首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
S100 proteins are calcium-binding proteins, which exist only in vertebrates and which constitute a large protein family. The origin and evolution of the S100 family in vertebrate lineages remain a challenge. Here, we examined the synteny conservation of mammalian S100A genes by analysing the sequence of available vertebrate S100 genes in databases. Five S100A gene members, unknown previously, were identified by chromosome mapping analysis. Mammalian S100A genes are duplicated and clustered on a single chromosome while two S100A gene clusters are found on separate chromosomes in teleost fish, suggesting that S100A genes existed in fish before the fish-specific genome duplication took place. During speciation, tandem gene duplication events within the cluster of S100A genes of a given chromosome have probably led to the multiple members of the S100A gene family. These duplicated genes have been retained in the genome either by neofunctionalisation and/or subfunctionalisation or have evolved into non-coding sequences. However in vertebrate genomes, other S100 genes are also present i.e. S100P, S100B, S100G and S100Z, which exist as single copy genes distributed on different chromosomes, suggesting that they could have evolved from an ancestor different to that of the S100A genes.  相似文献   

4.
The S100 family, with about 20 members in humans, is composed of EF-hand calcium-regulated proteins and is linked to a range of serious human diseases, including cancer and autoimmune and neurological disorders. The oldest S100 family members are found in teleosts (bony fish). The zebrafish, Danio rerio, was suggested as a promising model system for in vivo studies on S100 family functions, and we chose to investigate zebrafish S100Z as the closest homologue of the metastasis-promoting human S100A4. Here, we report the first crystal structure of an S100 protein from this organism, the calcium-bound state of S100Z to 2.03 Å resolution. Crystal packing suggests higher-order oligomerisation of S100Z dimers, with a tetramerisation interface very similar to, but even more extensive than, that reported for S100A4. The interactions are primarily through the C-terminal αIV helices from adjacent dimers in an antiparallel orientation. Structural comparisons between known S100 multimeric assemblies together with analysis of calcium-driven changes to the dimerisation cores suggest a mechanism for calcium-promoted oligomerisation of S100 proteins.  相似文献   

5.

Background

Hematopoiesis is a complex developmental process controlled by a large number of factors that regulate stem cell renewal, lineage commitment and differentiation. Secreted proteins, including the hematopoietic growth factors, play critical roles in these processes and have important biological and clinical significance. We have employed representational difference analysis to identify genes that are differentially expressed during experimentally induced myeloid differentiation in the murine EML hematopoietic stem cell line.

Results

One identified clone encoded a previously unidentified protein of 541 amino acids that contains an amino terminal signal sequence but no other characterized domains. This protein is a member of family of related proteins that has been named family with sequence similarity 20 (FAM20) with three members (FAM20A, FAM20B and FAM20C) in mammals. Evolutionary comparisons revealed the existence of a single FAM20 gene in the simple vertebrate Ciona intestinalis and the invertebrate worm Caenorhabditis elegans and two genes in two insect species, Drosophila melanogaster and Anopheles gambiae. Six FAM20 family members were identified in the genome of the pufferfish, Fugu rubripes and five members in the zebrafish, Danio rerio. The mouse Fam20a protein was ectopically expressed in a mammalian cell line and found to be a bona fide secreted protein and efficient secretion was dependent on the integrity of the signal sequence. Expression analysis revealed that the Fam20a gene was indeed differentially expressed during hematopoietic differentiation and that the other two family members (Fam20b and Fam20c) were also expressed during hematcpoiesis but that their mRNA levels did not vary significantly. Likewise FAM20A was expressed in more limited set of human tissues than the other two family members.

Conclusions

The FAM20 family represents a new family of secreted proteins with potential functions in regulating differentiation and function of hematopoietic and other tissues. The Fam20a mRNA was only expressed during early stages of hematopoietic development and may play a role in lineage commitment or proliferation. The expansion in gene number in different species suggests that the family has evolved as a result of several gene duplication events that have occurred in both vertebrates and invertebrates.  相似文献   

6.
Kizawa K  Takahara H  Unno M  Heizmann CW 《Biochimie》2011,93(12):2038-2047
Epithelial Ca2+-regulation, which governs cornified envelope formation in the skin epidermis and hair follicles, closely coincides with the expression of S100A3, filaggrin and trichohyalin, and the post-translational modification of these proteins by Ca2+-dependent peptidylarginine deiminases. This review summarizes the current nomenclature and evolutional aspects of S100 Ca2+-binding proteins and S100 fused-type proteins (SFTPs) classified as a separate protein family with special reference to the molecular structure and function of S100A3 dominantly expressed in hair cuticular cells. Both S100 and SFTP family members are identified by two distinct types of Ca2+-binding loops in an N-terminal pseudo EF-hand motif followed by a canonical EF-hand motif. Seventeen members of the S100 protein family including S100A3 are clustered with seven related genes encoding SFTPs on human chromosome 1q21, implicating their association with epidermal maturation and diseases. Human S100A3 is characterized by two disulphide bridges and a preformed Zn2+-pocket, and may transfer Ca2+ ions to peptidylarginine deiminases after its citrullination-mediated tetramerization. Phylogenetic analysis utilizing current genome databases suggests that divergence of the S100A3 gene coincided with the emergence of hair, a defining feature of mammals, and that the involvement of S100A3 in epithelial Ca2+-cycling occurred as a result of a skin adaptation in terrestrial mammals.  相似文献   

7.
8.
Release of endogenous damage associated molecular patterns (DAMPs), including members of the S100 family, are associated with infection, cellular stress, tissue damage and cancer. The extracellular functions of this family of calcium binding proteins, particularly S100A8, S100A9 and S100A12, are being delineated. They appear to mediate their functions via receptor for advanced glycation endproducts (RAGE) or TLR4, but there remains considerable uncertainty over the relative physiological roles of these DAMPs and their pattern recognition receptors. In this study, we surveyed the capacity of S100 proteins to induce proinflammatory cytokines and cell migration, and the contribution RAGE and TLR4 to mediate these responses in vitro. Using adenoviral delivery of murine S100A9, we also examined the potential for S100A9 homodimers to trigger lung inflammation in vivo. S100A8, S100A9 and S100A12, but not the S100A8/A9 heterodimer, induced modest levels of TLR4-mediated cytokine production from human PBMC. In contrast, for most S100s including S100A9, RAGE blockade inhibited S100-mediated cell migration of THP1 cells and major leukocyte populations, whereas TLR4-blockade had no effect. Intranasal administration of murine S100A9 adenovirus induced a specific, time-dependent predominately macrophage infiltration that coincided with elevated S100A9 levels and proinflammatory cytokines in the BAL fluid. Inflammatory cytokines were markedly ablated in the TLR4-defective mice, but unexpectedly the loss of TLR4 signaling or RAGE-deficiency did not appreciably impact the S100A9-mediated lung pathology or the inflammatory cell infiltrate in the alveolar space. These data demonstrate that physiological levels of S100A9 homodimers can trigger an inflammatory response in vivo, and despite the capacity of RAGE and TLR4 blockade to inhibit responses in vitro, the response is predominately independent of both these receptors.  相似文献   

9.
It is now known that multicomponent protein assemblies strictly regulate many protein functions. The S100 protein family is known to play various physiological roles, which are associated with alternative complex formations. To prepare sufficient amounts of heterodimeric S100A8 and S100A9 proteins, we developed a method for bicistronic coexpression from a single-vector system using Escherichia coli cells as a host. The complex formation between S100A8 and S100A9 appears to be dependent on the thermodynamic stability of the protein during expression. The stable S100A8/A9 heterodimer complex spontaneously formed during coexpression, and biologically active samples were purified by cation-exchange chromatography. Semi-stable homodimers of S100A8 and S100A9 were also formed when expressed individually. These results suggest that the assembly of S100 protein complexes might be regulated by expression levels of partner proteins in vivo. Because protein assembly occurs rapidly after protein synthesis, coexpression of relevant proteins is crucial for the design of multicomponent recombinant protein expression systems.  相似文献   

10.
11.
The Drosophila protein Turtle and the vertebrate proteins immunoglobulin superfamily (IgSF), member 9 (IGSF9/Dasm1) and IGSF9B are members of an evolutionarily ancient protein family. A bioinformatics analysis of the protein family revealed that invertebrates contain only a single IGSF9 family gene, whereas vertebrates contain two to four genes. In cnidarians, the gene appears to encode a secreted protein, but transmembrane isoforms of the protein have also evolved, and in many species, alternative splicing facilitates the expression of both transmembrane and secreted isoforms. In most species, the longest isoforms of the proteins have the same general organization as the neural cell adhesion molecule family of cell adhesion molecule proteins, and like this family of proteins, IGSF9 family members are expressed in the nervous system. A review of the literature revealed that Drosophila Turtle facilitates homophilic cell adhesion. Moreover, IGSF9 family proteins have been implicated in the outgrowth and branching of neurites, axon guidance, synapse maturation, self-avoidance, and tiling. However, despite the few published studies on IGSF9 family proteins, reports on the functions of both Turtle and mammalian IGSF9 proteins are contradictory.  相似文献   

12.
The vertebrate RNA-binding proteins, Musashi-1 (Msi-1) and Musashi-2 (Msi-2) are expressed in multiple stem cell populations. A role for Musashi proteins in preventing stem cell differentiation has been suggested from genetic analysis of the Drosophila family member, dMsi, and both vertebrate Msi proteins function co-operatively to regulate neural stem cell behaviour. Here we have identified a second Drosophila Msi family member, Rbp6, which shares more amino acid identity with vertebrate Msi-1 and Msi-2 than dMsi. We generated an antibody that detects most Rbp6 splice isoforms and show that Rbp6 is expressed in multiple tissues throughout development. However, Rbp6 deletion mutants generated in this study are viable and fertile, and show only minor defects. We used Drosophila spermatogonial germline stem cells (GSC’s) as a model to test whether Drosophila Msi proteins function redundantly to regulate stem cell behaviour. However, like vertebrate Msi-1 and Msi-2, Rbp6 and Msi do not appear to be co-expressed in spermatogenic GSC’s and do not function co-operatively in the regulation of GSC maintenance. Thus while two Msi family members are present in Drosophila, the function of the family members have diverged.  相似文献   

13.
S100A1 is a member of the Ca2+-binding S100 protein family. It is expressed in brain and heart tissue, where it plays a crucial role as a modulator of Ca2+ homeostasis, energy metabolism, neurotransmitter release, and contractile performance. Biological effects of S100A1 have been attributed to its direct interaction with a variety of target proteins. The (patho)physiological relevance of S100A1 makes it an important molecular target for future therapeutic intervention. S-Nitrosylation is a post-translational modification of proteins, which plays a role in cellular signal transduction under physiological and pathological conditions. In this study, we confirmed that S100A1 protein is endogenously modified by Cys85 S-nitrosylation in PC12 cells, which are a well established model system for studying S100A1 function. We used isothermal calorimetry to show that S-nitrosylation facilitates the formation of Ca2+-loaded S100A1 at physiological ionic strength conditions. To establish the unique influence of the S-nitroso group, our study describes high resolution three-dimensional structures of human apo-S100A1 protein with the Cys85 thiol group in reduced and S-nitrosylated states. Solution structures of the proteins are based on NMR data obtained at physiological ionic strength. Comparative analysis shows that S-nitrosylation fine tunes the overall architecture of S100A1 protein. Although the typical S100 protein intersubunit four-helix bundle is conserved upon S-nitrosylation, the conformation of S100A1 protein is reorganized at the sites most important for target recognition (i.e. the C-terminal helix and the linker connecting two EF-hand domains). In summary, this study discloses cysteine S-nitrosylation as a new factor responsible for increasing functional diversity of S100A1 and helps explain the role of S100A1 as a Ca2+ signal transmitter sensitive to NO/redox equilibrium within cells.  相似文献   

14.
S100A13 is involved in several key biological functions like angiogenesis, tumor formation and cell apoptosis. It is a homodimeric protein that belongs to the S100 protein family. S100A13 is co-expressed with acidic fibroblast growth factor (FGF1) and interleukin-1α which are key angiogenesis inducers. The S100 proteins have been shown to be involved in several cellular functions such as calcium homeostasis, cell growth and differentiation dynamic of cytoskeleton. Its biological functions are mainly mediated through the receptor for advanced glycation end products (RAGE) signaling. RAGE is involved in inflammatory processes and is associated with diabetic complications, tumor outgrowth, and neurodegenerative disorders. RAGE induces cellular signaling upon binding of different ligands, such as S100 proteins, glycated proteins, and HMGB1. RAGE signaling is complex, and it depends on the cell type and concentration of the ligand. Molecular level interactions of RAGE and S100 proteins are useful to understand the RAGE signaling diversity. In this report we focus on the molecular level interactions of S100A13 and RAGE C2 domain. The binding between RAGE C2 and S100A13 is moderately strong (Kd ~ 1.3 μM). We have solved the solution structure of the S100A13–RAGE C2 complex and pronounce the interface regions in S100A13–RAGE C2 complex which are helpful for drug development of RAGE induced diseases.  相似文献   

15.
Yeast Qri7 and human OSGEPL are members of the orthologous Kae1(OSGEP)/YgjD protein family, the last class of universally conserved proteins without assigned function. Phylogenetic analyses indicate that the eukaryotic Qri7(OSGEPL) proteins originated from bacterial YgjD proteins. We have recently shown that the archaeal Kae1 protein is a DNA-binding protein that exhibits apurinic endonuclease activity in vitro. We show here that the Qri7/OSGEPL proteins localize in mitochondria and are involved in mitochondrial genome maintenance in two model eukaryotic organisms, Saccharomyces cerevisiae and Caenorhabditis elegans. Furthermore, S. cerevisiae Qri7 complements the loss of the bacterial YgjD protein in Escherichia coli, suggesting that Qri7/OSGEPL and YgjD proteins have retained similar functions in modern organisms. We suggest to name members of the Kae1(OSGEP)/YgjD family UGMP, for Universal Genome Maintenance Proteins.  相似文献   

16.
S100A9 is a member of the S100 family of proteins that contain two EF-hand calcium-binding motifs. We previously reported that S100A9 was differentially expressed during the early airway response phase of asthma and can be regulated by acupuncture. To understand the possible role of S100A9 in asthma, the effects of the S100A9 were investigated in a rat model of asthma and in isolated tracheal spirals. The pulmonary function and isometric tension were measured after the administration of purified recombinant S100A9. The results of in vivo experiments showed that S100A9 (0.1 μg/kg) significantly decreased the pulmonary resistance and increased the dynamic compliance. The in vitro experimental results showed that S100A9 (100, 200, 400, or 800 ng/ml, final concentrations) significantly reduced the isometric tension of isolated tracheal spirals. These results suggest that S100A9 elicits dose-dependent anti-asthmatic effects and may provide further insight into the treatment of asthma.  相似文献   

17.
Ji C  Guo W  Zhang M  Lu X  Ni Y  Guo X 《Gene》2012,491(2):158-164
Uncoupling proteins, a family of proton carriers located in the inner mitochondrial membrane, have important functions in energy metabolism and free radical generation that are relevant to mitochondrial function. Five family members have been identified, UCP1-5, that have distinct tissue distributions, and differences and similarities in physiological function. Uncoupling protein 4 (UCP4) is highly expressed and has a unique function in brain. UCP4 appears to be involved with metabolism in neurons and adipocytes, but conclusions on this protein have been controversial. Here, we used Caenorhabditis elegans to explore the functions of ucp-4, particularly in fat metabolism. Our results showed that UCP4 knockdown induced an obese phenotype and impaired the insulin-like pathway, possibly via oxidative stress in C. elegans. This highlights the importance of studying the role of ucp-4 in fat metabolism.  相似文献   

18.

Background  

Among the EF-Hand calcium-binding proteins the subgroup of S100 proteins constitute a large family with numerous and diverse functions in calcium-mediated signaling. The evolutionary origin of this family is still uncertain and most studies have examined mammalian family members.  相似文献   

19.
S100B (S100β) and S100A6 (calcyclin) are two 10-kDa Ca2+- and Zn2+-binding proteins coexpressed in melanoma and cell-cycle regulated. These proteins are members of the S100 subfamily and are thought to exert their function through interaction with intracellular target proteins. In order to search for potential target proteins interacting with S100B, we used a yeast two-hybrid strategy with human S100B as bait to screen a human brain cDNA library. The fusion proteins interacting with the S100B bait were identified as S100B, S100A1, and S100A6. This indicates the potential of S100B to form homodimers and heterodimers with other members of the S100 subfamily. By Northern and Western blotting, S100B and S100A6 were shown to be expressed at high levels in a panel of human melanoma cell lines. S100B and S100A6 were coimmunoprecipitated from melanoma cell lysates in the presence of 100 μM Zn2+. Confocal microscopy demonstrated that both proteins were distributed throughout the cytoplasm and concentrated in the nucleus. The demonstration of an association and colocalization of S100B and S100A6 in melanoma supports the possibility that an S100B/S100A6 heterodimer plays a functional role in these cells.  相似文献   

20.
DUF579 (domain of unknown function 579) family proteins contain a DUF579 domain structure but vary greatly in their overall sequence similarity. Several DUF579 proteins have been found to play a role in cell wall biosynthesis in Arabidopsis, while DUF579 family genes have not yet been systematically investigated in Populus. In this study, the Populus DUF579 family proteins were found to be localized in different cell types and subcellular locations. The diverse expression patterns of the proteins indicate that they may perform different functions in Populus. Among the DUF579 family members, PtrDUF579-1 is found to be specifically expressed in vascular cambium zone cells where it is localized in the Golgi apparatus. Suppression of PtrDUF579-1 expression reduced plant height and stem diameter size. Cambium cell division and xylem tissue growth was inhibited while secondary cell wall formation was unchanged in PtrDUF579-1 suppressed plants. Cell walls analysis showed that the composition of the pectin fraction of the cambium cell wall was altered while other polysaccharides were not affected in PtrDUF579-1 suppressed plants. This observation suggest cambium expressed PtrDUF579-1 may affect cell wall biosynthesis and be involved in cambium cell proliferation in Populus. Overall, DUF579 family proteins play a diverse set of roles in Populus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号