首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some of the views on the marine ecology of Pacific salmon (Oncorhynchus spp.) that were popular in the second half of the 20th century are discussed critically: the absolutization of the influence of sea surface temperature on distribution of salmon and strength of their year classes, as well as the conclusions on the shortage of food (particularly in winter) and the fierce competition for food, the “suppression” of other salmon species and own adjacent broodline by pink salmon, the limited carrying capacity of the pelagic zone of subarctic ocean waters for salmon, the distortion of the structure of epipelagic communities in ecosystems of the North Pacific due to the large-scale stock enhancement of chum salmon, etc. Most of these ideas have not been confirmed by the data of long-term monitoring conducted in the form of complex marine expeditions by the Pacific Research Fisheries Center (TINRO Center) in the Far-Eastern Seas and adjacent North Pacific waters since the 1980s. The data show that Pacific salmon are ecologically very flexible species with a wider temperature range of habitat than was previously believed. Salmon are able to make considerable vertical migrations, easily crossing zones of sharp temperature gradient and different water masses. Having the wide feeding spectra and being dispersed (as non-schooling fish) when feeding in the sea and ocean, they successfully satisfy their dietary needs in vast areas even with relatively low concentrations of prey organisms (macroplankton and small nekton). The total biomass of all the Pacific salmon species in the North Pacific is not greater than 4–5 million t (including 1.5–2.0 million t in Russian waters), whereas the biomass of other common species of nekton is a few hundreds of millions of tons. Salmon account for 1.0–5.0% of the total amount of food consumed by nekton in the epipelagic layer of the western Bering Sea, 0.5–1.0% in the Sea of Okhotsk, less than 1% in the ocean waters off the Kuril Islands, and 5.0–15.0% in the ocean waters off East Kamchatka. Thus, the role of Pacific salmon in the trophic webs of subarctic waters is rather moderate. Therefore, neither pink nor chum salmon can be considered as the species responsible for the large reorganization in ecosystems and the population fluctuations in other common nekton species.  相似文献   

2.
Pacific salmon (Oncorhynchus spp.) play an important role as a keystone species and provider of ecosystem services in the North Pacific ecosystem. We review our studies on recent production trends, marine carrying capacity, climate effects and biological interactions between wild and hatchery origin populations of Pacific salmon in the open sea, with a particular focus on Japanese chum salmon (O. keta). Salmon catch data indicates that the abundance of Pacific salmon increased since the 1976/77 ocean regime shift. Chum and pink salmon (O. gorbuscha) maintained high abundances with a sharp increase in hatchery-released populations since the late 1980s. Since the 1990s, the biomass contribution of hatchery returns to the total catch amounts to 50% for chum salmon, more than 10% for pink salmon, and less than 10% for sockeye salmon (O. nerka). We show evidence of density-dependence of growth and survival at sea and how it might vary across spatial scales, and we provide some new information on foraging plasticity that may offer new insight into competitive interactions. The marine carrying capacity of these three species is synchronized with long-term patterns in climate change. At the present time, global warming has positively affected growth and survival of Hokkaido populations of chum salmon. In the future, however, global warming may decrease the marine carrying capacity and the area of suitable habitat for chum salmon in the North Pacific Ocean. We outline future challenges for salmon sustainable conservation management in Japan, and recommend fishery management reform to sustain the hatchery-supported salmon fishery while conserving natural spawning populations.  相似文献   

3.
Nagasawa  Kazuya 《Hydrobiologia》2001,(1):411-416
The population size of the salmon louse, Lepeophtheirus salmonis, was monitored annually in the summers of 1991–1997 by examining six species of Pacific salmon (Oncorhynchus spp.) caught by surface long-lines in oceanic offshore waters of the North Pacific Ocean and Bering Sea. The annual copepod population size on all salmonids caught was estimated by combining the calculated number of copepods carrying on each salmonid species. The copepod population fluctuated markedly from year to year, which resulted largely from marked annual changes in abundance of pink salmon (O. gorbuscha). Since pink salmon were most frequently and heavily infected and since their abundance changed every year, the copepod population was high in the years when this salmonid species was abundant, but low when it was rare. On the contrary, chum salmon (O. keta) did not show high prevalence and intensity of infection, but the annual abundance of this host species was consistently high, i.e. chum salmon carried many copepods every year. Copepods on other salmonid species (sockeye salmon O. nerka, coho salmon O. kisutch, chinook salmon O. tshawytscha, and steelhead trout O. mykiss) constantly formed a small percentage of the total copepod population. Both chum and pink salmon are the most important hosts in terms of their substantial contribution to support the copepod population, but the importance as hosts of each species is definitely different between the species. Chum salmon is a stable important host supporting the copepod population at a relatively high level every year, while the number of copepods on pink salmon annually exhibits marked fluctuations, and this salmonid species is regarded as an unstable important host.  相似文献   

4.
The interannual variations and general state of the food supply of Pacific salmon (Oncorhynchus spp.) in the 2000s in the northwestern Pacific Ocean (including the Bering Sea and the Sea of Okhotsk) were analyzed based on indirect characteristics that indicate the variability of their forage base, feeding habits, growth, and biomass. A new index for the quantitative evaluation of food supply was suggested. The food supply of the Pacific salmon during the 2000s was found to be sufficient to maintain the normal functioning of populations. With high abundance of Pacific salmon, the food supply tended to decrease. However, this caused no negative consequences for the survival of major salmon stocks during the marine period of life and, as a rule, no marked decrease in the food consumption and growth rates of fish. A relative increase in food competition was compensated by adaptive changes in the diet and diel feeding rhythm of salmon. With the shortage of preferred food organisms (amphipods, euphausiids, and pteropods), Pacific salmon changed to consuming minor prey (copepods and chaetognaths), and numerous mesopelagic species of macroplankton and micronekton in the evening hours.  相似文献   

5.
Based on complex epipelagic surveys in the western Bering Sea, a comparative analysis of food supply of Pacific salmon (Oncorhynchus spp.) was conducted in summer and fall from 2002 to 2006. Nine indirect indices of food supply used in the study were as follows: feeding similarity, width of the feeding spectrum, diet feeding ration, diet feeding rhythms, fraction of accessory food in the ration, growth rate of the fish, abundance of food resources, and abundance of salmon. The food supply of salmon is lower in summer 2003 and fall 2006 in comparison to the food supply in other years of the study. However, well expressed feeding selectivity, consumption of prey items of certain type, and small proportion of accessory food (copepods and chaetognaths) prevailed in plankton, suggests the presence of sufficient food resources for Pacific salmon in the western Bering Sea.  相似文献   

6.
A newly developed DNA microarray was applied to identify mitochondrial (mt) DNA haplotypes of more than 2200 chum salmon in the Bering Sea and North Pacific Ocean in September 2002 and also 2003, when the majority of maturing fish were migrating toward their natal river. The distribution of haplotypes occurring in Asian and North American fish in the surveyed area was similar in the 2 years. A conditional maximum likelihood method for estimation of stock compositions indicated that the Japanese stocks were distributed mainly in the north central Bering Sea, whereas the Russian stocks were mainly in the western Bering Sea. The North American stocks were abundant in the North Pacific Ocean around the Aleutian Islands. These results indicate that the Asian and North American stocks of chum salmon are nonrandomly distributed in the Bering Sea and the North Pacific Ocean, and further the oligonuleotide DNA microarray developed by us has a high potential for identification of stocks among mixed ocean aggregates of high-seas chum salmon.  相似文献   

7.
Prevalence of the larval cestode, Phyllobothrium delphini , was estimated from 2,445 Dall's porpoise, Phocoenoides dalli , from the incidental take of the Japanese high seas salmon drift-net fishery in the northwestern North Pacific Ocean, Bering Sea, and a local hand harpoon fishery in the southern Sea of Okhotsk. Prevalence of P. delphini was 22.7% in the northwestern North Pacific Ocean and 1.4% in the Bering Sea. This parasite was not found in the southern Sea of Okhotsk. Geographical differences in the prevalence of P. delphini may be due, at least in part, to regional differences in abundance of elasmobranchs known to feed on marine mammals and suspected as hosts of the parasite. Estimated intensity of infection of individual porpoises by P. delphini was low (estimated mean intensity of 3.5 plerocercoids per animal). This is a low intensity of infection compared to other species of small cetaceans studied and may be due to both differences in regional abundance of elasmobranchs and the comparatively short life span of P. dalli.  相似文献   

8.
Many studies have investigated the ecology of charrs in freshwater, however, little is known about charrs in the ocean. This study examined the distribution, seasonal abundance, and some biological features of Dolly Varden (Salvelinus malma) in the Pacific Ocean. An analysis of by-catch data of Japanese offshore salmon monitoring showed that Dolly Varden were distributed across a wide range in the offshore waters of the Pacific Ocean, including the Japan Sea, Bering Sea, and Okhotsk Sea. The catch per unit effort showed a sharp increase from May to August, followed by a sharp decrease in September. Offshore areas served as an important summer habitat for anadromous Dolly Varden.  相似文献   

9.
Understanding how species might respond to climate change involves disentangling the influence of co‐occurring environmental factors on population dynamics, and is especially problematic for migratory species like Pacific salmon that move between ecosystems. To date, debate surrounding the causes of recent declines in Yukon River Chinook salmon (Oncorhynchus tshawytscha) abundance has centered on whether factors in freshwater or marine environments control variation in survival, and how these populations at the northern extremity of the species range will respond to climate change. To estimate the effect of factors in marine and freshwater environments on Chinook salmon survival, we constructed a stage‐structured assessment model that incorporates the best available data, estimates incidental marine bycatch mortality in trawl fisheries, and uses Bayesian model selection methods to quantify support for alternative hypotheses. Models fitted to two index populations of Yukon River Chinook salmon indicate that processes in the nearshore and marine environments are the most important determinants of survival. Specifically, survival declines when ice leaves the Yukon River later in the spring, increases with wintertime temperature in the Bering Sea, and declines with the abundance of globally enhanced salmon species consistent with competition at sea. In addition, we found support for density‐dependent survival limitations in freshwater but not marine portions of the life cycle, increasing average survival with ocean age, and age‐specific selectivity of bycatch mortality in the Bering Sea. This study underscores the utility of flexible estimation models capable of fitting multiple data types and evaluating mortality from both natural and anthropogenic sources in multiple habitats. Overall, these analyses suggest that mortality at sea is the primary driver of population dynamics, yet under warming climate Chinook salmon populations at the northern extent of the species’ range may be expected to fare better than southern populations, but are influenced by foreign salmon production.  相似文献   

10.
After several years of feeding at sea, salmonids have an amazing ability to migrate long distances from the open ocean to their natal stream to spawn. Three different research approaches from behavioural to molecular biological studies have been used to elucidate the physiological mechanisms underpinning salmonid imprinting and homing migration. The study was based on four anadromous Pacific salmon Oncorhynchus spp., pink salmon Oncorhynchus gorbuscha, chum salmon Oncorhynchus keta, sockeye salmon Oncorhynchus nerka and masu salmon Oncorhynchus masou, migrating from the North Pacific Ocean to the coast of Hokkaido, Japan, as well as lacustrine O. nerka and O. masou in Lake Toya, Hokkaido, where the lake serves as the model oceanic system. Behavioural studies using biotelemetry techniques showed swimming profiles from the Bering Sea to the coast of Hokkaido in O. keta as well as homing behaviours of lacustrine O. nerka and O. masou in Lake Toya. Endocrinological studies on hormone profiles in the brain-pituitary-gonad axis of O. keta, and lacustrine O. nerka identified the hormonal changes during homing migration. Neurophysiological studies revealed crucial roles of olfactory functions on imprinting and homing during downstream and upstream migration, respectively. These findings are discussed in relation to the physiological mechanisms of imprinting and homing migration in anadromous and lacustrine salmonids.  相似文献   

11.
Age‐related thermal habitat use by sockeye Oncorhynchus nerka, chum Oncorhynchus keta and pink Oncorhynchus gorbuscha salmon was examined using trawl data obtained in spring in the North Pacific Ocean. Thermal habitat use differed by species and age. Larger and older fishes inhabited cooler areas, whereas smaller and younger fishes inhabited warmer areas.  相似文献   

12.
Increasing production of hatchery salmon over the past four decades has led to concerns about possible density-dependent effects on wild Pacific salmon populations in the North Pacific Ocean. The concern arises because salmon from distant regions overlap in the ocean, and wild salmon populations having low productivity may compete for food with abundant hatchery populations. We tested the hypothesis that adult length-at-age, age-at-maturation, productivity, and abundance of a Norton Sound, Alaska, chum salmon population were influenced by Asian hatchery chum salmon, which have become exceptionally abundant and surpassed the abundance of wild chum salmon in the North Pacific beginning in the early 1980s. We found that smaller adult length-at-age, delayed age-at-maturation, and reduced productivity and abundance of the Norton Sound salmon population were associated with greater production of Asian hatchery chum salmon since 1965. Modeling of the density-dependent relationship, while controlling for other influential variables, indicated that an increase in adult hatchery chum salmon abundance from 10 million to 80 million adult fish led to a 72% reduction in the abundance of the wild chum salmon population. These findings indicate that competition with hatchery chum salmon contributed to the low productivity and abundance of Norton Sound chum salmon, which includes several stocks that are classified as Stocks of Concern by the State of Alaska. This study provides new evidence indicating that large-scale hatchery production may influence body size, age-at-maturation, productivity and abundance of a distant wild salmon population.  相似文献   

13.
Seabirds and large fishes are important top predators in marine ecosystems, but few studies have explored the potential for competition between these groups. This study investigates the relationship between an observed biennial change of pink salmon (Oncorhynchus gorbuscha) biomass in the central Bering Sea (23 times greater in odd-numbered than in even-numbered years) and the body condition and diet of the short-tailed shearwater (Puffinus tenuirostris) that spends the post-breeding season there. Samples were collected with research gill nets over seven summers. Both species feed on krill, small fishes and squid. Although the mean pink salmon catch per unit effort (in mass) over the study region was not related significantly with shearwater's stomach content mass or prey composition, the pink salmon biomass showed a negative and significant relationship with the shearwater's body mass and liver mass (proxies of energy reserve). We interpret these results as evidence that fishes can negatively affect mean prey intake of seabirds if they feed on a shared prey in the pelagic ecosystem.  相似文献   

14.
The western Bering Sea is an important region that is used by many nekton species for feeding. From the seasonal aspect, these waters are characterized by pronounced dynamics of the abundance and structure of the nekton community. The pattern of seasonal variations in the total biomass, composition, and structure of nekton in the upper epipelagic layer (0–50 m) of this region are considered based on the data of the complex studies conducted by the Pacific Research Fisheries Center (TINRO Center) in the deep-sea basins of the western Bering Sea and the Navarin area in June–October, 2003–2015. During June–October, the total nekton biomass changed by more than an order of magnitude: from 100 kg/km2 in early June it increased to a maximum of 2700 kg/km2 in the middle of August and then declined significantly, to 200 kg/km2, in late October. The major contribution to the nekton biomass was made by Pacific salmon (Oncorhynchus spp.), mainly O. keta, as well as by the boreopacific gonate squid (Boreoteuthis borealis) and the shortarm gonate squid (Gonatus kamtschaticus). As well, walleye pollock (Theragra chalcogramma), Pacific herring (Clupea pallasii), and capelin (Mallotus villosus) were abundant in waters near the shelf. The dynamics of the species structure can be divided into three periods: (1) early summer, from June to the second 10 days of July, when pre-anadromous pink (O. gorbuscha) and chum salmon predominate and the species diversity is at a medium level (the polydominance index is 3.5–4.0); (2) summer, from the third 10 days of July to the second 10 days of September, when chum salmon becomes dominant (more than 70% of the biomass) and the species diversity is at a minimum (1.5–2.0); and (3) autumn, from the third 10 days of September to October, when common species such as chum salmon, sockeye salmon, and boreopacific gonate squid have relatively equal proportions, the proportion of pink salmon underyearlings is also high, and the species diversity is at a maximum (4.5). The pattern of the spatial distribution in the early summer period is characterized by active formation of the nekton community due to the large-scale migrations from the central and eastern Bering Sea and from the Pacific Ocean. In the summer period, the concentration of the nekton in the western Bering Sea, particularly in the Aleutian Basin, reaches the maximum level and the migratory activity decreases. Reverse migration processes are observed in the autumn period: a major portion of the nekton biomass redistributes to the southeastern Commander Basin for further movement to the ocean and the central Bering Sea.  相似文献   

15.
In the 1990s, an extensive body of data was gathered on the size of the Oncorhynchus gorbuschapink salmon populations of the Sea of Okhotsk at all the main developmental stages. A significant increase in numbers was found for juvenile pink salmon migrating into the offshore regions of the Sea of Okhotsk and the Pacific waters around the Kurils: from 250–450 million in 1990–1991 to 807–1570 million fish in 1993–1999. The overall number of migrating pink salmon in even years sharply increased in 1994 up to 215 million fish. After 1994, this estimate exceeded the number of migrating pink salmon in preceding odd years. Ocean survival of juvenile pink salmon gradually declined. This may be related to changes in the North Pacific pelagic ecosystems.  相似文献   

16.
Based on the data of 28 surveys that were carried out by the Pacific Fisheries Research Center in the Sea of Okhotsk, Bering Sea, and Pacific waters during 2001–2010, we analyzed the interannual variability of indirect indices of the food supply of the Pacific salmon (Oncorhynchus): the daily food ration, daily consumption rate, diel feeding chronology, diet overlap, trophic niche breadth, number of prey items, and the share of minor food. The years of the most pronounced changes in the diet composition and consumption rate of Pacific salmon were revealed. The variability of different trophic characteristics as indicators of the salmon food supply is discussed. Despite a significant increase in salmon abundance in the 2000s compared to previous years, no marked changes occurred in their feeding spectra and consumption rates.  相似文献   

17.
《Journal of morphology》2017,278(7):948-959
Mature male Pacific salmon (Genus Oncorhynchus ) demonstrate prominent morphological changes, such as the development of a dorsal hump. The degree of dorsal hump formation depends on the species in Pacific salmon. It is generally accepted that mature males of sockeye (O. nerka ) and pink (O. gorbuscha ) salmon develop most pronounced dorsal humps. The internal structure of the dorsal hump in pink salmon has been confirmed in detail. In this study, the dorsal hump morphologies were analyzed in four Pacific salmon species inhabiting Japan, masu (O. masou ), sockeye, chum (O. keta ), and pink salmon. The internal structure of the dorsal humps also depended on the species; sockeye and pink salmon showed conspicuous development of connective tissue and growth of bone tissues in the dorsal tissues. Masu and chum salmon exhibited less‐pronounced increases in connective tissues and bone growth. Hyaluronic acid was clearly detected in dorsal hump connective tissue by histochemistry, except for in masu salmon. The lipid content in dorsal hump connective tissue was richer in masu and chum salmon than in sockeye and pink salmon. These results revealed that the patterns of dorsal hump formation differed among species, and especially sockeye and pink salmon develop pronounced dorsal humps through both increases in the amount of connective tissue and the growth of bone tissues. In contrast, masu and chum salmon develop their dorsal humps by the growth of bone tissues, rather than the development of connective tissue.  相似文献   

18.
Increasing interest in the marine trophic dynamics of Pacific salmon has been motivated by the recognition of their sensitivity to changing climate and to the competitive effects of hatchery fish on wild stocks. It has become more common to use stable isotopes to supplement traditional diet studies of salmon in the ocean; however, there have been no integrated syntheses of these data to determine whether stable isotope analyses support the existing conventional wisdom of feeding strategies of the Pacific salmon. We performed a meta-analysis of stable isotope data to examine the extent of trophic partitioning among five species of Pacific salmon during their marine lives. Pink, sockeye, and chum salmon showed very high overlap in resource use and there was no consistent evidence for chum relying on alternative food webs dominated by gelatinous zooplankton. δ15N showed that Chinook and coho salmon fed at trophic levels higher than the other three species. In addition, these two species were distinctly enriched in 13C, suggesting more extensive use of coastal food webs compared to the more depleted (pelagic) signatures of pink, sockeye, and chum salmon. This paper presents the first synthesis of stable isotope work on Pacific salmon and provides δ15N and δ13C values applicable to research on the fate of the marine derived nutrients these organisms transport to freshwater and riparian ecosystems.  相似文献   

19.
The effects of various factors (water temperature, food availability, predation, and the size of juveniles) on the survival of Pacific salmons during overwintering in open ocean waters are analyzed based on the data collected by expeditions of the Pacific Research Fisheries Center to the northwestern Pacific Ocean in the winter and spring seasons of 1986–1992 and 2009–2011, as well as in the summer seasons of 2004–2011. The temperature factor is unlikely to be a direct cause of the high salmon mortality in the ocean during the winter, as there is no clear evidence that it affects food availability for salmon. The biomass of forage zooplankton in the Subarctic Front zone in February and March is lower than that in April and June–July, but it does not decrease substantially in the winter months. Taking the fact into account that the total abundance of planktivorous nekton is also low in this area during the winter, food availability cannot be considered a crucial factor that has a serious influence on salmon mortality in this period. The difference in feeding intensity between salmon species and between their size groups in the winter and spring is determined by their life strategies. The observed variations in feeding intensity and lipid accumulation from autumn to spring are caused by cyclic seasonal changes in physiological processes in salmon rather than by the amount and availability of food resources. The low abundance of predators in subarctic waters and in the Subarctic Front zone in the winter also cannot reduce salmon abundance substantially. The probable relationship between the critical size of juveniles and their survival in the winter is considered using the example of a Sea of Okhotsk stock of pink salmon. The conclusion is that the size of juvenile pink salmon cannot always be used as a predictor of the values of its subsequent returns, because survival of salmon during the ocean period of life depends both on the initial conditions during downstream migration and on the ocean conditions that form in the winter. Thus, none of the factors above can be considered as strictly limiting the abundance of Pacific salmon in the winter. It is more probable that the survival of salmon in the ocean is influenced, to a lesser or greater extent, by the combined effects of abiotic and biotic factors.  相似文献   

20.
Adult male and female northern fur seals (Callorhinus ursinus) are sexually segregated in different regions of the North Pacific Ocean and Bering Sea during their winter migration. Explanations for this involve interplay between physiology, predator-prey dynamics, and ecosystem characteristics, however possible mechanisms lack empirical support. To investigate factors influencing the winter ecology of both sexes, we deployed five satellite-linked conductivity, temperature, and depth data loggers on adult males, and six satellite-linked depth data loggers and four satellite transmitters on adult females from St. Paul Island (Bering Sea, Alaska, USA) in October 2009. Males and females migrated to different regions of the North Pacific Ocean: males wintered in the Bering Sea and northern North Pacific Ocean, while females migrated to the Gulf of Alaska and California Current. Horizontal and vertical movement behaviors of both sexes were influenced by wind speed, season, light (sun and moon), and the ecosystem they occupied, although the expression of the behaviors differed between sexes. Male dive depths were aligned with the depth of the mixed layer during daylight periods and we suspect this was the case for females upon their arrival to the California Current. We suggest that females, because of their smaller size and physiological limitations, must avoid severe winters typical of the northern North Pacific Ocean and Bering Sea and migrate long distances to areas of more benign environmental conditions and where prey is shallower and more accessible. In contrast, males can better tolerate often extreme winter ocean conditions and exploit prey at depth because of their greater size and physiological capabilities. We believe these contrasting winter behaviors 1) are a consequence of evolutionary selection for large size in males, important to the acquisition and defense of territories against rivals during the breeding season, and 2) ease environmental/physiological constraints imposed on smaller females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号