首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Larval interactions of dipteran species, blow flies in particular, were observed and documented daily over time and location on five black bear carcasses in Gainesville, FL, USA, from June 2002 – September 2004. Cochliomyia macellaria (Fabricius) or Chrysomya megacephala (Fabricius) larvae were collected first, after which Chrysomya rufifacies (Macquart) oviposited on the carcasses in multiple locations (i.e., neck, anus, and exposed flesh) not inhabited already by the other blow fly larvae. Within the first week of decomposition, C. rufifacies larvae grew to ≥12 mm, filling the carcasses with thousands of larvae and replacing the other calliphorid larvae either through successful food source competition or by predation. As a result, C. macellaria and C. megacephala were not collected past their third instar feeding stage. The blow fly species, C. megacephala, C. macellaria, Lucilia caeruleiviridis (Macquart), Phormia regina (Meigen), Lucilia sericata (Meigen), and C. rufifacies, completed two developmental cycles in the 88.5-kg carcass. This phenomenon might serve to complicate or prevent the calculation of an accurate postmortem interval.  相似文献   

2.
1. Third instars of the invasive blow fly Chrysomya rufifacies are facultative predators on larvae of the native blow fly Cochliomyia macellaria. 2. The effects of priority arrival time on the survivorship and fitness of C. rufifacies and C. macellaria were investigated in laboratory experiments. 3. Cochliomyia macellaria colonising a resource within 1–2 days after C. rufifacies resulted in a 20–70% reduction in survivorship, pupal weight and fecundity compared with those colonising a resource more than 2 days before or after C. rufifacies. Inversely, C. rufifacies exhibited a 50% increase in survivorship and fecundity when closely (~2 days) associated temporally on the resource with C. macellaria and was negatively affected by disparate arrival. 4. These results demonstrate that arrival sequence significantly affects the fitness of both C. rufifacies and C. macellaria. Early colonisation may allow C. macellaria to persist in a community, while there are fitness benefits for C. rufifacies colonising after C. macellaria. 5. The 60% reduction in C. macellaria survivorship when in close temporal association with C. rufifacies may act as an agent of selection for C. macellaria to colonise a resource early and develop quickly to avoid predation on resources colonised by C. rufifacies. 6. Selection for such traits may explain how C. macellaria is able to persist despite intraguild predation by this invasive species. In contrast, the 50% increase in survivorship and fecundity exhibited by C. rufifacies when arriving after C. macellaria may select for C. rufifacies to delay colonisation.  相似文献   

3.
1. The necrobiome is a unique microcosm in which various organisms interact and compete for access to an ephemeral resource, such as carrion, that ultimately determines the structure and composition of these assemblages. 2. Blowfly species exhibit different competitive abilities which, when associated with other types of behaviour, such as predation or cannibalism, influence coexistence. Knowledge of the effects of competition between native and invasive species on development and survival is essential to understanding the dynamics of insect communities and to assess biological invasions. 3. Laboratory experiments were performed to evaluate the effect of interspecific competition on the bionomics and survival of a native (Cochliomyia macellaria) and an invasive (Chrysomya rufifacies) blowfly species at different population densities. 4. The deleterious effect of competition on the larval parameters of C. macellaria increased proportionally with increases in the larval density of C. rufifacies. When exposed to increased densities of C. rufifacies, larvae of C. macellaria accelerated their development and, as a trade‐off for this strategy, surviving adults were smaller and had reduced wing size, which were likely to reduce dispersal and reproductive capacity. 5. Larval competition – both as species‐dependent and density‐dependent phenomena – influences morphological and biological traits of surviving individuals. The impact of the invasive species has consequences at the population level, such as displacement or local population depletion of native species, a phenomenon likely to occur in other systems involving insects and ephemeral resources.  相似文献   

4.
5.
The sarcosaprophagous fauna plays a key role in organic matter decomposition. Moreover, the biological, ecological and behavioral specificities of the taxa are useful to reconstruct the decay history of a corpse or carcass, often back to the lethal event. Here we report the seasonal succession of the insect fauna on a pig carcass exposed in a rural area in Calabria (southern Italy) during summer 2007 and 2008. The aim is to identify and qualitatively assess the major taxa of forensic importance in this region. The principal fly invaders were Lucilia caesar (L.), L. sericata (Meigen, 1826), Chrysomya albiceps (Wiedemann, 1819), Sarcophaga (Meigen, 1826) spp. and Amobia (Robineau‐Desvoidy, 1830) spp., Musca domestica (L.) and Muscina stabulans (Fallen, 1817). The primary beetle species collected in summer belonged to Dermestidae, Dermestes maculatus (De Geer, 1774) and Cleridae, Necrobia rufipes (De Geer, 1775). This paper also examined the ecological role of ants in the insect succession and describes the evidence of skin injuries directly inflicted by the acrobat ant Crematogaster (Acrocoelia) scutellaris (Olivier, 1791) (Hymenoptera Formicidae) while feeding on pig carrion. Ants belonging to two other species were also collected: Camponotus aethiops (Latreille, 1798) and Tetramorium semilaeve (André, 1881). Ants can invade carcasses and corpses directly, disrupting blowfly egg laying or preying on their larvae. Our data on the carrion faunal composition and role of ants as invaders should be useful for further forensic cases in Calabria (southern Italy). This is among the few reports of ants as forensically relevant species.  相似文献   

6.
We present a study of interactions in the highly competitive insect communities inhabiting the carrion of small mammals. Via manipulation in a fully quantitative design, we delayed community development by excluding insect colonization in mouse and rat carcasses for 3 days, to study the role of early competitively dominant colonizers [burying beetles (Nicrophorus spp.; Coleoptera: Silphidae) and blowfly larvae (Diptera: Calliphoridae)] in the course of heterotrophic succession on small cadavers. Earlier studies demonstrated that in the case of large mammalian carrion, exclusion of insects’ access to the carcass in the early stages of decomposition altered the successional trajectory and species assemblages. However, the effect of such manipulation in easy monopolizable small vertebrate carrion remained unknown. Our results demonstrate that delaying insect access to carrion significantly lowered blowfly larvae abundances, while it simultaneously had no effect on colonization and carrion burial by burying beetles. Higher abundances of blowfly larvae seem to deter necrophagous beetles, whereas they are not harmful to the larvae of flesh flies, at least in larger rat carcasses. Predatory beetle species preferred the lower abundances of blowfly larvae, presumably due to better accessibility of their prey. Our results therefore suggest that in the course of the entire season, larvae of blowflies are the dominant competitors in small carcasses, and significantly affect the assembly of other insect groups, whereas burying beetles may exhibit a more temporal pattern of dominance.  相似文献   

7.
The development of the Oriental latrine fly, Chrysomya megacephala (Fabricius), and hairy maggot blowfly, C. rufifacies (Macquart) (Diptera: Calliphoridae), was studied at four different temperatures (22°C, 25°C, 29°C and 31°C) in order to draw correlations between larval age, body length and body dry weight. The mean larval body length increased steadily from a minimum of 1.4 mm for C. megacephala and 1.8 mm for C. rufifacies to a maximum of 17.4 mm for C. megacephala and 15.9 mm for C. rufifacies at different temperatures. Similarly, the mean dry weight increased steadily from a minimum of 0.0007 g for C. megacephala (second instar) and 0.0008 g for C. rufifacies (second instar) to a maximum of 0.0290 g for C. megacephala and 0.0270 g for C. rufifacies at different temperatures. Entomological evidence is often used to estimate the minimum postmortem interval (mPMI) and both of these species are important from a forensic point of view. Graphs of age of larvae vs. body length and age of larvae vs. dry body weight at different temperatures can be used to estimate the larval age of these two species.  相似文献   

8.
The growth characteristics of the larvae of the major members of a necrophagous fly guild in Tasmania (Lucilia cuprina, Calliphora stygia, Calliphora vicina and Calliphora hilli) were measured to assess their competitive ability. The measurements were made at temperatures between 10 and 45°C, to cover the range of temperatures that would be encountered by larvae in carrion or myiasis under field conditions. The characteristics measured were net production and respiration. The indices K2i (instantaneous growth efficiency), K2c (cumulated growth efficiency) and Mi (instantaneous cost of maintenance) were calculated. Generally K2c and K2i are highest and Mi lowest at 25°C for all the species. A sinusoidal response in K2c, K2i and Mi against temperature is seen for L. cuprina, C. stygia and C. vicina. This response is‘cold’adapted in the Calliphora species and‘warm’adapted in L. cuprina. Egg size, egg caloric density and the energy content of the eggs are discussed in relation to the‘fitness’and reproductive strategies of the four species. The thermal tolerance range of L. cuprina determined here suggests that carrion may provide a significant number of this fly particularly in areas where Chrysomya spp. do not occur, and in large carcasses where temperatures are elevated.  相似文献   

9.
Scavengers and decomposers provide an important ecosystem service by removing carrion from the environment. Scavenging and decomposition are known to be temperature-dependent, but less is known about other factors that might affect carrion removal. We conducted an experiment in which we manipulated combinations of patch connectivity and carcass type, and measured responses by local scavenger guilds along with aspects of carcass depletion. We conducted twelve, 1-month trials in which five raccoon (Procyon lotor), Virginia opossum (Didelphis virginiana), and domestic rabbit (Oryctolagus spp.) carcasses (180 trials total) were monitored using remote cameras in 21 forest patches in north-central Indiana, USA. Of 143 trials with complete data, we identified fifteen species of vertebrate scavengers divided evenly among mammalian (N = 8) and avian species (N = 7). Fourteen carcasses (9.8%) were completely consumed by invertebrates, vertebrates exhibited scavenging behavior at 125 carcasses (87.4%), and four carcasses (2.8%) remained unexploited. Among vertebrates, mammals scavenged 106 carcasses, birds scavenged 88 carcasses, and mammals and birds scavenged 69 carcasses. Contrary to our expectations, carcass type affected the assemblage of local scavenger guilds more than patch connectivity. However, neither carcass type nor connectivity explained variation in temporal measures of carcass removal. Interestingly, increasing richness of local vertebrate scavenger guilds contributed moderately to rates of carrion removal (≈6% per species increase in richness). We conclude that scavenger-specific differences in carrion utilization exist among carcass types and that reliable delivery of carrion removal as an ecosystem service may depend on robust vertebrate and invertebrate communities acting synergistically.  相似文献   

10.
BACKGROUND AND AIMS: Although pollination of plants that attract flies by resembling their carrion brood and food sites has been reported in several angiosperm families, there has been very little work done on the level of specificity in carrion mimicry systems and the importance of plant cues in mediating such specialization. Specificity may be expected, as carrion-frequenting flies often exploit different niches, which has been interpreted as avoidance of interspecific competition. Interactions between the orchid Satyrium pumilum and a local assemblage of carrion flies were investigated, and the functional significance of floral traits, especially scent, tested. Pollination success and the incidence of pollinator-mediated self-pollination were measured and these were compared with values for orchids with sexual- and food-deceptive pollination systems. METHODS AND KEY RESULTS: Observations of insect visitation to animal carcasses and to flowers showed that the local assemblage of carrion flies was dominated by blow flies (Calliphoridae), house flies (Muscidae) and flesh flies (Sarcophagidae), but flowers of the orchid were pollinated exclusively by flesh flies, with a strong bias towards females that sometimes deposited live larvae on flowers. A trend towards similar partitioning of fly taxa was found in an experiment that tested the effect of large versus small carrion quantities on fly attraction. GC-MS analysis showed that floral scent is dominated by oligosulfides, 2-heptanone, p-cresol and indole, compounds that also dominate carrion scent. Flesh flies did not distinguish between floral and carrion scent in a choice experiment using olfactory cues only, which also showed that scent alone is responsible for fly attraction. Pollination success was relatively high (31·5 % of flowers), but tracking of stained pollinia also revealed that a relatively high percentage (46 %) of pollen deposited on stigmas originates from the same plant. CONCLUSIONS: Satyrium pumilum selectively attracts flesh flies, probably because its relatively weak scent resembles that of the small carrion on which these flies predominate. In this way, the plants exploit a specific subset of the insect assemblage associated with carrion. Pollination rates and levels of self-pollination were high compared with those in other deceptive orchids and it is therefore unlikely that this mimicry system evolved to promote outcrossing.  相似文献   

11.
Optimal foraging theory assumes that predators use different prey types to maximize their rate of energetic gain. Studies focusing on prey preference are important sources of information to understand the foraging dynamics of Chrysomya albiceps. The purpose of this investigation is to determine the influence of larval starvation in C. albiceps on the predation rate of different prey blowfly species and instars under laboratory conditions. Our results suggest that C. albiceps prefers Cochliomyia macellaria larvae to Chrysomya megacephala under non-starvation and starvation conditions. Nevertheless, predators gained more weight consuming C. macellaria. This result suggests that C. albiceps profit more in consuming C. macellaria rather than C. megacephala. The foraging behaviour displayed by C. abiceps on their prey and the consequences for the blowfly community are also discussed.  相似文献   

12.
Although many forensic entomological studies have described patterns of carrion insect succession and theoretical studies have explained interspecific interactions that drive succession, empirical studies on the quantitative and ecological aspects of carrion insect succession, such as the degree of historical contingency in community assembly and interspecific interactions during succession, are limited. In this study, I investigated variability in the successional pathways of carrion insect communities in rat carcasses and their decomposition processes, and examined the interspecific interactions involved in succession, such as the effects of carcass utilization by early‐arriving species on late‐arriving species. Members of the families Calliphoridae and Formicidae and the species Eusilpha japonica (Motschulsky) and Nicrophorus concolor Kraatz were chiefly observed. In almost all carcasses, formicid species arrived first, and calliphorid species and E. japonica arrived simultaneously or immediately after. Nicrophorus concolor arrived last, with its time of colonization occurring earlier in carcasses with greater E. japonica abundance. Meanwhile, the early‐arriving species decreased when N. concolor arrived. Nicrophorus concolor tended to reproduce on carcasses with lower cumulative abundance of early‐arriving species and tended to feed on carcasses with greater cumulative abundance of early‐arriving species. These results show that the successional pathways of the chief carrion insect species are highly consistent among carcasses. In contrast, early‐arriving species seem to influence the utilization patterns of carcasses by late‐arriving species, and therefore produce variability in the decomposition process. These results also show that succession could be driven by facilitation and interspecific competition between early‐arriving and late‐arriving species.  相似文献   

13.
Nicrophorusvespilloides is a social beetle that rears its offspring on decomposing carrion. Wild beetles are frequently associated with two types of macrobial symbionts, mites, and nematodes. Although these organisms are believed to be phoretic commensals that harmlessly use beetles as a means of transfer between carcasses, the role of these symbionts on N. vespilloides fitness is poorly understood. Here, we show that nematodes have significant negative effects on beetle fitness across a range of worm densities and also quantify the density‐dependent transmission of worms between mating individuals and from parents to offspring. Using field‐caught beetles, we provide the first report of a new nematode symbiont in N. vespilloides, most closely related to Rhabditoides regina, and show that worm densities are highly variable across individuals isolated from nature but do not differ between males and females. Next, by inoculating mating females with increasing densities of nematodes, we show that worm infections significantly reduce brood size, larval survival, and larval mass, and also eliminate the trade‐off between brood size and larval mass. Finally, we show that nematodes are efficiently transmitted between mating individuals and from mothers to larvae, directly and indirectly via the carcass, and that worms persist through pupation. These results show that the phoretic nematode R. regina can be highly parasitic to burying beetles but can nevertheless persist because of efficient mechanisms of intersexual and intergenerational transmission. Phoretic species are exceptionally common and may cause significant harm to their hosts, even though they rely on these larger species for transmission to new resources. However, this harm may be inevitable and unavoidable if transmission of phoretic symbionts requires nematode proliferation. It will be important to determine the generality of our results for other phoretic associates of animals. It will equally be important to assess the fitness effects of phoretic species under changing resource conditions and in the field where diverse interspecific interactions may exacerbate or reduce the negative effects of phoresy.  相似文献   

14.
Abstract.
  • 1 To investigate the range of resource size that burying beetles (Nicrophorus) exploit, small (21–33 g), medium (50–90 g) and large (120–210g) carcasses, were placed in the field and then exhumed after 1, 4, 8, 12 or 18 days.
  • 2 Nicrophorus attempts to utilize carcasses over this entire size range but has greater success on smaller carcasses.
  • 3 Larger carcasses were more difficult to exploit because: (a) they took longer to conceal beneath the leaf litter; (b) they were less likely to be rounded into brood balls; (c) they were more likely to be utilized by dipterans; and (d) they were occupied by greater numbers of congeners.
  • 4 Larger carcasses, however, did support greater numbers of larvae and contained broods of greater total mass than smaller carcasses.
  • 5 Beetles sometimes bred communally on larger carcasses in the field and same-sex adults were observed to feed young.
  • 6 Two follow-up experiments were conducted in the laboratory. On a large carcass N.defodiens, N.tomentosus or N.orbicollis can raise a maximum of 35–50 young. Nicrophorus pustulatus, in contrast, appears to be unique among Nicrophorus in that it can raise nearly 200 young on larger carcasses.
  • 7 Nicrophorus orbicollis and Nicrophorus sayi are extremely dependent on parental regurgitations and young fail to survive to the second instar if parents are removed. Young of Nicrophorus defodiens, N.tomentosus and N.pustulatus can develop normally without parental regurgitations.
  • 8 I discuss these results in the context of reproduction on carcasses of different size and hypothesize that this breeding system is facultatively quasisocial.
  相似文献   

15.
Summary Adults and larvae of Chrysomela aenicollis (Coleoptera: Chrysomelidae) feed on foliage of Salix species (Salicaceae) between 2,400–3,400 m above sea level in the eastcentral Sierra Nevada mountains of California. We predicted that (1) cold climatic conditions would be a more frequent source of mortality at higher elevations, (2) mildweather agents of mortality such as predation should be more severe at lower elevations, and (3) populations of C. aenicollis would be adapted to the local selective regime at each elevation. We tested these predictions in 1984 and 1985 by transferring over 6,000 eggs and larvae within and between two sites at 2,810 and 3,240 m elevation above sea level. During mild summer weather at both sites, survivorship on Salix branches isolated by a barrier of sticky resin was similar to that on control branches, and we concluded that aerial predators were the primary cause of mortality. At least one major predator, a solitary wasp (Symmorphus sp., Hymenoptera: Eumenidae), was specifically associated with C. aenicollis at the lower site, where beetle mortality was highest. At both sites in 1984 and 1985, larvae originating from the lower site remained in aggregations and survived more frequently than larvae from the upper site, suggesting that they are better defended against predators. During a storm with cold weather late in the 1984 season, larvae and pupae died more frequently at the upper site, and there was a marginally significant trend (P<0.1) for the lower site individuals to die more frequently than upper site larvae during the cold storm. Upper site larvae grew approximately 10% faster than lower site larvae at the lower site and under controlled conditions in the laboratory. These findings indicate that upper and lower site populations were adapted to the local selective regime, which suggest how populations of montane phytopagous insects may adapt to changing elevations.  相似文献   

16.
Regulation of brood size in a biparental burying beetle, Nicrophorus tomentosusWeber, was studied by providing pairs with one of two sizes of mouse carcasses in the laboratory. For a given carcass size, there was an inverse relationship between number and mass offspring in a brood. The requirement for regulation was that brood size was adjusted such that mean mass of individual larvae was constant for carcasses of different size. Brood size was regulated if parents were present but regulation did not occur if parents were removed prior to hatching of larvae. Pairs bred in quick succession on two carcasses raised fewer than the regulated number of young in the second reproductive attempt. Reasons for regulation of brood size in this genus are discussed.  相似文献   

17.
We identified vertebrate scavengers of small mammal carcasses at the 780-km2 Savannah River Site during the winter of 2000–2001. Rodent carcasses, differing in size and visual conspicuousness, were placed in upland pine forests and bottomland hardwood forests during six 2-week periods. Sixty-two of the 96 carcasses (65%) were removed by vertebrates. With the aid of remote photography, we identified 11 species of scavengers removing carcasses. RaccoonsProcyon lotor, gray foxesUrocyon cinereoargenteus, and feral pigsSus scrofa scavenged most frequently. The mean elapsed time for carcass removal was 5.6 days. The number of carcasses removed by vertebrates did not differ significantly with respect to carcass size, visual conspicuousness, or habitat type; however, air temperature was strongly correlated (positively) with carcass removal. Our study demonstrates that many mammal species are capable of utilizing small carrion items as a food resource, and suggests that scavenging may account for a higher proportion of the diet of some facultative scavengers than is now widely assumed.  相似文献   

18.
为了解决刑事案件中死者死亡时间推断的难题,不同季节野外环境用18头猪尸体做模拟材料观察和筛选对推断死亡时间高度准确的昆虫指标。结果表明,幼虫开始出现时间、幼虫开始爬离时间、大部分幼虫爬离尸体的时间、开始化蛹的时间、大部分幼虫化蛹的时间、开始羽化的时间、羽化结束的时间等若干昆虫指标比较敏感且稳定可用作死亡时间的精确推断。在珠江三角洲春季、夏季及秋季尸体腐败很快,分别在259±23,202±18,277±20 h进入白骨化期,而冬季则时间较长,约经过1 297±63 h才进入白骨化期。大约有47种嗜尸性昆虫在尸体生态环境出现,大多数种类全年可见,尸体上的昆虫群落的优势种为大头金蝇Chrysomya megacephala、绯颜裸金蝇Achoetandrus rufifacies及厚环黑蝇Hydrotaea (Ophyra) spinigera。蝇类昆虫在尸体上只能大规模繁殖一代尸体即白骨化。根据以上结果可确定一些可用于死亡时间推断的关键时间点。  相似文献   

19.
Carrion is an ephemeral and spatially patchy resource that supports a diverse subset of species linked to nutrient cycling and the decomposition process. A number of studies have separately documented changes in the diversity of plants, arthropods and vertebrates at individual carcasses, but there are few studies that have examined how functional traits of different groups of organisms underpin their responses to carrion patches. We used a carrion addition experiment to compare changes in composition and functional traits of insect and plant assemblages at carcasses compared with control sites. We found that significant changes in insect assemblage evenness and heterogeneity was associated with species’ dispersal traits, and that plant assemblage responses to subsequent soil nitrogen changes was most apparent among graminoids and exotic species. Beetles at carcasses were twice as large as their counterparts at control sites during the first week of carrion decomposition, and also had higher wing loadings. Plants with high specific leaf area responded faster to the carcass addition, and twice as many species recolonised the centre of carcasses in exotic-dominated grassland compared with carcasses in native-dominated grassland. These results provide an example of how traits of opportunist species enable them to exploit patchy and dynamic resources. This increases our understanding of how carcasses can drive biodiversity dynamics, and has implications for the way carrion might be managed in ecosystems, such as appropriate consideration of spatial and temporal continuity in carrion resources to promote heterogeneity in nutrient cycling and species diversity within landscapes.  相似文献   

20.
A variety of temperature thresholds for larvae, pupae, and adults of seven African species of carrion‐feeding blowflies (Diptera: Calliphoridae) was measured and compared to understand their basic thermal biology and the influence of temperature on their behaviour. Calliphora croceipalpis (Jaennicke) had consistently lower temperature thresholds than all other species tested for all larval (42.9 °C), pupal (16.6 °C), and adult (45.6 °C) stages. Larvae (50.1 °C) and adults (53.4 °C) of Chrysomya marginalis (Robineau‐Desvoidy) had higher upper lethal temperature thresholds than all other species and weighed more than all other species. Pupae and adults of both Chrysomya albiceps (Wiedemann) and Lucilia sericata (Meigen) had similar temperature thresholds, whereas Chrysomya putoria (Wiedemann), Chrysomya chloropyga (Wiedemann), and Chrysomya megacephala (Fabricius) had inconsistent rank temperature thresholds between the larval, pupal, and adult stages. With a few minor exceptions, the nervous activity, muscle activity, and death thresholds in female adult flies responded at higher temperatures than conspecific male flies for all species tested. Similarly, female adult flies weighed consistently more than conspecific male flies for all species tested, except Ca. croceipalpis. These data suggest that there is a phylogenetic component to the thermal biology of blowflies, because Ca. croceipalpis belongs to a primarily Holarctic genus and shows adaptation to that climate even though it inhabits Africa. Comparisons between these temperature thresholds and the distributions of blowfly species present on three rhinoceros carcasses suggest that blowfly larvae with high upper lethal temperature thresholds (particularly C. marginalis) dominate in interspecific competition on the carcass by raising the temperature of the amassed maggots above the thresholds of other carrion‐feeding blowflies, through metabolically generated heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号