首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beta-rhamnosylation of methyl 2-C-hydroxymethyl-2,3-O-isopropylidene-beta-D-erythrofuranoside and methyl 2,3-O-isopropylidene-beta-D-ribofuranoside was achieved using 4-O-acetyl-2,3-O-carbonyl-alpha-L-rhamnopyranosyl bromide and Ag2O as a promoter. Deprotected disaccharides beta-L-Rhap-(1-->3')-beta-D-Apif-OMe and beta-L-Rhap-(1-->3')-beta-D-Ribf-OMe were compared to their alpha-rhamnosyl isomers which were prepared using conventional Helferich glycosylation.  相似文献   

2.
Methyl 3,4,6-tri-O-benzyl-beta-D-mannopyranoside (2), methyl 2,3-O-isopropylidene-beta-D-mannopyranoside (11), and 4-nitrophenyl 2,3-O-isopropylidene-beta-D-mannopyranoside (12) were each condensed with 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl bromide (1) in the presence of mercuric cyanide, to give after deprotection, methyl 2-(5) and 6-O-alpha-D-mannopyranosyl-beta-D-mannopyranoside (15), and 4-nitrophenyl 6-O-alpha-D-mannopyranosyl-beta-D-mannopyranoside (20), respectively. A similar condensation of 11 with 3,4,6-tri-O-acetyl-2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-a lpha-D- mannopyranosyl bromide (21) and 2,3,4-tri-O-acetyl-6-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-a lpha D-mannopyranosyl bromide (25), followed by removal of protecting groups, afforded methyl O-alpha-D-mannopyranosyl-(1----2)-O-alpha-D-mannopyranosyl-(1----6)-beta -D- mannopyranoside (24) and methyl O-alpha-D-mannopyranosyl-(1----6)-O-alpha-D-mannopyranosyl-(1----6)-beta -D- mannopyranoside (28), respectively. Bromide 25 was also condensed with 12 to give a trisaccharide derivative which was deprotected to furnish 4-nitrophenyl O-alpha-D-mannopyranosyl-(1----6)-alpha-D-mannopyranosyl-(1----6)-beta-D - mannopyranoside (31). Phosphorylation of methyl 3,4,6-tri-O-benzyl-2-O-alpha-D-mannopyranosyl-beta-D-mannopyranoside and 15 with diphenyl phosphorochloridate in pyridine gave the 6'-phosphates 6 and 16, respectively. Hydrogenolysis of the benzyl and phenyl groups provided methyl 2-O-(disodium alpha-D-mannopyranosyl 6-phosphate)-beta-D-mannopyranoside (7) and methyl 6-O-(disodium alpha-D-mannopyranosyl 6-phosphate)-beta-D-mannopyranoside (17) after treatment with Amberlite IR-120 (Na+) cation-exchange resin. The structures of compounds 5, 7, 15, 17, 20, 24, 28, and 31 were established by 13C-n.m.r. spectroscopy.  相似文献   

3.
Methyl 6-C-alkyl-6-deoxy-alpha-D-mannofuranoside derivatives have been synthesized from methyl 2,3-O-isopropylidene-5,6-O-sulfuryl-alpha-D-mannofuranoside (1). In a Path A, reaction of the 5,6-cyclic sulfate 1 with 2-lithio-1,3-dithiane afforded 2-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane (2). Treatment of 2 with n-butyllithium then alkyl iodide gave the corresponding 2-(methyl 5-O-alkyl-6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl )-1,3- dithiane. Reaction of 2 with n-butyllithium and 5,6-cyclic sulfate 1 furnished 2-[methyl 6-deoxy-2,3-O-isopropylidene-5-O-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-manno-furanosid-6-yl)-alpha-D - mannofuranosid-6-yl]-1,3-dithiane. 2-(Methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid- 6-yl)-1,3-dithiane was converted into the lithiated anion, which after treatment with alkyl halide afforded the corresponding 2-alkyl-C-(methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid-6-y l)-1,3- dithiane. In a Path B, 5,6-cyclic sulfate 1 reacted with 2-alkyl-2-lithio-1,3-dithiane derivatives, which led after acidic hydrolysis to 2-alkyl-2-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane accompanied by methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-lyxo-hexofuranos-5-u loside as the by-product. This methodology was applied to synthesize 2-(methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid-6-y l)-2- (methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane.  相似文献   

4.
Two key synthons for the title pentasaccharide derivative, methyl O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L-idopyranosyluronate)-(1----4)-6-O-acetyl- 2-azido - 3-O- benzyl-2-deoxy-beta-D-glucopyranoside and O-(methyl 2,3-di-O-benzyl-4-O- chloroacetyl-beta-D-glucopyranosyluronate)-(1----4)-3,6-di-O-acetyl-2-az ido-2- deoxy-alpha-D- glucopyranosyl bromide, were prepared from a common starting material, cellobiose. They were coupled to give a tetrasaccharide derivative that underwent O-dechloroacetylation to the corresponding glycosyl acceptor. Its condensation with the known 6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl bromide afforded a 77% yield of suitably protected pentasaccharide, methyl O-(6-O- acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)- O- (methyl 2,3- di-O-benzyl-beta-D-glucopyranosyluronate)-(1----4)-O-(3,6-di-O-acetyl-2- azido-2 - deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L- idopyranosyluronate)- (1----4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside. Sequential deprotection and sulfation gave the decasodium salt of methyl O-(2- deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(1----4)-O-(be ta-D- glucopyranosyl-uronic acid)-(1----4)-O-(2-deoxy-2-sulfamido-3,6-di-O-sulfo-alpha-D-gluco pyranosyl)- (1----4)-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-(1----4)-2-deoxy-2- sulfamido-6-O- sulfo-beta-D-glucopyranoside (3). In a similar way, the trisaccharide derivative, the hexasodium salt of methyl O-(2-deoxy-2-sulfamido-6-O-sulfo-alpha-D- glucopyranosyl)- (1----4)-O-(beta-D-glucopyranosyluronic acid)-(1----4)-2-deoxy-2-sulfamido-3,6- di-O- sulfo-alpha-D-glucopyranoside (4) was synthesized from methyl O-(6-O-acetyl-2- azido- 3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2,3-di-O- benzyl-beta- D-glucopyranosyluronate)-3,6-di-O-acetyl-2-azido-2-deoxy-alpha-D- glucopyranoside. The pentasaccharide 3 binds strongly to antithrombin III with an association constant almost equivalent to that of high-affinity heparin, but the trisaccharide 4 appears not to bind.  相似文献   

5.
The reaction of methyl 2,3-anhydro-beta-D-ribofuranoside with hydrogen bromide in an acetic acid-acetic anhydride solution leads to the formation of methyl 2,3-di-O-acetyl-5-bromo-5-deoxy-alpha,beta-D-xylofuranoside. Similar treatment of methyl 2,3-anhydro-5-O-benzoyl-beta-D-robofuranoside provided methyl 2-O-acetyl-3-O-benzoyl-5-bromo-5-deoxy-alpha,beta-D-xylofuranosides. The position of halogen substitution was ascertained by hydrogenolysis to the resultant 5-deoxy sugars, which were characterized by their n.m.r. spectra. Confirmation of the structural assignment for methyl 2-O-acetyl-3-O-benzoyl-5-deoxy-alpha,beta-D-xylofuranoside was obtained by synthesis from 1,2-O-isopropylidene-alpha-D-xylofuranose. The formation of the 5-bromo derivatives under the reported conditions probably occurred through the intermediacy of the 3,5-acyloxonium ions. Similar conversions were observed when the starting compound was treated with hydrogen chloride, acetyl bromide, or acetyl chloride in acetic acid-acetic anhydride solutions.  相似文献   

6.
A new synthesis of (±)-9-demethylmunduserone (2) is described. Thermal rearrangement of l-(4-benzyloxy-2-hydroxyphenyl)-4-(3′,4′-dimethoxyphenoxy)-2-butyn-1-one (7) afforded 4-(4-benzyloxy-2-hydroxybenzoyl)-6,7-dimethoxy-2H-chromene (8), 3-(4-benzyloxy-2-hydroxyberrzoyl)-5,6-dimethoxy-2-methylbenzofuran (9) and 9-benzyloxy-2,3-dimethoxy-6a,12a-dihydrorotoxen-12(6H)-one (3). 4-Aroyl-2H-chromene (8) was smoothly converted to 3 in quantitative yield by the treatment with sodium acetate. The structure of 3 was confirmed by an alternative synthesis from methyl tephrosate (10). Debenzylation of 3 with aluminum bromide afforded (±)-9-demethylmunduserone (2) in high yield.  相似文献   

7.
Reaction of pyridin-2(1H)-one 1 with 4-bromobutylacetate (2), (2-acetoxyethoxy)methyl bromide (3) gave the corresponding nicotinonitrile O-acyclonucleosides, 4 and 5, respectively. Deacetylation of 4 and 5 gave the corresponding deprotected acyclonucleosides 6 and 7, respectively. Treatment of pyridin-2(1H)-one 1 with 1,3-dichloropropan-2-ol (8), epichlorohydrin (10) and allyl bromide (12) gave the corresponding nicotinonitrile O-acyclonucleosides 9, 11, and 13, respectively. Furthermore, reaction of pyridin-2(1H)-one 1 with the propargyl bromide (14) gave the corresponding 2-O-propargyl derivative 15, which was reacted via [3+2] cycloaddition with 4-azidobutyl acetate (16) and [(2-acetoxyethoxy)methyl]azide (17) to give the corresponding 1,2,3-triazole derivatives 18 and 19, respectively. The structures of the new synthesized compounds were characterized by using IR, (1)H, (13)C NMR spectra, and microanalysis. Selected members of these compounds were screened for antibacterial activity.  相似文献   

8.
The reaction of 2,3-di-O-acetyl-4-O-benzyl-α,β-d-xylopyranosyl bromide (2) with methyl 2,3-di-O-acetyl-β-d-xylopyranoside gave methyl O-(2,3-di-O-acetyl-4-O-benzyl-β-d-xylopyranosyl)-(1→4)-2,3-di-O-acetyl-β-d-xylopyranoside (22). Catalytic hydrogenolysis of 22 exposed HO-4′ which was then condensed with 2. This sequence of reactions was repeated three more times to afford, after complete removal of protecting groups, a homologous series of methyl β-glycosides of (1→4)-β-d-xylo-oligosaccharides. 13C-N.m.r. spectra of the synthetic methyl β-glycosides (di- to hexa-saccharide) are presented together with data for six other, variously substituted, homologous series of (1→4)-d-xylo-oligosaccharides.  相似文献   

9.
The influence of chemical modification on neurotoxin RTX-III toxicity in mice has been studied. The toxicity was not affected by modification of Trp30 residue with 2-hydroxy-5-nitrobenzyl bromide but was diminished by a factor of 100 after reduction of the toxin's two disulfide bonds with 2-mercaptoethanol followed by derivatization with iodoacetamide. Blocking carboxyl groups with [3H]glycine methyl ester in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide led to only a two-fold drop in toxicity in the case of monocarboxylate-modified derivatives and a six-fold decrease for dimodified derivatives. A conception of multipoint attachment of the toxin to sodium channel is discussed.  相似文献   

10.
The reaction of 2,3-di-O-acetyl-4-O-benzyl-α,β-d-xylopyranosyl bromide (2) with methyl 2,3-di-O-acetyl-β-d-xylopyranoside gave methyl O-(2,3-di-O-acetyl-4-O-benzyl-β-d-xylopyranosyl)-(1→4)-2,3-di-O-acetyl-β-d-xylopyranoside (22). Catalytic hydrogenolysis of 22 exposed HO-4′ which was then condensed with 2. This sequence of reactions was repeated three more times to afford, after complete removal of protecting groups, a homologous series of methyl β-glycosides of (1→4)-β-d-xylo-oligosaccharides. 13C-N.m.r. spectra of the synthetic methyl β-glycosides (di- to hexa-saccharide) are presented together with data for six other, variously substituted, homologous series of (1→4)-d-xylo-oligosaccharides.  相似文献   

11.
Treatment of methyl tri-O-acetyl-β-D-arabinopyranoside (1a) with hydrogen bromide in benzene or in acetic acid gave, in addition to the pyranosyl bromide (2a), a considerable proportion of tri-O-acetyl-D-arabinofuranosyl bromide (5). Similar treatment of methyl tri-O-benzoyl-β-D-arabinopyranoside (1b) gave a good yield of the pyranosyl bromide (2b); no furanoid derivative was formed. Ring contraction also took place when methyl 4-O-acetyl-2,3-di-O-benzoyl-β-D-arabinopyranoside (7) was treated with hydrogen bromide, whereas the isomeric 3-O-acetyl-2,4-di-O-benzoyl compound (12) gave the pyranosyl bromide 13 in high yield. Thus, methyl pyranosides with an O-acetyl group at C-4 undergo ring contraction on treatment with hydrogen bromide. The corresponding compounds with O-benzoyl groups at C-4 gave pyranosyl bromides only.  相似文献   

12.
A G Renwick  J F Oliver 《Steroids》1973,22(1):123-132
A metabolite of 2,3-dihydroxyestra-1,3,5(10)-trien-17-one-6, 7-3H isolated from rat bile, was partially characterized by mass spectrometry as a methyl ether of 2,3,16-trihydroxyestra-1,3,5(10)-trien-17-one. The α configuration of the 16-hydroxy function was established by chromatographic comparison of the sodium borohydride reduced metabolite with synthetic 2-methoxy-estra-1, 3,5(10)-triene-3,16α,17β-triol and 2-methoxy-estra-1, 3,5(10)-triene-3,16β,17β-triol. The methyl group was located on the C-2 position by comparison with authentic 2- and 3- monomethyl ethers of 2,3-dihydroxy-estra-1, 3,5(10)-trien-17-one following pyrolytic removal of the 16α-hydroxyl group.3,16α-dihydroxy-2-methoxyestra-1,3,5(10)-trien-17-one was found to constitute 2% and 15% of the biliary radioactivity following administration of estrone-6,7-3H and 2,3-dihydroxyestra-1,3,5(10)-trien-17-one-6,7-3H respectively.  相似文献   

13.
Selective tosylation followed by acetylation of methyl 3-azido-2,3-dideoxy-alpha-D-arabino-hexopyranoside (1) in pyridine at room temperature affords a mixture of methyl 4-O-acetyl-3-azido-2,3-dideoxy-6-di-O-p-tolylsulfonyl-alpha-D-arabino-hexopyranoside (4) and methyl 3-azido-2,3-dideoxy-4,6-di-O-p-tolylsulfonyl-alpha-D-arabino-hexopyranoside (3). Compound 4 undergoes nucleophilic displacement with sodium iodide in acetic anhydride to give methyl 4-O-acetyl-3-azido-2,3,6-trideoxy-6-iodo-alpha-D-arabino-hexopyranoside (7), whose crystal structure and (1H) and (13)C NMR data are reported. This compound adopts the 4C(1) conformation.  相似文献   

14.
Some 3-acetyl-2-substituted phenyl-5-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1,3,4-oxadiazole derivatives were synthesized by cyclization reaction of N'-substituted benzylidene-3,4,5-trimethoxybenzohydrazide in acetic anhydride. Their structures were verified by elemental analysis, IR, (1)H NMR, and (13)C NMR. Compound 3i was provided with X-ray crystallographic data. The compounds were evaluated for their antiproliferative activities against some cancer cells in vitro by MTT method. Among them, 2a, 2b, 2c, 2f, 3l, and 3m were highly effective against PC3 cells and 2a, 2c, and 2f showed moderate activities against Bcap37 and BGC823 cells. The IC(50) values of high active compounds 2a, 2b, 2c, 2f, 3l, and 3m against PC3 cells were 0.2, 1.8, 0.2, 1.2, 1.7, and 0.3muM, respectively.  相似文献   

15.
3,4-Di-O-acetyl-2-O-benzyl-α-d-xylopyranosyl bromide (1) reacts with methyl 2,3-anhydro-α-d-ribopyranoside (2) to afford, in high yield, methyl 2,3-anhydro-4-O- (3,4-di-O-acetyl-2-O-benzyl-β-d-xylopyranosyl)-β-d-ribopyranoside (3). Deacetylation of 3 gave 4, which reacted with 2,3,4-tri-O-acetyl-α-d-xylopyranosyl bromide to give the branched tetrasaccharide derivative 5, which, in turn, was converted by a series or conventional reactions into methyl 4-O-[3,4-di-O-(β-d-xylopyranosyl)-β-d- xylopyranosyl]-β-d-xylopyranoside. The reaction of 1 with its hydrolysis product gave 3,4-di-O-acetyl-2-O-benzyl-α-d-xylopyranosyl 3,4-di-O-acetyl-2-O-benzyl-β-d-xylopyranoside, which was also isolated after the reaction of 1 with 2.  相似文献   

16.
6-Deoxy-2,3,5-tri-O-(p-nitrobenzoyl)-β-d-allo- and -α-l-talo-furanosyl bromide (6 and 11) have been synthesized from methyl 2,3-O-isopropylidene-β-d-ribo-pentodialdo-1,4-furanoside (1). Treatment of 1 with methyl Grignard reagent, followed by (p-nitrobenzoyl)ation, afforded two 5-epimers, methyl 6-deoxy-2,3-O-isopropylidene-5-O-(p-nitrobenzoyl)-β-d-allo- and -α-l-talo-furanosides (3 and 8) which were fractionally recrystallized. The l-talo isomer (8) separated first, and was treated with acid to remove the isopropylidene group, the product (p-nitrobenzoyl)ated, and the ester reacted with hydrogen bromide in acetic acid, to afford crystalline compound 11. The mother liquor from the fractional recrystallization was treated with acid, whereby methyl 6-deoxy-5-O-p-nitrobenzoyl)-d-allofuranoside was isolated. It was (p-nitrobenzoyl)ated, and the ester treated with hydrogen bromide in acetic acid, to afford crystalline bromide 6.  相似文献   

17.
Abstract

A number of 6-substituted 7-[(2-hydroxyethoxy)methyl]pyrrolo[2,3-d]pyrimidine and 7-[(1,3-dihydroxy-2-propoxy)methyl]pyrrolo[2,3-d]pyrimidine derivatives related to the nucleoside antibiotics toyocamycin and sangivamycin were prepared and tested for their biological activity. Treatment of 2-amino-5-bromo-3,4-dicyanopyrrole (2) with triethylorthoformate, followed by alkylation via the sodium salt method with either 2-(acetoxyethoxy)methyl bromide or (1,3-diacetoxy-2-propoxy)methyl bromide, furnished the corresponding N-substituted pyrroles 3a and 3b. These compounds were then smoothly converted to the requisite deprotected 4-amino-6-bromopyrrolo[2,3-d]-pyrimidine-5-carbonitriles 5a and 5b (toyocamycin analogs) by methanolic ammonia. The 6-amino-derivatives were obtained by a displacement of the bromo group with liquid ammonia. Conventional functional group transformations involving the 5-cyano group furnished the 5-carboxamide (sangivamycin) and 5-thioamide analogs. Compounds substituted at the 7-position with a ribosyl moiety were active against human cytomegalovirus (HCMV) at micromolar concentrations, but the apparent activity was not selective. The 7-ribosyl compounds also had no activity against human immunodeficiency virus (HIV), though they were all cytotoxic. The new compounds were also evaluated against HCMV, herpes simplex virus type I (HSV-1), HIV, and also for their ability to inhibit the growth of L1210 murine leukemic cells in vitro. None of these compounds with (2-hydroxyethoxy)methyl substituents or 7-(1,3-dihydroxy-2-propoxy)methyl substituent at N-7 showed significant cytotoxicity toward L1210, or toward uninfected human foreskin fibroblasts (HFF cells), and KB cells. Nor were they cytotoxic in human lines CEM or MT2. Only compound 4a was found to be active against HCMV, having an IC50 of 32 μM.  相似文献   

18.
Besides the formation of the aminotriazine N6-[4-(3-amino-1,2,4-triazin-5-yl)-2,3-dihydroxybutyl]-L-lysine, the reaction of [1-13C]D-glucose with lysine and aminoguanidine leads to the generation of 6-[2-([[amino(imino)methyl]hydrazono]methyl)pyridinium-1-yl]-L-norleucine (14-13C1). The dideoxyosone N6-(2,3-dihydroxy-5,6-dioxohexyl)-L-lysine was shown to be a precursor in the formation of 14-13C1, which proceeds via the reactive carbonyl intermediate 6-(2-formylpyridinium-1-yl)-L-norleucine (13-13C1). In order to study the reactivity of 13-13C1, the model compound 1-butyl-2-formylpyridinium (18) was prepared in a two-step procedure starting from 2-pyridinemethanol. The reaction of the pyridinium-carbaldehyde 18 with L-lysine yielded the Strecker analogous degradation product 2-(aminomethyl)-1-butylpyridinium and another compound, which was shown to be as 1-butyl-2-[(2-oxopiperidin-3-ylidene)methyl]pyridinium. Reaction of 18 with the C-H acidic 4-hydroxy-5-methylfuran-3(2H)-one leads to the formation of the condensation product 1-butyl-2-[hydroxy-(4-hydroxy-5-methyl-3-oxofuran-2(3H)-ylidene)methyl]-pyridinium.  相似文献   

19.
Glycal esters of Kdo derivatives were converted into 2,3-anhydro intermediates, which were transformed into D-glycero-D-talo-oct-2-ulopyranosylonic acid (Ko), as well as 3-O- and 4-O-p-nitrobenzoyl-Ko derivatives. The exo-allyl orthoester derivative, methyl [5,7,8-tri-O-acetyl-4-O-(4-nitrobenzoyl)-2,3-O-[(1-exo-allyloxy)-ethylidene]-D-glycero-beta-D-talo-oct-2-ulopyranos]onate, prepared from the 4-O-pNBz-protected Ko derivative, was elaborated into the alpha-Ko allyl ketoside, the reducing disaccharide alpha-Kdop-(2-->4)-Ko and the disaccharide alpha-Kdop-(2-->4)-Kop-(2-->OAll). Conversely, methyl[4,5,7,8-tetra-O-acetyl-3-O-(4-nitrobenzoyl)-alpha-D-glycero-D-talo-2-octulopyranosyl bromide]onate [Carbohydr. Res., 244 (1993) 69-84], was coupled with a Kdo acceptor to give the disaccharide alpha-Kop-(2-->4)-Kdop-(2-->OAll) after orthoester rearrangement and deprotection. The allyl glycosides were treated with cysteamine and converted into neoglycoproteins. The ligands correspond to inner core units from Acinetobacter haemolyticus and Burkholderia cepacia lipopolysaccharides.  相似文献   

20.
Treatment of methyl β-d-ribofuranoside with acetone gave methyl 2,3-O-isopropylidene-β-d-ribofuranoside (1, 90%), whereas methyl α-d-ribofuranoside gave a mixture (30%) of 1 and methyl 2,3-O-isopropylidene-α-d-ribofuranoside (1a). On oxidation, 1 gave methyl 2,3-O-isopropylidene-β-d-ribo-pentodialdo-1,4-furanoside (2), whereas no similar product was obtained on oxidation of 1a. Ethynylmagnesium bromide reacted with 2 in dry tetrahydrofuran to give a 1:1 mixture (95%) of methyl 6,7-dideoxy-2,3-O-isopropylidene-β-d-allo- (3) and -α-l-talo-hept-6-ynofuranoside (4). Ozonolysis of 3 and 4 in dichloromethane gave the corresponding d-allo- and l-talo-uronic acids, characterized as their methyl esters (5 and 6) and 5-O-formyl methyl esters (5a and 6a). Ozonolysis in methanol gave a mixture of the free uronic acid and the methyl ester, and only a small proportion of the 5-O-formyl methyl ester. Malonic acid reacted with 2 to give methyl 5,6-dideoxy-2,3-O-isopropylidene-β-d-ribo-trans-hept-5-enofuranosiduronic acid (7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号