首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
阿尔茨海默病(Alzheimer's disease,AD)是发生于老年和老年前期、以进行性认知功能障碍和行为异常为特征的中枢神经系统退行性疾病,是老年痴呆中最常见类型。轻度认知功能障碍(mild cognitive impairment,MCI)是介于正常衰老和痴呆之间的一种中间状态,指有轻度的记忆或认知损伤,但尚未达到痴呆程度的一种状态,日常生活和社会功能不受影响,其中很大一部分患者最终进展为AD。临床诊断AD患者多已达中晚期,为了能早期诊断AD及预测MCI的转归,有关AD的生物学标注物的研究成为近年来的科研热点。AD患者颅脑的大体病理特征为脑萎缩,其萎缩有别于正常老龄化所致的退行性改变,有其自身特点,这种特定形式的萎缩有可能成为AD早期诊断的生物学标志物。基于体素的形态测量学(voxel-based morphometry,VBM)是一种基于像素水平对脑核磁图像进行自动、全面、客观分析的技术,可以定量分析全脑结构、刻画出局部脑区结构特征,是一种较好的脑形态分析工具,广泛用于阿尔茨海默病及轻度认知功能障碍的研究中,本文综述了近年来其研究进展,期望为临床及科研提供参考。  相似文献   

2.
The concept of mild cognitive impairment (MCI) identifies persons who are neither cognitively normal nor demented. There is increasing evidence that MCI defines a group of persons who are at near-term risk of developing dementia and particularly Alzheimer''s disease (AD). MCI thus constitutes an attractive target population for preventive treatments of AD. MCI is associated with aging and is more prevalent than dementia. There are several clinical and biological markers that are predictive of MCI prognosis, including depressive symptoms, cognitive deficits, brain imaging and neurochemical findings. The clinician needs to be especially alert to depressive and other mood symptoms which are common in MCI and potentially treatable. Trials of current medications for prevention of MCI progression to dementia have been largely negative. There are observational data suggesting that lifestyle modifications including exercise, leisure activities, cognitive stimulation, and social activities may be effective for prevention of MCI progression. There are many novel therapies currently in trials for early AD, and if effective they may prove to be helpful in prevention of MCI progression as well.  相似文献   

3.
Although in the last decade brain activation in healthy aging and dementia was mainly studied using task-activation fMRI, there is increasing interest in task-induced decreases in brain activity, termed deactivations. These deactivations occur in the so-called default mode network (DMN). In parallel a growing number of studies focused on spontaneous, ongoing ‘baseline’ activity in the DMN. These resting state fMRI studies explored the functional connectivity in the DMN. Here we review whether normal aging and dementia affect task-induced deactivation and functional connectivity in the DMN. The majority of studies show a decreased DMN functional connectivity and task-induced DMN deactivations along a continuum from normal aging to mild cognitive impairment and to Alzheimer's disease (AD). Even subjects at risk for developing AD, either in terms of having amyloid plaques or carrying the APOE4 allele, showed disruptions in the DMN. While fMRI is a useful tool for detecting changes in DMN functional connectivity and deactivation, more work needs to be conducted to conclude whether these measures will become useful as a clinical diagnostic tool in AD. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.  相似文献   

4.
Accumulated evidence shows that leisure activities have a positive impact on cognitive function and dementia. This review aimed to systematically summarize the current evidence on this topic taking into account the limitations of the studies and biological plausibility for the underlying mechanisms linking cognition, dementia and leisure activities, with special attention on mental, physical and social activities. We included only longitudinal studies, with a follow-up time of at least 2 years, published in English from 1991 to March 2011 on leisure activities and cognition (n = 29) or dementia (n = 23) and provided some evidence from intervention studies on the topic. A protective effect of mental activity on cognitive function has been consistently reported in both observational and interventional studies. The association of mental activity with the risk of dementia was robust in observational studies but inconsistent in clinical trials. The protective effect of physical activity on the risk of cognitive decline and dementia has been reported in most observational studies, but has been less evident in interventional studies. Current evidence concerning the beneficial effect of other types of leisure activities on the risk of dementia is still limited and results are inconsistent. For future studies it is imperative that the assessment of leisure activities is standardized, for example, the frequency, intensity, duration and the type of activity; and also that the cognitive test batteries and the definition of cognitive decline are harmonized/standardized. Further, well designed studies with long follow-up times are necessary. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.  相似文献   

5.
Lalo  Ulyana  Pankratov  Yuriy 《Neurochemical research》2021,46(10):2746-2759

Enhanced mental and physical activity can have positive effects on the function of aging brain, both in the experimental animals and human patients, although cellular mechanisms underlying these effects are currently unclear. There is a growing evidence that pre-clinical stage of many neurodegenerative diseases involves changes in interactions between astrocytes and neurons. Conversely, astrocytes are strategically positioned to mediate the positive influence of physical activity and diet on neuronal function. Thus, development of therapeutic agents which could improve the astroglia-neuron communications in ageing brain is of crucial importance. Recent advances in studies of cellular mechanisms of brain longevity suggest that astrocyte-neuron communications have a vital role in the beneficial effects of caloric restriction, physical exercise and their pharmacological mimetics on synaptic homeostasis and cognitive function. In particular, our recent data indicate that noradrenaline uptake inhibitor atomoxetine can enhance astrocytic Ca2+-signaling and astroglia-driven modulation of synaptic plasticity. Similar effects were exhibited by caloric restriction-mimetics metformin and resveratrol. The emerged data also suggest that astrocytes could be involved in the modulatory action of caloric restriction and its mimetics on neuronal autophagy. Still, the efficiency of astrocyte-targeting compounds in preventing age-related cognitive decline is yet to be fully explored, in particular in the animal models of neurodegenerative diseases and autophagy impairment.

  相似文献   

6.
Mouse models of neurodegenerative diseases such as Alzheimer’s disease (AD) are important for understanding how pathological signaling cascades change neural circuitry and with time interrupt cognitive function. Here, we introduce a non-genetic preclinical model for aging and show that it exhibits cleaved tau protein, active caspases and neurofibrillary tangles, hallmarks of AD, causing behavioral deficits measuring cognitive impairment. To our knowledge this is the first report of a non-transgenic, non-interventional mouse model displaying structural, functional and molecular aging deficits associated with AD and other tauopathies in humans with potentially high impact on both new basic research into pathogenic mechanisms and new translational research efforts. Tau aggregation is a hallmark of tauopathies, including AD. Recent studies have indicated that cleavage of tau plays an important role in both tau aggregation and disease. In this study we use wild type mice as a model for normal aging and resulting age-related cognitive impairment. We provide evidence that aged mice have increased levels of activated caspases, which significantly correlates with increased levels of truncated tau and formation of neurofibrillary tangles. In addition, cognitive decline was significantly correlated with increased levels of caspase activity and tau truncated by caspase-3. Experimentally induced inhibition of caspases prevented this proteolytic cleavage of tau and the associated formation of neurofibrillary tangles. Our study shows the strength of using a non-transgenic model to study structure, function and molecular mechanisms in aging and age related diseases of the brain.  相似文献   

7.
As the population of elderly people is growing rapidly, the number of individuals with dementia and cognitive impairment is also increasing. One of the preventive measures against cognitive decline is diet and different dietary factors have already been investigated. This review provides an overview of studies on dietary protein and cognitive functioning and cognitive decline. Also studies on the individual amino acids that are related to brain function, tryptophan and tyrosine, are discussed. Overall, the role of dietary protein intake on cognitive functioning as well as cognitive decline has hardly been studied; we found eight observational studies and three intervention studies. More studies investigated the role of tryptophan (14 studies) and tyrosine (nine studies) in relation to cognitive functioning, but all these studies were performed in young adult populations and mostly under special conditions. Research in elderly populations, in particular, is warranted. Also more research is needed to come to definitive conclusions and specific recommendations regarding protein intake or intake of specific amino acids for maintaining optimal cognitive functioning.  相似文献   

8.
9.
Poor diet and obesity are associated with cognitive impairment throughout adulthood, and increased dementia risk in aging. Here we review the current literature interrogating the mechanisms by which diets high in fat, or fat and sugar lead to cognitive impairment, focusing on changes to gut microbiome composition, inflammatory signalling and blood-brain barrier integrity. Preclinical studies indicate weight gain is not necessary for diet-induced cognitive impairment. Rather, gut microbiome composition, and systemic and central inflammatory processes appear to contribute to diet-induced cognitive impairment. While both obese humans and rodents exhibit reduced blood-brain barrier integrity, cognitive impairments precede these changes, suggesting other mechanisms may underly diet-induced cognitive changes. Other potential candidates include hormone, glucoregulatory and cardiovascular changes. Poor diet and obesity act through multiple mechanisms to affect cognitive health and the challenge for future research is to identify key processes that can be reversed to improve cognition and quality of life.  相似文献   

10.
Cognitive dysfunction and dementia have recently been proven to be common (and underrecognized) complications of diabetes mellitus (DM). In fact, several studies have evidenced that phenotypes associated with obesity and/or alterations on insulin homeostasis are at increased risk for developing cognitive decline and dementia, including not only vascular dementia, but also Alzheimer's disease (AD). These phenotypes include prediabetes, diabetes, and the metabolic syndrome. Both types 1 and 2 diabetes are also important risk factors for decreased performance in several neuropsychological functions. Chronic hyperglycemia and hyperinsulinemia primarily stimulates the formation of Advanced Glucose Endproducts (AGEs), which leads to an overproduction of Reactive Oxygen Species (ROS). Protein glycation and increased oxidative stress are the two main mechanisms involved in biological aging, both being also probably related to the etiopathogeny of AD. AD patients were found to have lower than normal cerebrospinal fluid levels of insulin. Besides its traditional glucoregulatory importance, insulin has significant neurothrophic properties in the brain. How can clinical hyperinsulinism be a risk factor for AD whereas lab experiments evidence insulin to be an important neurothrophic factor? These two apparent paradoxal findings may be reconciliated by evoking the concept of insulin resistance. Whereas insulin is clearly neurothrophic at moderate concentrations, too much insulin in the brain may be associated with reduced amyloid-β (Aβ) clearance due to competition for their common and main depurative mechanism — the Insulin-Degrading Enzyme (IDE). Since IDE is much more selective for insulin than for Aβ, brain hyperinsulinism may deprive Aβ of its main clearance mechanism. Hyperglycemia and hyperinsulinemia seems to accelerate brain aging also by inducing tau hyperphosphorylation and amyloid oligomerization, as well as by leading to widespread brain microangiopathy. In fact, diabetes subjects are more prone to develop extense and earlier-than-usual leukoaraiosis (White Matter High-Intensity Lesions — WMHL). WMHL are usually present at different degrees in brain scans of elderly people. People with more advanced WMHL are at increased risk for executive dysfunction, cognitive impairment and dementia. Clinical phenotypes associated with insulin resistance possibly represent true clinical models for brain and systemic aging.  相似文献   

11.
The incidence of Alzheimer’s disease (AD) has risen exponentially worldwide over the past decade. A growing body of research indicates that AD is linked to diabetes mellitus (DM) and suggests that impaired insulin signaling acts as a crucial risk factor in determining the progression of this devastating disease. Many studies suggest people with diabetes, especially type 2 diabetes, are at higher risk of eventually developing Alzheimer's dementia or other dementias. Despite nationwide efforts to increase awareness, the prevalence of Diabetes Mellitus (DM) has risen significantly in the Middle East and North African (MENA) region which might be due to rapid urbanization, lifestyle changes, lack of physical activity and rise in obesity. Growing body of evidence indicates that DM and AD are linked because both conditions involve impaired glucose homeostasis and altered brain function. Current theories and hypothesis clearly implicate that defective insulin signaling in the brain contributes to synaptic dysfunction and cognitive deficits in AD. In the periphery, low-grade chronic inflammation leads to insulin resistance followed by tissue deterioration. Thus insulin resistance acts as a bridge between DM and AD. There is pressing need to understand on how DM increases the risk of AD as well as the underlying mechanisms, due to the projected increase in age related disorders. Here we aim to review the incidence of AD and DM in the Middle East and the possible link between insulin signaling and ApoE carrier status on Aβ aggregation, tau hyperphosphorylation, inflammation, oxidative stress and mitochondrial dysfunction in AD. We also critically reviewed mutation studies in Arab population which might influence DM induced AD. In addition, recent clinical trials and animal studies conducted to evaluate the efficiency of anti-diabetic drugs have been reviewed.  相似文献   

12.
The world population is aging rapidly. Whilst this dramatic demographic change is a desirable and welcome phenomenon, particularly in view of people's increasing longevity, it's social, financial and health consequences can not be ignored. In addition to an increase of many age related physical illnesses, this demographic change will also lead to an increase of a number of mental health problems in older adults and in particular of dementia and depression. Therefore, any health promotion approach that could facilitate introduction of effective primary, secondary and even tertiary prevention strategies in old age psychiatry would be of significant importance. This paper explores physical activity as one of possible health promotion strategies and evaluates the existing evidence that supports its positive effect on cognitive impairment and depression in later life.  相似文献   

13.

Background

Menopause is associated with sharp declines in concentrations of circulating estrogens. This change in hormone milieu has the potential to affect brain functions relevant to dementia and cognitive aging.

Scope of review

Focused review of published results of randomized clinical trials of estrogen-containing hormone therapy for Alzheimer's disease treatment and dementia prevention, observational research on cognition across the menopause transition, and observational research on the association of hormone therapy and Alzheimer's disease risk.

Major conclusions

Clinical trial evidence supports conclusions that estrogen therapy does not improve dementia symptoms in women with Alzheimer's disease and that estrogen-containing hormone therapy initiated after about age 65 years increases dementia risk. Hormone therapy begun in this older postmenopausal group does not ameliorate cognitive aging. Cognitive outcomes of midlife hormone exposures are less well studied. There is no strong indication of short-term cognitive benefit of hormone use after natural menopause, but clinical trial data are sparse. Little research addresses midlife estrogen use after surgical menopause; limited clinical trial data imply short-term benefit of prompt initiation at the time of oophorectomy. Whether exogenous estrogen exposures in the early postmenopause affect Alzheimer risk or cognitive aging much later in life is unanswered by available data. Observational results raise the possibility of long-term cognitive benefit, but bias is a concern in interpreting these findings.

General significance

Estrogen-containing hormone therapy should not be initiated after age 65 to prevent dementia or remediate cognitive aging. Further research is needed to understand short-term and long-term cognitive effects of estrogen exposures closer to the age of menopause.  相似文献   

14.
Increased survival rates among breast cancer patients have drawn significant attention to consequences of both the presence of cancer, and the subsequent treatment-related impact on the brain. The incidence of breast cancer and the effects of treatment often result in alterations in the microstructure of white matter and impaired cognitive functioning. However, physical activity is proving to be a successful modifiable lifestyle factor in many studies that could prove beneficial to breast cancer survivors. This study investigates the link between white matter lesion volume, moderate physical activity, and cognition in breast cancer survivors following treatment compared to non-cancer age-matched controls. Results revealed that brain structure significantly predicted cognitive function via mediation of physical activity in breast cancer survivors. Overall, the study provided preliminary evidence suggesting moderate physical activity may help reduce the treatment related risks associated with breast cancer, including changes to WM integrity and cognitive impairment.  相似文献   

15.
Preventing cognitive impairment and dementia in the elderly is a major public health challenge for our century and all hypotheses should be explored. Selenium (Se) is one of the factors that may affect the risk of cognitive decline. Its importance in the health and aging process has been documented. Because of the potential of selenoproteins to protect against oxidative stress, Se raises significant expectations for the prevention of chronic diseases including cancer, cardiovascular disease, and type 2 diabetes conditions commonly associated with oxidative stress. Thus, the relationships between Se and cognitive impairment or dementia can be examined through vascular risk factors for dementia, with particular interest in diabetes and dyslipidemia. In addition, in cases of Se deficiency, the brain is the organ that remains Se replete the longest suggesting that Se plays an important role in brain functions. This article presents results obtained in the frame of a longitudinal study on Se and cognitive impairment. They are consistent with the hypothesis that low Se status is a risk factor for cognitive decline even after taking into account vascular risk factors. The concomitant evolution between plasma Se decrease over a 9-year period and cognitive decline suggested that optimal Se status is potentially important to maintain neuropsychological functions in aging people. However, as our understanding of Se biology is incomplete, epidemiological studies are needed to define the groups of population that could benefit from Se supplementation.  相似文献   

16.
Pathological alterations in dendrites and axons (i.e., neuritic pathologies) occur in the normal aging brain as well as in brains from elders with mild cognitive impairment and neurodegenerative dementia. These alterations may correlate with clinical measures of cognitive abilities, but the contribution of neuropil threads (NTs), which constitute 85-90% of cortical tau pathology, has not been clear because of the lack of quantitative methodologies. We combined quantitative fractionation and image analysis to devise a strategy for measuring the burden of tau-rich NTs in the entorhinal and perirhinal cortex of brains from elders with and without cognitive impairment, including dementia due to Alzheimer's disease (AD). On the basis of data presented here using this novel strategy, we conclude that this quantitative imaging technique will facilitate efforts to determine the behavioral correlations of neuritic lesions in AD and other brain disorders.  相似文献   

17.
Alzheimer’s disease (AD) is the most common reason for progressive dementia in the elderly. It has been shown that disorders of the mammalian/mechanistic target of rapamycin (mTOR) signaling pathways are related to the AD. On the other hand, diabetes mellitus (DM) is a risk factor for the cognitive dysfunction. The pathogenesis of the neuronal impairment caused by diabetic hyperglycemia is intricate, which contains neuro-inflammation and/or neurodegeneration and dementia. Glucagon-like peptide-1 (GLP1) is interesting as a possible link between metabolism and brain impairment. Modulation of GLP1 activity can influence amyloid-beta peptide aggregation via the phosphoinositide-3 kinase/AKT/mTOR signaling pathway in AD. The GLP1 receptor agonists have been shown to have favorable actions on the brain such as the improvement of neurological deficit. They might also exert a beneficial effect with refining learning and memory on the cognitive impairment induced by diabetes. Recent experimental and clinical evidence indicates that dipeptidyl-peptidase-4 (DPP4) inhibitors, being currently used for DM therapy, may also be effective for AD treatment. The DPP-4 inhibitors have demonstrated neuroprotection and cognitive improvements in animal models. Although further studies for mTOR, GLP1, and DPP4 signaling pathways in humans would be intensively required, they seem to be a promising approach for innovative AD-treatments. We would like to review the characteristics of AD pathogenesis, the key roles of mTOR in AD and the preventive and/ or therapeutic suggestions of directing the mTOR signaling pathway.  相似文献   

18.
IntroductionCognitive impairment is a transition stage between normal aging and dementia, the prevalence of last one increases with age; the damage of the functions and physical integrity, places the older adult in a greater susceptibility to get sick. Telomere length is a hallmark of aging to characterize this phenotype, as well as a biomarker that reflects the underlying state of the cell. In this work, the relative length of telomeres in older adults with cognitive impairment was correlated.Material and methodsObservational-analytical study, in samples of adult patients older than 65 years with and without cognitive impairment, in whom the relative length of telomeres was measured.ResultsNinety samples of older adults were included in the study and in the association analysis according to multivariate logistic models, cognitive impairment showed almost five times more risk for telomere shortening in relation to the presence of the diagnosis of cognitive impairment (Odds ratio 4.88, p = 0.027).ConclusionsWhen correlating the relative length of telomeres in older adults diagnosed with cognitive impairment, this association was confirmed for shorter.  相似文献   

19.
Every year, tens of thousands of people fall victim to one of invalidating neurological pathologies. Acquired brain injury leads to cognitive impairment and heavy loss of autonomy. Rehabilitation interventions are needed to enable people to recover capacity and return to Instrumental Activities of Daily Living (iADL), such as grocery shopping. Unfortunately, the resources made available in cognitive rehabilitation are insufficient for the growing needs of victims of brain damage. The goal of the AGATHE project is to develop a tool that will provide therapists with an innovative means of dealing with cognitive rehabilitation and offer patients customized rehabilitation sessions, on the basis of simulated iADL. AGATHE fits into accessibility prospects of the tool (for everyone, everywhere and anywhere) and reduction of the cost of rehabilitation. AGATHE allows the strengthening and diversification of skills and expertise of the project's clinical and research partners as well as the opening of a new application field to the technology of the industrial partners. Initial tests of the AGATHE tool have been performed among therapists and patients after brain injury in order to validate usability issues. Perspective of efficacy trials has been identified and development projects are explored.  相似文献   

20.
Alzheimer disease (AD) is characterized by cognitive impairment that starts with memory loss to end in dementia. Loss of synapses and synaptic dysfunction are closely associated with cognitive impairment in AD patients. Biochemical and pathological evidence suggests that soluble Aβ oligomers correlate with cognitive impairment. Here, we used the TgCRND8 AD mouse model to investigate the role of JNK in long term memory deficits. TgCRND8 mice were chronically treated with the cell-penetrating c-Jun N-terminal kinase inhibitor peptide (D-JNKI1). D-JNKI1, preventing JNK action, completely rescued memory impairments (behavioral studies) as well as the long term potentiation deficits of TgCRND8 mice. Moreover, D-JNKI1 inhibited APP phosphorylation in Thr-668 and reduced the amyloidogenic cleavage of APP and Aβ oligomers in brain parenchyma of treated mice. In conclusion, by regulating key pathogenic mechanisms of AD, JNK might hold promise as innovative therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号