首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unknown force-field parameters for metal organic beryllium complexes used in emitting and electron transporting layers of OLED structures are determined. These parameters can be used for the predictive atomistic simulations of the structure and properties of amorphous organic layers containing beryllium complexes. The parameters are found for the AMBER force field using a relaxed scan procedure and quantum-mechanical DFT calculations of potential energy curves for specific internal (angular) coordinates in a series of three Be complexes (Bebq2; Be(4-mpp)2; Bepp2). The obtained parameters are verified in calculations of some molecular and crystal structures available from either quantum-mechanical DFT calculations or experimental data.
Graphical Abstract Beryllium complexes in amorphous layers?
  相似文献   

2.
Theoretical calculations for the first tri-iron-based extended metal atom chain (EMAC) molecule are reported. The studied triple-high-spin (S?=?6) complex exhibits ferromagnetic ordering (according to Ising and spin-projection approximations), which renders it unique among all previously prepared and theoretically calculated EMAC compounds. This ordering originates from the prevailing ferromagnetic nearest-neighbor interactions, while the magnetic superexchange between terminal Fe2+ sites is weaker and antiferromagnetic. Calculations indicate that this linear chain system based on a tri-iron core shows potential for the development of spin-frustrated behavior, which could be achieved through rational modification of the equatorial and axial ligands.
Graphical abstract Effect of d(z2) orbital occupancy on central Fe(II) on spin orientations on termianal Fe(II) ions in extended metal atom chain
  相似文献   

3.
The conversion of 2-phenylbenzimidazole using o-phenylenediamine and benzaldehyde can be improved significantly under β-cyclodextrin (β-CD). The density functional theory (DFT) method was applied to study the whole process. According to energy parameters (binding energy, deformation energy) and structural deformation, entry models and the reaction process can be pinpointed, with o-phenylenediamine embedding β-CD from a wide rim, and then benzaldehyde passing into the inclusion from the narrow rim. Subsequently, natural bonding orbital (NBO), Mulliken charge, frontier orbital, FuKui function and nuclear magnetic resonance (NMR) methods were employed to reveal the mechanism of electron transfer. The results illustrate that β-CD plays a catalytic role in synthesis reaction mechanism on the secondary side, improving the reactivity and selectivity of the process.
Graphical Abstract Density functional theory study of the effects of β-cyclodextrin in synthesis of 2-phenylbenzimidazole via benzaldehyde and o-phenylenediamine
  相似文献   

4.
In this article, we explore the capacity of formed Schiff base complexes to trap metal atoms or ions, using their aromatic ends. The intrinsic geometry of each complex defines the process of substitution. Two cases were studied; one involving a trans Schiff base complex and the other considering how a salen ligand, with nickel systems traps chromium. We also assessed the nature of the new bonds and the frontier molecular orbitals.
Graphical abstract Two salen nickel compounds are joint by a Cr(0) atom forming an organometallic interaction.
  相似文献   

5.
Bond critical points (BCPs) in the quantum theory of atoms in molecules (QTAIM) are shown to be a consequence of the molecular topology, symmetry, and the Poincaré-Hopf relationship, which defines the numbers of critical points of different types in a scalar field. BCPs can be induced by a polarizing field or by addition of a single non-bonded atom to a molecule. BCPs and their associated bond paths are therefore suggested not to be a suitable means of identifying chemical bonds, or even attractive intermolecular interactions.
Graphical abstract Bond-critical points in QTAIM and weak interactions?
  相似文献   

6.
7.
Based on the structure of MOF-808, different substituents were introduced to replace hydrogen atom on the phenyl ring of MOF-808. The GCMC method was used to study the effect of functional groups on the hydrogen storage properties of MOF-808-X (X?=??OH, ?NO2, ?CH3, ?CN, ?I). The H2 uptakes and isosteric heat of adsorption were simulated at 77 K. The results indicate that all these substituents have favorable impact on the hydrogen storage capacity, and –CN is found to be the most promising substituent to improve H2 uptake. These results may be helpful for the design of MOFs with higher hydrogen storage capacity.
Graphical abstract Atomistic structures of MOFs. (a) The structures of MOF-808-X. (b) Model of organic linker. Atom color scheme: C, gray; H, white; O, red; X, palegreen (X?=??OH, ?NO2, ?CH3, ?CN, ?I)
  相似文献   

8.
In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors.
Graphical abstract Bennett’s acceptance ratio (BAR) method
  相似文献   

9.
Schiff bases have many chemical and biological applications in medicine and pharmaceuticals due to the presence of an imine group (?C=N?). These bases are used in many different fields of technology, and in photochemistry because of their photochromic properties. Here, the structural and electronic properties of the Schiff base formed by tacrine and saccharin (TacSac) were explored using density functional theory with the B3LYP, M06-2X, M06L, and ωB97XD functionals in combination with the 6-311++G(d,p) basis set. The time-dependent formalism was used at the B3LYP/6-311++G(d,p) level to obtain electronic transitions. The calculations were repeated in an implicit solvent model mimicking water, using the polarizable continuum model in conjunction with a solvation model based on a density approach. The results indicate that TacSac cannot form spontaneously, but can be obtained in mild reactions. However, the resulting Schiff base displays different characteristics to its monomers. It also has the potential for use in photochemical intramolecular charge-transfer systems.
Graphical Abstract Intramolecular charge transfer between HOMO and LUMO of TacSac
  相似文献   

10.
11.
In order to understand the interaction between naratriptan and a fully hydrated bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-choline (POPC), we carried out molecular dynamics simulations. The simulations were performed considering neutral and protonated ionization states, starting from different initial conditions. At physiological pH, the protonated state of naratriptan is predominant. It is expected that neutral compounds could have larger membrane partition than charged compounds. However, for the specific case of triptans, it is difficult to study neutral species in membranes experimentally, making computer simulations an interesting tool. When the naratriptan molecules were originally placed in water, they partitioned between the bilayer/water interface and water phase, as has been described for similar compounds. From this condition, the drugs displayed low access to the hydrophobic environment, with no significant effects on bilayer organization. The molecules anchored in the interface, due mainly to the barrier function of the polar and oriented lipid heads. On the other hand, when placed inside the bilayer, both neutral and protonated naratriptan showed self-aggregation in the lipid tail environment. In particular, the protonated species exhibited a pore-like structure, dragging water through this environment.
Graphical Abstract Different behaviour of Naratriptan and Sumatriptan, when the drugs were originally placed in the lipid core
  相似文献   

12.
Quercetin is a prototypical antioxidant and prominent member of flavonoids, a large group of natural polyphenols. The oxidation of quercetin may lead to its dimerization, which is a paradigm of the more general polyphenol oligomerization. There exist two opposing mechanisms to describe the dimerization process, namely radical-coupling or Diels-Alder reactions. This work presents a comprehensive rationalization of this dimerization process, acquired from density functional theory (DFT) calculations. It is found that the two-step radical-coupling pathway is thermodynamically and kinetically preferred over the Diels-Alder reaction. This is in agreement with the experimental results showing the formation of only one isomer, whereas the Diels-Alder mechanism would yield two isomers. The evolution in bonding, occurring during these two processes, is investigated using the atoms in molecules (AIM) and electron localization function (ELF) topological approaches. It is shown that some electron density is accumulated between the fragments in the transition state of the radical-coupling reaction, but not in the transition state of the Diels-Alder process.
Graphical Abstract Quantum chemistry calculations of the dimerization process of quercetin show that a radical coupling approach is preferred to a Diels-Alder type reaction, in agreement with experimental results. Analysis of the bonding evolution highlights the reaction mechanism.
  相似文献   

13.
Herein we report a study of the switchable [3]rotaxane reported by Huang et al. (Appl Phys Lett 85(22):5391–5393, 1) that can be mounted to a surface to form a nanomechanical, linear, molecular motor. We demonstrate the application of semiempirical electronic structure theory to predict the average and instantaneous force generated by redox-induced ring shuttling. Detailed analysis of the geometric and electronic structure of the system reveals technical considerations essential to success of the approach. The force is found to be in the 100–200 pN range, consistent with published experimental estimates.
Graphical Abstract A single surface-mounted switchable rotaxane
  相似文献   

14.
Seven models that related the features of molecular surface electrostatic potentials (ESPs) above the bond midpoints and rings, statistical parameters of ESPs to the experimental impact sensitivities h 50 of eight strained cyclic explosives with the C–NO2 bonds were theoretically predicted at the DFT-B3LYP/6-311++G** level. One of the models was used to investigate the changes of h 50 for the nitrocyclohydrocarbon frameworks in the H-bonded complexes of HF with nitrocyclopropane, nitrocyclobutane, nitrocyclopentane, and nitrocyclohexane. The results show that the correlation coefficients of the obtained models are small. When adding the effect of ring strain, the value of correlation coefficient is increased. According to the calculated h 50, the sensitivities in the frameworks are increased after hydrogen bonding. As a global feature of molecules, surface electrostatic potential is more available to judge the sensitivity change than the trigger bond dissociation energy or ring strain energy in H-bonded complex.
Graphical Abstract A theoretical prediction of the relationships between the impact sensitivity and electrostatic potential in strained cyclic explosive and application to H-bonded complex of nitrocyclohydrocarbon?
  相似文献   

15.
Hydrogen molecule adsorption on frameworks consisting of alkaline earth metal atoms (Be, Mg, or Ca) in LTL zeolite was investigated via density functional theory. A 24T zeolite cluster model was used in this study. HOMO and LUMO energy, chemical potential, chemical hardness, electronegativity, adsorption energy, and adsorption enthalpy values were calculated. The Mg-LTL and Ca-LTL clusters were found to have much lower chemical potentials and adsorption energies than those of the Be-LTL cluster. Additionally, the calculations indicated that the Mg-LTL and Ca-LTL clusters are softer (considering their lower chemical hardness values) and more chemically reactive than the Be-LTL cluster. The calculated hydrogen adsorption enthalpies were ?14.7 and ?9.4 kJ/mol for the Mg-LTL and Ca-LTL clusters, respectively, which are significantly larger than the enthalpy of liquefaction for the hydrogen molecule. These results imply that the Mg-LTL and Ca-LTL zeolite structures are promising cryoadsorbents for hydrogen storage.
Graphical abstract Hydrogen adsorption was theoretically investigated on Be-, Ca- and Mg-LTL clusters. Ca- and Mg-LTL zeolites are potential cryoadsorbent materials for hydrogen storage.
  相似文献   

16.
Quantum chemical computations were used for prediction of the structure and color of alizarin complex with alkali metal hydroxides in methanolic solutions. The color prediction relying on the single Gaussian-like band once again proved the usefulness of the PBE0 density functional due to the observed smallest color difference between computed and experimentally derived values. It was found that the alkali metal hydroxide molecules can bind to the two oxygen atoms of both hydroxyl groups of alizarin or to one of these atoms and the oxygen atom from the keto group in a complex with three methanol molecules. This means that two electronic transitions need to be taken into account when considering the spectra of the studied complexes. The resulting bond lengths and angles are correlated with the properties of the alkali metal atoms. The molar mass, the atomic radius, and the Pauling electronegativity of studied metals are quite accurate predictors of the geometric properties of hydroxide complexes with alizarin in methanol solution.
Graphical abstract The spectra of the neutral and monoanionic form of alizarin together with color changes resulting from addition of different metal hydroxides and represented in CIE color space
  相似文献   

17.
In this study, the doped defects in nitromethane crystals were investigated using first-principles calculations for the first time. We introduce dopant atoms in the interstitial sites of the nitromethane lattice, aiming to study the effects of element-doping on the structural properties, electronic properties, and sensitivity characteristics. The obtained results show that doped defects obviously affect the neighboring nitromethane molecules. The modification of electronic properties shows that the band gaps are significantly influenced by doped defects. Partial density of states and population analysis further reveal the mechanism for sensitivity control of nitromethane. It is shown that the new electronic states were introduced in the forbidden bands and the doped defects resulted in charge redistributions in the systems.
Graphical abstract The valence and conduction band edge positions as well as defect levels of pure and X-doped NM
  相似文献   

18.
Coarse-grained force field (CGFF) methods were applied to study the self-assembly of sodium dodecyl sulfate with fragrance additives. The CGFF parameters were parameterized and validated using experimental and all-atom simulation data. Direct molecular dynamics simulations were carried out to characterize the initial aggregation, partitioning of fragrances, and chemical potentials of the surfactant and fragrance molecules in aggregates of different sizes. The equilibrium critical micelle concentrations (CMCs) and micelle size distributions, which could not be obtained by direct simulation, were predicted using the calculated chemical potentials in combination with a thermodynamic model. The predicted partitioning of fragrances, CMCs, micelle sizes, and micelle structures agree well with previously reported experimental data.
Graphical abstract Enhancement of micelle size distribution using thermodynamic model
  相似文献   

19.
A post-calculation correction is established for PM7 band gaps of transition-metal oxides. The correction is based on the charge on the metal cation of interest, as obtained from MOPAC PM7 calculations. Application of the correction reduces the average error in the PM7 band gap from ~3 eV to ~1 eV. The residual error after correction is shown to be uncorrelated to the Hartree–Fock method upon which PM7 is based.
Graphical Abstract Comparison between calculated band gaps and experimental band gaps for binary oxides. The orange crosses are for corrected PM7 band gaps. Blue squares are uncorrected values. The orange crosses fall closer to the diagonal dashed line, showing an overall improvement of the accuracy of calculated values
  相似文献   

20.
Magnetic shielding constants for an isolated fullerene C60, cucurbituril CB[9], and the host-guest complex C60@CB[9] were calculated as a function of separation of the monomers. Our results in the gas phase and water indicate a significant variation of the magnetic properties for all atoms of the monomers in the complex and after liberation of fullerene C60 from the interior of the CB[9] cavity. The interaction between the two monomers results in a charge transfer that collaborates with a redistribution of electron density to deshield the monomers.
Graphical Abstract NMR spectroscopy alteration on C60@CB[9] host-guest mutual interactions?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号