account when considering an optimal Ca2+ channel, pump or exchanger as a candidate for further assessment as a novel drug target in cancer. We also present and summarize how some therapies for the treatment of cancer intersect with Ca2+ signaling and how pharmacological manipulation of the machinery of Ca2+ signaling could promote the effectiveness of some therapies. We also review new therapeutic opportunities for Ca2+ signal modulators in the context of the tumor microenvironment.  相似文献   

16.
Digestive system cancer remains a common cancer and the main cause of cancer-related death worldwide. Drug resistance is a major challenge in the therapy of digestive system cancer, and represents a primary obstacle in the treatment of cancer by restricting the efficiency of both traditional chemotherapy and biological therapies. Existing studies indicate that noncoding RNAs play an important role in the evolution and progression of drug resistance in digestive system cancer, mainly by modulating drug transporter-related proteins, DNA damage repair, cell-cycle-related proteins, cell apoptosis-related proteins, drug target-related proteins, and the tumor microenvironment. In this review, we address the potential mechanisms of ncRNAs underlying drug resistance in digestive system tumors and discuss the possible application of ncRNAs against drug resistance in digestive system tumors.  相似文献   

17.
Ovarian cancer is the leading cause of gynecological cancer-related mortality globally. The majority of ovarian cancer patients suffer from relapse after standard of care therapies and the clinical benefits from cancer therapies are not satisfactory owing to drug resistance. Certain novel drugs targeting the components of tumor microenvironment (TME) have been approved by US Food and Drug Administration in solid cancers. As such, the passion is rekindled to exploit the role of TME in ovarian cancer progression and metastasis for discovery of novel therapeutics for this deadly disease. In the current review, we revisit the recent mechanistic insights into the contributions of TME to the development, progression, prognosis prediction and therapeutic efficacy of ovarian cancer via modulating cancer hallmarks. We also explored potentially promising predictive and prognostic biomarkers for ovarian cancer patients.  相似文献   

18.
Small-molecule kinase inhibitors have been well established and successfully developed in the last decades for cancer target therapies. However, intrinsic or acquired drug resistance is becoming the major barrier for their clinical application. With the development of immunotherapies, in particular the discovery of immune checkpoint inhibitors (ICIs), the combination of ICIs with other therapies have recently been extensively explored, among which combination of ICIs with kinase inhibitors achieves promising clinical outcome in a plethora of cancer types. Here we comprehensively summarize the potent roles of protein kinases in modulating immune checkpoints both in tumor and immune cells, and reshaping tumor immune microenvironments by evoking innate immune response and neoantigen generation or presentation. Moreover, the clinical trial and approval of combined administration of kinase inhibitors with ICIs are collected, highlighting the precise strategies to benefit cancer immune therapies.  相似文献   

19.
20.
Current therapies against metastatic tumors are still ineffective. Cancer stem cells — a small subset of cells inside the tumor that possesses a self-renewal capacity — might be responsible for the recurrence of the tumor after anti-cancer therapies. Their immortality and unique drug resistance impede their eradication during therapy. The ‘stemness’ of these cells is controlled by microRNAs. These molecules possess the ability to downregulate gene expression by binding to the target mRNA. It turns out that microRNAs control the expression of approximately 60% of the genes in human cells. MicroRNA aberrant expression can lead to cancer development and progression. Therefore, recent research has focused on unraveling the role of microRNA in maintaining a stem-like phenotype in malignant tumors and cancer stem cells. This review summarizes our current knowledge about microRNAs that control the self-renewal capacity of cancer stem cells and indicates the importance of profound research aimed at developing efficient miRNA-targeted therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号