首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A decrease in zinc (Zn) levels increases the production of cell oxidants, affects the oxidant defense system and triggers oxidant sensitive signals in neuronal cells. However, the underlying mechanisms are still unclear. This work tested the hypothesis that the increase in neuronal oxidants that occurs when cellular Zn decreases is mediated by the activation of the NMDA receptor. Differentiated PC12 cells were cultured in control, Zn-deficient or Zn-repleted media. The incubation in Zn deficient media led to a rapid increase in cellular calcium levels, which was prevented by a NMDA receptor antagonist (MK-801). Cellular calcium accumulation was associated with NADPH oxidase and nitric oxide synthase (NOS) activation, an increase in cell oxidant levels, and an associated activation of a redox-sensitive signal (AP-1). In cells incubated in the Zn deficient medium, NADPH oxidase activation was prevented by MK-801 and by a protein kinase C inhibitor. The rise in cell oxidants was prevented by inhibitors of NADPH oxidase, of the NOS and by MK-801. A similar pattern of inhibitor action was observed for zinc deficiency-induced AP-1 activation. Results demonstrate that a decrease in extracellular Zn leads to an increase in neuronal oxidants through the activation of the NMDAR that leads to calcium influx and to a calcium-mediated activation of protein kinase C/NADPH oxidase and NOS. Changes in extracellular Zn concentrations can be sensed by neurons, which using reactive oxygen and nitrogen species as second messengers, can regulate signaling involved in neuronal development and function.  相似文献   

2.
Chronic exposure of primary neuronal cultures to ethanol has been shown to potentiate N-methyl-D-aspartate (NMDA) receptor-mediated processes, such as nitric oxide (NO) formation and excitotoxicity. In the present study, we compared the effects of acute ethanol and acetaldehyde on NMDA receptor-mediated excitotoxicity and NO production in primary cultures of rat cortical neurons. The delayed cell death induced by NMDA (300 mM, 25 min) was evaluated by morphological examination and by measuring the release of the cytotoxic indicator, lactate dehydrogenase, in the culture media 24 hours after the NMDA exposure. The accumulation of nitrite, as an index of NO production, was also measured 24 hours after NMDA treatment. NMDA caused a dose-dependent cell death and nitrite accumulation, both effects were blocked by pretreatment of MK-801 (100 microM). Acute exposure to ethanol (1-1000 mM) or acetaldehyde (0.1-1 mM) for 35 minutes did not affect neuronal viability in the following 24-hr period. However, acute exposure to acetaldehyde (> or =10 mM) was neurotoxic. Neither ethanol nor acetaldehyde changed basal nitrite levels in the culture media. Acute ethanol (50-400 mM, 10 min) given before the NMDA treatment (25 min) resulted in a concentration-dependent suppression of the delayed cell death. The NMDA-induced NO production was, however, not affected by ethanol. Neither the NMDA excitotoxicity nor NO production was affected by acute ethanol given after NMDA treatment. Acute acetaldehyde (0.01-0.5 mM, 10 min) given before or after NMDA treatment had no effect on delayed NMDA neurotoxicity and NO production. Our data suggest that acute exposure to ethanol is not neurotoxic and is even protective against delayed NMDA-excitotoxicity when given before but not after NMDA treatment. Neither NO nor metabolism of ethanol to acetaldehyde is required for ethanol-mediated suppression of NMDA excititoxicity. Acetaldehyde, on the other hand, is toxic by itself at low concentrations (> or =10 mM). Furthermore, acute exposure to non-toxic concentrations of acetaldehyde could not protect cortical neurons against NMDA-induced excitotoxicity.  相似文献   

3.
The occurrence, nature and prevention of ammonia-induced cell death were assayed in cultured primary cortical neurons from newborn rats. Treatment with 1-10 mM ammonium chloride for 24 or 48 h, dose-dependently decreased neuronal survival (MTT assay) and GSH/GSSG ratio in the cultures, whereas total GSH content was significantly reduced only with 10mM ammonia. Treatment with a glutathione synthesis inhibitor, buthionyl sulfoximine (BSO) (10 microM), decreased the GSH content and GSH/GSSG ratio to a degree similar to that of 10 mM ammonia, but it did not decrease cell survival in control cells. This indicates that glutathione depletion per se is not a cause of ammonia-induced neuronal death. However, ammonia-induced decrease of cell viability was attenuated by incubation with glutathione diethyl ester (GEE), which transiently increased the intracellular GSH level in both control and ammonia-treated cells. Neuronal survival in the presence of ammonia was partly improved by the NMDA receptor antagonists MK-801 and APV. Morphological analysis revealed that ammonia treatment causes both apoptotic and non-apoptotic neuronal death, the former not being inhibited by MK-801. Apoptosis was the dominant type of cell death at 10mM ammonia, as concluded both from morphologic examination and the absence of survival improvement in the presence of GABA+nipecotic acid or taurine, model anti-excitotoxic treatments of cortical neurons. The mechanism underlying apoptosis may include inhibition of a survival kinase, Akt, whose activatory phosphorylation at Ser473 is reduced in neurons treated with 10 mM, but not 1 mM ammonia.  相似文献   

4.
In rat mesencephalic cell cultures, L-glutamate at concentrations ranging from 100 microM to 1 mM stimulated release of [3H]dopamine that was attenuated by the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 6,7-dinitroquinoxalinedione, but not by the selective NMDA receptor antagonists (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801; 10 microM) and 3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (300 microM). Even at 1 mM glutamate, this release was Ca2+ dependent. These observations suggest that the release was mediated by a non-NMDA receptor. Only release stimulated by a lower concentration (10 microM) of glutamate was inhibited by MK-801 (10 microM), indicating that glutamate at this concentration activates the NMDA receptor. By contrast, L-aspartate at concentrations of 10 microM to 1 mM evoked [3H]dopamine release that was completely inhibited by MK-801 (10 microM) and was also Ca2+ dependent (tested at 1 and 10 mM aspartate). Thus, effects of aspartate involved activation of the NMDA receptor. Sulfur-containing amino acids (L-homocysteate, L-homocysteine sulfinate, L-cysteate, L-cysteine sulfinate) also evoked [3H]dopamine release. Release evoked by submillimolar concentrations of these amino acids was attenuated by MK-801 (10 microM), indicating involvement of the NMDA receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Hyperhomocysteinemia is a risk factor in neurodegeneration. It has been suggested that apart from disturbances in methylation processes, the mechanisms of this effect may include excitotoxicity mediated by the N-methyl-D-aspartate (NMDA) receptors. In this study we demonstrate that apart from NMDA receptors, also group I metabotropic glutamate receptors participate in acute homocysteine (Hcy)-induced neurotoxicity in cultured rat cerebellar granule neurones. Primary neuronal cultures were incubated for 30 min in the Mg(2+)-free ionic medium containing homocysteine and other ligands, and neurodegenerative changes were assessed 24h later using propidium iodide staining. D,L-Homocysteine given alone appeared to be a weak neurotoxin, with EC(50) of 17.4mM, whereas EC(50) for L-glutamate was 0.17 mM. Addition of 50 microM glycine enhanced homocysteine neurotoxicity, and only that portion of neurotoxicity was abolished by 0.5 microM MK-801, an uncompetitive NMDA receptor antagonist. The net stimulation of 45Ca uptake by granule cells incubated in the presence of 25 mM D,L-homocysteine with 50 microM glycine was only 3% of the net uptake evoked by 1mM glutamate. Application of an antagonist of group I metabotropic glutamate receptors (mGluRs) LY367385 at 25 and 250 microM concentrations, induced a dose-dependent partial neuroprotection, whereas given together with MK-801 completely prevented neurotoxicity. In the absence of glycine, LY367385 and MK-801 given alone failed to induce neuroprotection, while applied together completely prevented homocysteine neurotoxicity. Agonist of group I mGluRs, 10 trans-azetidine-2,3-dicarboxylic acid (t-ADA) induced significant neurotoxicity. This study shows for the first time that acute homocysteine-induced neurotoxicity is mediated both by group I mGluRs and NMDA receptors, and is not accompanied by massive influx of extracellular Ca(2+) to neurones.  相似文献   

6.
The Effect of Magnesium on Oxidative Neuronal Injury In Vitro   总被引:7,自引:0,他引:7  
Abstract: The effect of magnesium on the oxidative neuronal injury induced by hemoglobin was assessed in murine cortical cell cultures. Exposure to 5 µ M hemoglobin in physiologic (1 m M ) magnesium for 26 h resulted in the death of about one-half the neurons and a sixfold increase in malondialdehyde production; glia were not injured. Increasing medium magnesium to 3 m M reduced neuronal death by about one-half and malondialdehyde production by about two-thirds; neuronal death and lipid peroxidation were approximately doubled in 0.3 m M magnesium. Comparable results were observed in spinal cord cultures. The NMDA antagonist MK-801 weakly attenuated hemoglobin neurotoxicity in low-magnesium medium, but tended to potentiate injury in physiologic magnesium. Incubation in low-magnesium medium alone for 24 h reduced cellular glutathione by ∼50% in mixed neuronal and glial cultures but by only 10% in pure glial cultures. The iron-dependent oxidation of phosphatidylethanolamine liposomes was attenuated in a concentration-dependent fashion by 2.5–10 m M magnesium; a similar effect was provided by 0.01–0.1 m M cobalt. However, oxidation was weakly enhanced by 0.5–1 m M magnesium. These results suggest that the vulnerability of neurons to iron-dependent oxidative injury is an inverse function of the extracellular magnesium concentration. At high concentrations, magnesium inhibits lipid peroxidation directly, perhaps by competing with iron for phospholipid binding sites. At low concentrations, enhancement of cell death may be due to the combined effect of increased NMDA receptor activity, glutathione depletion, and direct potentiation of lipid peroxidation.  相似文献   

7.
Blockade of ionotropic glutamate receptors induces neuronal cell apoptosis. We investigated if mitochondria-mediated death signals would contribute to neuronal apoptosis following administration of glutamate antagonists. The administration of MK-801 and CNQX (MK-801/CNQX), the selective antagonists of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors, produced widespread neuronal death in neonatal rat brain and cortical cell cultures. MK-801/CNQX-induced neuronal apoptosis was prevented by zVAD-fmk, a broad inhibitor of caspases, but insensitive to inhibitors of calpain or cathepsin D. Activation of caspase-3 was observed within 6-12 h and sustained over 36 h after exposure to MK-801/CNQX, which cleaved PHF-1 tau, the substrate for caspase-3. Activation of caspase-3 was blocked by high K+ and mimicked by BAPTA-AM, a selective Ca2+ chelator. Reducing extracellular Ca2+, but not Na+, activated caspase-3, suggesting an essential role of Ca2+ deficiency in MK-801/CNQX-induced activation of caspases. Cortical neurons treated with MK-801/CNQX triggered activation of caspase-9, release of cytochrome c from mitochondria, and translocation of Bax into mitochondria. The present study suggests that blockade of ionotropic glutamate receptors causes caspase-3-mediated neuronal apoptosis due to Ca2+ deficiency that is coupled to the sequential mitochondrial death pathway.  相似文献   

8.
N-Methyl-d-aspartate (NMDA) receptor overactivation has been proposed to induce excitotoxic neuronal death by enhancing membrane phospholipid degradation. In previous studies, we have shown that NMDA releases choline and reduces membrane phosphatidylcholine in vivo. We now observed that glutamate and NMDA induce choline release in primary neuronal cortical cell cultures. This effect is Ca(2+)-dependent and is blocked by MK-801 ((+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate). In cortical neurons, the NMDA receptor-mediated choline release precedes excitotoxic cell death but not neuronal death induced by either osmotic lysis or serum deprivation. Glutamate, at concentrations that release arachidonic acid, does not release choline in cerebellar granule cells, unless these cells are rendered susceptible to excitotoxic death by energy deprivation. The NMDA-evoked release of choline is not mediated by phospholipases A(2) or C. Moreover, NMDA does not activate phospholipase D in cortical cells. However, NMDA inhibits incorporation of [methyl-(3)H]choline into both membrane phosphatidylcholine and sphingomyelin. These results show that the increase in extracellular choline induced by NMDA receptor activation is directly related with excitotoxic cell death and indicate that choline release is an early event of the excitotoxic process produced by inhibition of phosphatidylcholine synthesis and not by activation of membrane phospholipid degradation.  相似文献   

9.
The death of dopaminergic neurons that occurs spontaneously in mesencephalic cultures was prevented by depolarizing concentrations of K+ (20-50 mM). However, unlike that observed previously in other neuronal populations of the PNS or CNS, promotion of survival required concurrent blockade of either NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors by the specific antagonists, MK-801 and GYKI-52466, respectively. Rescued neurons appeared to be healthy and functional because the same treatment also dramatically enhanced their capacity to accumulate dopamine. The effects on survival and uptake were rather specific to dopaminergic neurons, rapidly reversible and still observed when treatment was delayed after plating. Glutamate release increased substantially in the presence of elevated concentrations of K+, and chronic treatment with glutamate induced a loss of dopaminergic neurons that was prevented by MK-801 or GYKI-52466 suggesting that an excitotoxic process interfered with survival when only the depolarizing treatment was applied. The effects of the depolarizing stimulus in the presence of MK-801 were mimicked by BAY K-8644 and abolished by nifedipine, suggesting that neuroprotection resulted from Ca(2+) influx through L-type calcium channels. Measurement of intracellular calcium revealed that MK-801 or GYKI-52466 were required to maintain Ca(2+) levels within a trophic range, thus preventing K+-induced excitotoxic stress and Ca(2+) overload. Altogether, our results suggest that dopaminergic neurons may require a finely tuned interplay between glutamatergic receptors and calcium channels for their development and maturation.  相似文献   

10.
N-Methyl-D-aspartate receptors (NMDARs) are essential mediators of synaptic plasticity under normal physiological conditions. During brain ischemia, these receptors are excessively activated due to glutamate overflow and mediate excitotoxic cell death. Although organotypical hippocampal slice cultures are widely used to study brain ischemia in vitro by induction of oxygen and glucose deprivation (OGD), there is scant data regarding expression and functionality of NMDARs in such slice cultures. Here, we have evaluated the contribution of NMDARs in mediating excitotoxic cell death after exposure to NMDA or OGD in organotypical hippocampal slice cultures after 14 days in vitro (DIV14). We found that all NMDAR subunits were expressed at DIV14. The NMDARs were functional and contributed to cell death, as evidenced by use of the NMDAR antagonist MK-801 (dizocilpine). Excitotoxic cell death induced by NMDA could be fully antagonized by 10 μM MK-801, a dose that offered only partial protection against OGD-induced cell death. Very high concentrations of MK-801 (50–100 μM) were required to counteract cell death at long delays (48–72 h) after OGD. The relative high dose of MK-801 needed for long-term protection after OGD could not be attributed to down-regulation of NMDARs at the gene expression level. Our data indicate that NMDAR signaling is just one of several mechanisms underlying ischemic cell death and that prospective cytoprotective therapies must be directed to multiple targets.  相似文献   

11.
The serine/threonine protein kinase B (PKB)/Akt is a phosphoinositide 3-kinase (PI3K) effector that is thought to play an important roll in a wide variety of cellular events. The present study examined whether PKB activation in cortical neuronal cultures is coupled with synaptic activity. A 1-h incubation of neuronal cultures with tetrodotoxin (TTX), the PI3K inhibitor wortmannin, the NMDA receptor antagonist MK-801 or removal of extracellular calcium significantly reduced basal levels of phospho(Ser473)-PKB, indicating that activity-dependent glutamate release maintains PKB activation through an NMDA receptor-PI3K pathway. A 5-min exposure to NMDA (50 micro m) in the presence of TTX increased phospho-PKB back to levels observed in the absence of TTX. NMDA stimulation of phospho-PKB was blocked by wortmannin, the CaMKII inhibitor KN-93, MK-801, and removal of extracellular calcium. We have previously shown that NMDA receptors can bi-directionally regulate activation of extracellular-signal regulated kinase (ERK), and NMDA receptor stimulation of PKB in the present study appeared to mirror activation of ERK. These results suggest that in cultured cortical neurons, PKB activity is dynamically regulated by synaptic activity and is coupled to NMDA receptor activation. In addition, NMDA receptor activation of ERK and PKB may occur through overlapping signaling pathways that bifurcate at the level of Ras.  相似文献   

12.
In our previous experiments, severe cellular damages and neuronal cell loss were observed following 24h of alcohol withdrawal in primary cultures of rat cortical neurones pre-treated with ethanol (50-200 mM) repeatedly for 3 days. Increased NMDA induced cytosolic calcium responses and excitotoxicity were also demonstrated in the ethanol pre-treated cultures. Thus, the enhancement in functions of NMDA receptors was supposed to be involved in the adaptive changes leading to the neurotoxic effect of alcohol-withdrawal. In this study, we investigated the effect of the 3-day repeated ethanol (100 mM) treatment on the function and subunit composition of the NMDA receptors. Here, we demonstrate that the maximal inhibitory effect of ethanol was significantly increased after ethanol pre-treatment. Similarly, the inhibitory activity of the NR2B subunit selective antagonists threo-ifenprodil, CP-101,606 and CI-1041 was also enhanced. On the contrary, the efficiency of the channel blocker agent MK-801 and the glycine-site selective antagonist 5,7-dichlorokynurenic acid was the same as in control cultures. According to these observations, a shift in subunit expression in favour for the NR2B subunit was suggested. Indeed, we provided evidence for increased expression of the NR2B and the C1 and C2' cassette containing splice variant forms of the NR1 subunit proteins in ethanol pre-treated cultures in further experiments using a flow cytometry based immunocytochemical method. These changes may constitute the basis of the increased NMDA receptor functions and subsequently the enhanced sensitivity of ethanol pre-treated cortical neurones to excitotoxic insults resulting in increased neuronal cell loss after ethanol withdrawal. Such alterations may play a role in the neuronal adaptation to ethanol as well as in the development of alcohol dependence, and might cause neuronal cell loss in certain areas of the brain during alcohol withdrawal.  相似文献   

13.
The effect of N-methyl-D-aspartate (NMDA) receptor antagonists on cell viability was studied in rat primary cortical cells. NMDA antagonists [MK-801 and 2-amino-5-phosphonovalerate (APV)] induced cell shrinkage, nuclear condensation or fragmentation, and internucleosomal DNA fragmentation. Treatment of cells with MK-801 (an NMDA antagonist) for 1-2 days induced apoptotic cell death in a dose-dependent manner (1 nM to 10 microM). NMDA (25 microM), however, inhibited the MK-801 (0.1 microM)-induced apoptotic cell death. MK-801 and APV decreased the concentration of intracellular calcium ion. Activation of caspase-3 was accompanied by MK-801-induced cell death in a dose-dependent manner, and an inhibitor of caspase-3 reduced the cell death. Further, cycloheximide (0.2 microg/ml) completely protected the cells from MK-801-induced apoptotic cell death and caspase-3 activation. Insulin-like growth factor I completely attenuated MK-801-induced apoptotic cell death and caspase-3 activation. These results demonstrated that the moderate NMDA receptor activation is probably involved in the survival signal of the neuron.  相似文献   

14.
Recently we showed that the level of mitochondrial mRNA was decreased prior to neuronal death induced by glutamate. As the level of mRNA is regulated by ribonuclease (RNase), we examined RNase activity and its expression in the primary cultures of cortical neurons after glutamate treatment in order to evaluate the involvement of RNase in glutamate-induced neuronal death. A 15-min exposure of the cultures to glutamate at the concentration of 100muM produced marked neuronal damage (more than 70% of total cells) at 24-h post-exposure. Under the experimental conditions used, RNA degradation was definitely observed at a period of 4-12-h post-exposure, a time when no damage was seen in the neurons. Glutamate-induced RNA degradation was completely prevented by the N-methyl-d-aspartic acid (NMDA) receptor channel blocker MK-801 or the NR2B-containing NMDA receptor antagonist ifenprodil. Glutamate exposure produced enhanced expression of RNase L at least 2-12h later, which was absolutely abolished by MK-801. However, no significant change was seen in the level of RNase H1 mRNA at any time point post-glutamate treatment. Immunocytochemical studies revealed that RNase L expressed in response to glutamate was localized within the nucleus, mitochondria, and cytoplasm in the neurons. Taken together, our data suggest that expression of RNase L is a signal generated by NMDA receptor in cortical neurons. RNase L expression and RNA degradation may be events that cause neuronal damage induced by NMDA receptor activation.  相似文献   

15.
The mechanisms of protective effect of N-methyl-D-aspartate (NMDA) receptor stimulation on apoptosis of neurons at their early stage of development are poorly understood. In the present study, we investigated the effects of NMDA on staurosporine (St)- and low-potassium (LP)-evoked apoptotic cell death in primary cerebellar granule cell (CGC) cultures at 7 days in vitro (DIV). We found that NMDA (200 μM) attenuated the St (0.5 μM)- and LP (5 mM KCl)-induced neuronal cell death in 7 but not 12 DIV CGC as confirmed by LDH release and MTT reduction assays. Moreover, NMDA attenuated St-and LP-evoked DNA fragmentation and cytosolic apoptosis inducing factor (AIF) protein level but not caspase-3 activation induced by both pro-apoptotic factors. Neuroprotective effects of NMDA on St-induced apoptosis in CGC were attenuated by inhibitors of ERK/MAPK-signaling, PD 98059 and U0126 but not by NMDA receptor antagonists, AP-5 (100 μM) and MK-801 (1 μM) or by inhibitors of PI3-K/Akt pathway (LY 294002 and wortmannin). In contrast to staurosporine model of apoptosis, AP-5 and MK-801 but not inhibitors of PI3-K/Akt and MAPK/ERK1/2 prevented the NMDA-mediated neuroprotection in LP-induced apoptosis of CGC. In separate experiments, we observed also the anti-apoptotic action of NMDA on St (0.5 μM)- and salsolinol (250 μM)-evoked cell death in human neuroblastoma SH-SY5Y cells without its influence on caspase-3 activity, induced by these pro-apoptotic factors. These data indicate that neuroprotection evoked by NMDA in CGC strongly depends on used pro-apoptotic agent and could engage NMDA channel function or be connected with the activation of pro-survival MAPK/ERK1/2 pathway. It is also suggested that anti-apoptotic effects of NMDA is connected with inhibition of fragmentation of DNA via caspase-3-independent mechanism.  相似文献   

16.
Conantokins T and G are polypeptide toxins present in snails of the genus Conus. These substances were recently reported to act as N-methyl-D-aspartate (NMDA) antagonists. In the present study, we examined the possible mechanisms producing this antagonism. Conantokin-G inhibited spermine- and spermidine-stimulated [3H]MK-801 binding to extensively washed rat forebrain membranes in a noncompetitive manner with IC50 values of approximately 507 and approximately 946 nM, respectively. In contrast, glutamate-enhanced [3H]MK-801 binding was unaffected by conantokin-G concentrations of less than or equal to 20 microM. At concentrations greater than or equal to 5 microM, conantokin-G effected a modest, noncompetitive inhibition of glycine-stimulated [3H]MK-801 binding and also produced a small enhancement of basal [3H]MK-801 binding. Conantokin-G reduced (IC50 approximately 1.08 microM) the NMDA-stimulated accumulation of cyclic GMP in cerebellar granule cell cultures to basal values, but did not affect kainate-mediated increases in cyclic GMP. These findings indicate that conantokin-G acts as a noncompetitive NMDA antagonist through an allosteric inhibition of polyamine responses. The neurochemical profile of this polypeptide is distinct from previously described noncompetitive NMDA antagonists.  相似文献   

17.
Quinolinic acid (QA) is an endogenous neurotoxin involved in various neurological diseases, whose action seems to be exerted via glutamatergic receptors. However, the exact mechanism responsible for the neurotoxicity of QA is far from being understood. We have previously reported that QA inhibits vesicular glutamate uptake. In this work, investigating the effects of QA on the glutamatergic system from rat brain, we have demonstrated that QA (from 0.1 to 10mM) had no effect on synaptosomal L-[3H]glutamate uptake. The effect of QA on glutamate release in basal (physiological K+ concentration) or depolarized (40 mM KCl) conditions was evaluated. QA did not alter K+-stimulated glutamate release, but 5 and 10mM QA significantly increased basal glutamate release. The effect of dizolcipine (MK-801), a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor on glutamate release was investigated. MK-801 (5 microM) did not alter glutamate release per se, but completely abolished the QA-induced glutamate release. NMDA (50 microM) also stimulated glutamate release, without altering QA-induced glutamate release, suggesting that QA effects were exerted via NMDA receptors. QA (5 and 10mM) decreased glutamate uptake into astrocyte cell cultures. Enhanced synaptosomal glutamate release, associated with inhibition of glutamate uptake into astrocytes induced by QA could contribute to increase extracellular glutamate concentrations which ultimately lead to overstimulation of the glutamatergic system. These data provide additional evidence that neurotoxicity of QA may be also related to disturbances on the glutamatergic transport system, which could result in the neurological manifestations observed when this organic acid accumulates in the brain.  相似文献   

18.
The potent noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist [3H]MK-801 bound with nanomolar affinity to rat brain membranes in a reversible, saturable, and stereospecific manner. The affinity of [3H]MK-801 was considerably higher in 5 mM Tris-HCl (pH 7.4) than in previous studies using Krebs-Henseleit buffer. [3H]MK-801 labels a homogeneous population of sites in rat cerebral cortical membranes with KD of 6.3 nM and Bmax of 2.37 pmol/mg of protein. This binding was unevenly distributed among brain regions, with hippocampus greater than cortex greater than olfactory bulb = striatum greater than medulla-pons, and the cerebellum failing to show significant binding. Detailed pharmacological characterization indicated [3H]MK-801 binding to a site which was competitively and potently inhibited by known noncompetitive NMDA receptor antagonists, such as phencyclidine, thienylcyclohexylpiperidine (TCP), ketamine, N-allylnormetazocine (SKF 10,047), cyclazocine, and etoxadrol, a specificity similar to sites labelled by [3H]TCP. These sites were distinct from the high-affinity sites labelled by the sigma receptor ligand (+)-[3H]SKF 10,047. [3H]MK-801 binding was allosterically modulated by the endogenous NMDA receptor antagonist Mg2+ and by other active divalent cations. These data suggest that [3H]MK-801 labels a high-affinity site on the NMDA receptor channel complex, distinct from the NMDA recognition site, which is responsible for the blocking action of MK-801 and other noncompetitive NMDA receptor antagonists.  相似文献   

19.
The neurotoxic actions of polyamines such as spermine have been linked to their modulation of NMDA receptors, resulting in an excitotoxic cell death. Here, we demonstrate that chronic exposure to the polyamine spermine and acute exposure to the combination of spermine and glutamate result in significant toxicity to primary cultures of cerebellar granule neurons (CGNs). However, in both cases this cell death (a) lacks the characteristic cell swelling associated with the necrotic cell death induced by glutamate and (b) is characterized by the widespread formation of apoptotic nuclei. Whereas dizocilpine (MK-801) blocks the synergistic cell death resulting from acute exposure to spermine plus glutamate, neither MK-801 nor the calcium chelator EGTA appreciably attenuates CGN death resulting from chronic exposure to spermine. Consistent with previous reports, glutamate, both acute and chronic, causes CGN death that is characterized by cell swelling, sensitivity to MK-801 and EGTA, and only small numbers of apoptotic nuclei. Spermine-induced toxicity is not blocked by either the protein synthesis inhibitor cycloheximide or the pancaspase inhibitor tert-butoxycarbonyl-Asp-(O-methyl) fluoromethyl ketone. However, the antioxidant butylated hydroxyanisole is an effective blocker of spermine-induced CGN death, suggesting a free-radical component to this cell death. The intact spermine molecule, rather than a catabolic by-product, is required for cell death because the amine oxidase inhibitors N1,N2-bis(2,3-butadienyl)-1,4-butanediamine and aminoguanidine fail to block this toxicity. Thus, in CGNs, spermine-induced toxicity does not occur by its modulation of NMDA receptors, although, under some circumstances, NMDA receptor activation can modulate spermine-induced toxicity.  相似文献   

20.
In vivo studies have shown potent protection by volatile anesthetic agents against cerebral ischemic insults. Volatile agents have also been shown to antagonize glutamatergic neurotransmission at the N-methyl-D-aspartate (NMDA) receptor. This study examined the potential for halothane to reduce neuronal excitotoxic lesions caused by NMDA. Fetal rat cortical cell cultures were allowed to mature 13–16 d. Culture wells (n = 13–16) were treated with 0 mM – 3.96 mM halothane in the presence/absence of 30 M NMDA. Additional cultures were exposed to 30 M NMDA in the presence/absence of 10 M MK-801 or 10 ACEA 1021. Cellular lethality was assessed by measurement of lactate dehydrogenase (LDH) 24 hrs later. A maximal effect of halothane was observed at 0.70 mM (2.1 vol%) wherein a 36% reduction in NMDA-stimulated LDH release occurred relative to untreated controls. Both MK-801 and ACEA 1021 caused complete inhibition of NMDA-stimulated LDH release. These data confirm that halothane has modulatory effects at the NMDA receptor but potency of this drug is less than that of specific antagonists of either glutamate or glycine. These findings suggest that halothane protection in vivo can be partially explained by anti-excitotoxic properties although other mechanisms of action are probably also important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号