首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 The present study was conducted to investigate the distribution and immunohistochemical characteristics of ascending and descending projection neurons of the rat superior olivary complex (SOC), a group of interrelated brainstem nuclei. Ascending neurons were identified by injection of cholera toxin B subunit (CTB) into the central nucleus of the inferior colliculus (IC), descending neurons were labeled by application of Fluoro-Gold (FG) into the scala tympani of the cochlea, ipsilaterally to the IC injection. In accordance with the literature, we observed neurons innervating the IC located in the lateral superior olivary nucleus (LSO) and dorsal periolivary groups (DPO) on both sides, in the superior paraolivary nucleus (SPO) predominantly ipsilateral, as well as in the ipsilateral medial superior olivary nucleus (MSO) and the medial nucleus of the trapezoid body (MNTB). Cochlear projection neurons were found predominantly in the ipsilateral LSO as well as in the bilateral SPO, DPO, MSO and MNTB. In addition, a considerable population of neurons in the ipsilateral LSO and SPO were identified as being both ascending and descending. To further characterize these double-projecting neurons, brainstem sections were incubated in antisera directed against different neuroactive substances. The majority of ascending/descending cells in the LSO contained calcitonin gene-related peptide, but not substance P (SP), met-enkephalin (ENK) or tyrosine hydroxylase (TH). Some of these neurons apparently were contacted by ENK- or SP-immunoreactive fibers and terminals. In addition, we found TH-immunoreactive neurons in the lateral MNTB region. These neurons, which were labeled upon tracer injection into the cochlea (but not upon IC injection), probably belong to the C1 catecholaminergic cell group and may represent a division of the uncrossed olivocochlear bundle. The present results reveal the existence of a previously unknown subpopulation of SOC neurons that project to both the cochlea and the inferior colliculus. Their CGRP immunoreactivity and their uncrossed projection pattern provide evidence that they may belong to the cholinergic, putatively excitatory cell group. Received: 4 January 1999 / Accepted: 17 February 1999  相似文献   

2.
We have compared the retrograde axonal transport of horseradish peroxidase (HRP), to the retrograde transport of HRP conjugated with wheat germ agglutinin (WGA). Morphometric studies have shown that WGA-HRP conjugates were 40 times more sensitive than free HRP, in the tracing of retrograde connections from the rat submandibular gland to the superior cervical ganglion. Also, WGA-HRP was more sensitive than free HRP in the tracing of retrograde connections from the rat tongue to the hypoglossal nucleus. Our findings with WGA-HRP are consistent with the observations by Schwab et al. who reported (-125I) WGA is a highly sensitive retrograde tracer (Brain Research 152:145, 1978 (22)).  相似文献   

3.
Synapses between cochlear nerve terminals and hair cells are the most vulnerable elements in the inner ear in both noise-induced and age-related hearing loss, and this neuropathy is exacerbated in the absence of efferent feedback from the olivocochlear bundle. If age-related loss is dominated by a lifetime of exposure to environmental sounds, reduction of acoustic drive to the inner ear might improve cochlear preservation throughout life. To test this, we removed the tympanic membrane unilaterally in one group of young adult mice, removed the olivocochlear bundle in another group and compared their cochlear function and innervation to age-matched controls one year later. Results showed that tympanic membrane removal, and the associated threshold elevation, was counterproductive: cochlear efferent innervation was dramatically reduced, especially the lateral olivocochlear terminals to the inner hair cell area, and there was a corresponding reduction in the number of cochlear nerve synapses. This loss led to a decrease in the amplitude of the suprathreshold cochlear neural responses. Similar results were seen in two cases with conductive hearing loss due to chronic otitis media. Outer hair cell death was increased only in ears lacking medial olivocochlear innervation following olivocochlear bundle cuts. Results suggest the novel ideas that 1) the olivocochlear efferent pathway has a dramatic use-dependent plasticity even in the adult ear and 2) a component of the lingering auditory processing disorder seen in humans after persistent middle-ear infections is cochlear in origin.  相似文献   

4.
Summary The octavo-lateral efferent system of several anuran species was studied by means of retrograde transport of horseradish peroxidase. This system is organized similarly in all larval anurans and in all adult aglossids. All have two groups of efferent neurons in the nucleus reticularis medialis between the VIIIth and the IXth motor nucleus. The caudal group consists of efferent neurons that supply the posterior lateral-line nerve (NLLp) and a considerably smaller group of neurons supplying both the NLLp and the anterior lateral-line nerve (NLLa). The rostral group is composed of efferent neurons supplying the NLLa, neurons projecting to the inner ear and neurons supplying both the inner ear and the NLLa. Efferent neurons of the VIIIth cranial nerve exhibit a rostrocaudal cytoarchitectonic differentiation. Caudal perikarya, which are rounder in shape than those of the rostral part, have a dendritic projection to the superior olive. It is suggested that this differentiation reflects a functional differentiation of acoustic and vestibular efferent neurons.Labeled neurons were ipsilateral to the site of application of HRP. None were found in the vestibular nuclei or in the cerebellum.Efferent axons projecting to neuromasts of the NLLa leave the medulla with the VIIth nerve, axons projecting to neuromasts of the NLLp exit via the IXth nerve. Cell counts and the observation of axonal branching revealed that efferent units of both the lateral-line and the VIIIth-nerve system supply more than one receptor organ. In contrast to the lateral-line system, dendrites of efferent neurons of the VIIIth nerve project dorsally onto its nuclei, and afferents of the VIIIth nerve project onto efferent neurons. These structures most probably represent a feedback loop between the afferent and efferent systems of the VIIIth cranial nerve.  相似文献   

5.
6.
A method is described for studying the morphological features of extensive axonal projections within the central nervous system of the gerbil, Meriones anguiculatus. Potentially long descending axonal projections between the auditory thalamus and lower brainstem were used as a model. The inferior colliculus (IC) in the tectum was injected in vivo with a fluorescent retrograde tracer, Fluoro-Gold, to label cells in the medial geniculate body (MGB) that had descending projections to the IC, and cells in the superior olivary complex (SOC) that had ascending projections to the IC. Another fluorescent retrograde tracer, fast blue, was injected into the cochlea to label olivocochlear (OC) cells in the SOC. Inferomedially curved parasagittal slices containing ipsilateral auditory cell groups from the thalamus to the brainstem were cut and descending axons of the pre-labeled MGB cells were traced anterogradely with Biocytin. After visualizing histologically the injected Biocytin, discretely labeled IC-projecting axons of the MGB cells were traced including their collaterals that extended further into the SOC. In the SOC, these axons terminated on pre-labeled cells including OC cells. The combination of anterograde and retrograde tracing in the slice preparations described here demonstrated extensive descending axonal projections from the thalamus to their targets in the lower brainstem that had known ascending/descending projections within the auditory system.  相似文献   

7.
8.
The present account reconsiders the acetylcholinesterase (AChE) staining pattern of the cochlear nuclei with special emphasis on positively stained afferents from the olivocochlear neurons to the cochlear granule cells system. The main part of the study is based on AChE- and silver-stained sections of normal and brainstem-operated cats. AChE-stained sections of normal mouse, cat and chinchilla are used for comparative purposes. The rat superior olive contains three types of AChE-positive neurons probably contributing to the olivocochlear bundle; densely stained large neurons of the periolivary region, densely stained small neurons at the margin of the lateral superior olive (LSO), and weakly stained small neurons within LSO. Largely uncrossed fibers, probably collaterals of the olivocochlear bundle, enter the cochlear nuclei via three routes, defined here as the strial, subpeduncular and ventral routes. Collectively they form a terminal fiber plexus in certain portions of the granule cell domain, but with some fibers branching in the extragranular regions of the nuclear complex as well. The individual fibers end in a fashion resembling cerebellar mossy fibers. The cochlear nuclei in addition contain conspicuous dense patches of precipitate, which, like the AChE-positive fibers, appear after short incubation and are mainly restricted to the granule cell domain. In contrast to the fibers, however, they are resistant to central deafferentation and therefore may represent intrinsic structures of the granule cell system. Moreover, there is a diffuse neuropil precipitate which grows in distribution and density with incubation time. It is present both in granular and extragranular areas of the complex and is partly dependent upon the integrity of the weakly stained trapezoid body. In spite of considerable interspecies variations with regard to the described AChE-positive elements, these are present also in mouse, cat, and chinchilla. The significance of the findings and of the interspecies differences are discussed. A simplified terminology of the superior olivary complex is proposed.  相似文献   

9.
Dong Y  Li J  Zhang F  Li Y 《PloS one》2011,6(9):e25615
It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR) responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG) or FG/tetramethylrhodamine-dextran amine (TMR-DA) were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the caudal spinal trigeminal nucleus (Vc). The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt), dorsal and ventral medullary reticular formation (MdD, MdV), supratrigeminal nucleus (Vsup) and parabrachial nucleus (PBN) with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP) was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals.  相似文献   

10.
本文采用辣根过氧化物酶(HRP)逆行追踪技术结合硫辛酰胺脱氨酸(NADPH-d)组织化学方法,研究正常豚鼠耳蜗核一氧化氮合酶(NOS)阳性神经元的上行投射特点。探讨耳蜗核NOS阳性神经元在听觉信号传递中的可能作用。结果表明,一侧上橄榄复合体加压注射HRP后,两侧耳蜗核均出现HRP标记细胞,同侧耳蜗核NOS-HRP双标细胞较多占82.63%,并可见HRP阳性纤维和终末包绕NOS阳性胞体,对侧耳蜗核NOS-HRP双标细胞相对较少,仅占14.87%。一侧下丘加压注入HRP后两侧耳蜗核均无HRP-NOS双标细胞。结果提示,耳蜗核NOS阳性神经元向上橄榄复合体投射,可能具有调节听觉声信号传递的作用  相似文献   

11.
A comparative analysis was made of the distribution of vestibular efferent neurons projecting to the saccule and efferent cells sending out axons to the auditory nerve ("cochlear efferent neurons") in the guinea pig, using retrograde horseradish peroxidase axonal transport techniques. Saccular efferent neurons were discovered bilaterally in the subependymal granular layer at the base of the fourth cerebral ventricle and laterally to the facial nerve genu ispsilaterally in the parvocellular reticular nucleus, as well as nuclei of the superior olivary complex: the lateral olivary nucleus and lateral nucleus of the trapezoid body. Cochlear efferent neurons are located ipsilaterally in the pontine reticular caudal nucleus, in the anteroventral cochlear nucleus, and in the lateral and medial olivary nuclei. Neurons were found contralaterally in the medial nucleus of the trapezoid body. It thus emerged that location zones of vestibular saccular efferent neurons and those of cochlear efferent units partially overlapped. The possible involvement of saccular vestibular efferent neurons in the mechanisms of auditory perception is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 5, pp. 657–665, September–October, 1990.  相似文献   

12.
Hypothalamic neurons projecting to cerebellum were identified by retrograde tracing with wheat germ agglutinin-horseradish peroxidase (WGA-HRP) in the rat. Selective D-[3H]aspartate labelling was used to investigate whether any of these connections may use excitatory amino acids as transmitters. The WGA-HRP experiments revealed that the hypothalamo-cerebellar fibers have their main origins in the lateral, dorsal and posterior hypothalamic areas, and the tubero-mammillary nucleus, while smaller numbers of cells were observed in tuber cinereum, the anterior hypothalamic area, and the periventricular and paraventricular nuclei. After injections of D-[3H]aspartate into the cerebellar cortex, intense labelling of the olivocerebellar climbing fiber system was observed, but hypothalamic cells were not retrogradely labelled with this selective tracer. The absence of D-[3H]aspartate labelling indicates that hypothalamo-cerebellar neurons lack specific uptake mechanisms for excitatory amino acids, but it does not entirely preclude the possibility that some of these hypothalamic neurons may use such transmitters. Many cerebellar projecting cells were located in the tubero-mammillary nucleus, which is known to contain histaminergic and GABAergic neurons, and it was concluded that part of the hypothalamo-cerebellar pathways may use histamine and/or GABA as transmitters. The transmitter remains unknown for other parts of the hypothalamo-cerebellar pathways.  相似文献   

13.
Fast blue (FB), rhodamine microspheres (RH), horseradish peroxidase (HRP), and wheat germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) were used as retrograde tracers to study the innervation of the rat superficial pineal gland (SP). One of the tracers was injected into the gland of each animal. All four retrograde tracers injected into the gland always labeled neurons in the superior cervical ganglia (SCG). No retrograde labeling was ever seen in the suprachiasmatic nuclei, paraventricular hypothalamic nuclei, lateral hypothalamus, habenular nuclei, amygdalar nuclei, or superior salivatory nuclei. Retrograde labeling was seen in the anterior hypothalamic nuclei, anterior thalamic nuclei, lateral geniculate bodies, and midbrain tectal structures when a tracer spread from the injection site to the overlying cortex, tectum, or commissures. Control studies included injection of tracer into the subarachnoid space around the SP or into structures adjacent to the SP. Only the injection of FB or WGA-HRP into the subarachnoid space labeled neurons in the SCG. This labeling was probably due to the spread of tracer to the choroid plexus. These results agree with recent work confirming the existence of a direct projection of the SCG into the interstitium around pinealocytes. The evidence does not substantiate an innervation originating in the habenular nuclei; the superior salivatory nuclei; or any other diencephalic, midbrain, pontine, or medullary structure.  相似文献   

14.
An attempt has been made to determine where in the lower brainstem the cell bodies of nonsympathetic efferent fibres in the aortic nerve of the cat and rabbit are located. Horseradish peroxidase (HRP) was placed on the central end of the right cut aortic nerve of anaesthetized animals and, after an appropriate time, sections of the brainstem encompassing the rostral and caudal limits of the dorsal vagal motor nucleus and nucleus ambiguus were examined microscopically for retrogradely transported HRP. Cell bodies labelled by exogenous HRP were not found in any of the cats or rabbits exposed to HRP although reaction product, due to an endogenous response, was observed. Appropriate control experiments were performed to show that the sensitivity of the technique for demonstrating HRP in our hand was adequate. We conclude that the cell bodies of efferent fibres, of non sympathetic origin, in the aortic nerve are likely to be located outside the central nervous system.  相似文献   

15.
Neurons with projections into the vestibular receptor apparatus (efferent vestibular neurons) were identified in different medullary regions by retrograde labeling with horseradish peroxidase and transport-specific fluorochromes in the guinea pig. Two groups of efferent vestibular neurons could be distinguished, located dorsally and ventrally to the facial nerve fiber pathway. The dorsal group of efferent vestbular neurons consisted of small cells located close to the genu and the root of the facial nerve and the subependymal granular layer of the 4th ventricle floor. The ventral group was primarily composed of medium-sized cells, usually with only slight tracer accumulation; these were scattered over an extensive area of the lateral tegmental field within nucleus reticularis lateralis parvocellularis. The question of whether the test cells belong to the system of true vestibular efferents and satellite cells is discussed in the light of findings on cell location, morphology, and pattern of tracer accumulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 6, pp. 738–747, November–December, 1986.  相似文献   

16.
Ascending and descending projections to the inferior colliculus in the rat   总被引:1,自引:0,他引:1  
The ascending and descending projections to the central nucleus of the inferior colliculus (IC) were studied with the aid of retrograde transport of horseradish peroxidase (HRP). HRP-labelled cells were found in contralateral cochlear nuclei, where the majority of different cell types was stained. Few labelled cells were observed in the ipsilateral cochlear nuclei. HRP-positive neurones were found in all nuclei of the superior olivary complex on the ipsilateral side with the exception of the medial nucleus of the trapezoid body, which was never labelled either ipsilaterally or contralaterally. The largest concentration of HRP-labelled cells was usually observed in the ipsilateral superior olivary nucleus. Smaller numbers of labelled cells were present in contralateral nuclei of the superior olivary complex. Massive projections to the inferior colliculus were found from the contralateral and ipsilateral dorsal nucleus of the lateral lemniscus and ipsilateral ventral nucleus of the lateral lemniscus. Many neurones of the central and external nuclei of the contralateral inferior colliculus were labelled with HRP. Topographic organisation of the pathways ascending to the colliculus was expressed in the cochlear nuclei, lateral superior olivary nucleus and in the dorsal nucleus of the lateral lemniscus. HRP--positive cells were found in layer V of the ipsilateral auditory cortex, however, the evidence for topographic organisation was lacking.  相似文献   

17.
The number and segmental distribution of cell bodies of sensory afferents and sympathetic efferent innervating to the knee joint of the rabbit and the Formosan rock-monkey were investigated using retrograde transport with horseradish peroxidase (HRP). After injecting HRP into the articular knee joint capsule of the rabbits, labeled neurons were found in the ipsilateral L4-S2 dorsal root ganglia (DRG). However, following injection of HRP into the articular cavity of the knee joint in the rabbit and the monkey, labeled neurons were found in both the ipsilateral DRG (L5-S2 and L4-S1 of the rabbit and monkey, respectively) and in the ipsilateral sympathetic ganglia (SG) (L4-S3 (rabbit) and L3-S1 (monkey)). The majority of labeled neurons within the DRG and the SG were composed of medium and large neurons in the monkey and the rabbit, respectively. The present findings suggest that the sensory projections from and sympathetic projection to the knee joint in rabbits and monkeys are similar, but that both projections of monkeys were "shifted" one segment cranially compared to the rabbit on both projections.  相似文献   

18.
19.
D R N?ssel 《Histochemistry》1983,79(1):95-104
Seven different heme peptides were used in neuronal uptake and labelling experiments in flies. The peptides were: catalase, lactoperoxidase, hemoglobin, horseradish peroxidase (HRP), myoglobin, cytochrome c and microperoxidase. All of these peroxidase active peptides were taken up by lesioned neurons and the markers spread throughout the entire cells resulting in a detailed labelling of their processes and cell bodies. Only HRP was taken up by intact neurons. Attempts were made to block axonal transport of HRP with colchicine, vinblastine and 2,4-dinitrophenol. These attempts were unsuccessful and it is proposed that HRP and the other six heme peptides testes are non-selectively diffusing through lesioned or damaged nerve cells in flies.  相似文献   

20.
The lines of descent of cells of the nervous system of the leech Helobdella triserialis have been ascertained by injection of horseradish peroxidase (HRP) as a tracer into identified cells of early embryos. Such experiments show that the nervous system of the leech has several discrete embryological origins. Some of the neurons on one side of each of the segmental ganglia derive from a single cell, the ipsilateral N ectoteloblast. Other neurons derive from a different precursor cell, the ipsilateral OPQ cell that gives rise to the O, P, and Q ectoteloblasts. The positions within the ganglion of neuronal populations derived from each of these sources are relatively invariant from segment to segment and from specimen to specimen. Other nerve cord cells derive from the mesoteloblast M; of these four per segment appear to be the precursors of the muscle cells of the connective. The A, B, or C macromeres contribute cells to the supraesophageal ganglion. In preparations in which an N ectoteloblast was injected with HRP after production of its bandlet of n stem cells had begun, the boundary between unstained (rostral) and stained (caudal) tissues can fall within a ganglion or between ganglia. This suggests that each hemiganglion contains the descendants of more than one, and probably two, n stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号