首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pig kidney Na+,K+-ATPase. Primary structure and spatial organization   总被引:15,自引:0,他引:15  
cDNAs complementary to pig kidney mRNAs coding for alpha- and beta-subunits of Na+,K+-ATPase were cloned and sequenced. Selective tryptic hydrolysis of the alpha-subunit within the membrane-bound enzyme and tryptic hydrolysis of the immobilized isolated beta-subunit were also performed. The mature alpha- and beta-subunits contain 1016 and 302 amino acid residues, respectively. Structural data on the peptides from extramembrane regions of the alpha-subunit and on glycopeptides of the beta-subunit underlie a model for the transmembrane arrangement of Na+,K+-ATPase polypeptide chains.  相似文献   

2.
The alpha- and beta-subunits of Na+,K+-ATPase and H+,K+-ATPase were expressed in Sf9 cells in different combinations. Immunoprecipitation of the alpha-subunits resulted in coprecipitation of the accompanying beta-subunit independent of the type of beta-subunit. This indicates cross-assembly of the subunits of the different ATPases. The hybrid ATPase with the catalytic subunit of Na+,K+-ATPase and the beta-subunit of H+,K+-ATPase (NaKalphaHKbeta) showed an ATPase activity, which was only 12 +/- 4% of the activity of the Na+,K+-ATPase with its own beta-subunit. Likewise, the complementary hybrid ATPase with the catalytic subunit of H+,K+-ATPase and the beta-subunit of Na+,K+-ATPase (HKalphaNaKbeta) showed an ATPase activity which was 9 +/- 2% of that of the recombinant H+,K+-ATPase. In addition, the apparent K+ affinity of hybrid NaKalphaHKbeta was decreased, while the apparent K+ affinity of the opposite hybrid HKalphaNaKbeta was increased. The hybrid NaKalphaHKbeta could be phosphorylated by ATP to a level of 21 +/- 7% of that of Na+,K+-ATPase. These values, together with the ATPase activity gave turnover numbers for NaKalphabeta and NaKalphaHKbeta of 8800 +/- 310 min-1 and 4800 +/- 160 min-1, respectively. Measurements of phosphorylation of the HKalphaNaKbeta and HKalphabeta enzymes are consistent with a higher turnover of the former. These findings suggest a role of the beta-subunit in the catalytic turnover. In conclusion, although both Na+,K+-ATPase and H+,K+-ATPase have a high preference for their own beta-subunit, they can function with the beta-subunit of the other enzyme, in which case the K+ affinity and turnover number are modified.  相似文献   

3.
The possibility that H+ might substitute for Na+ at Na+ sites of Na+,K+-ATPase was studied. Na+,K+-ATPase purified from pig kidney showed ouabain-sensitive K+-dependent ATPase activity in the absence of Na+ at acid pH (H+,K+-ATPase). The specific activity was 1.1 mumol Pi/mg/min at pH 5.7, whereas the specific activity of Na+,K+-ATPase was 14 mumol Pi/mg/min at pH 7.5. The enzyme was phosphorylated from ATP in the absence of Na+ at the acid pH. The initial rate of the phosphorylation was also accelerated at the acid pH in the absence of Na+, and the maximal rate obtained at pH 5.5 without Na+ was 9% of the rate at pH 7.0 with Na+. The phosphoenzyme was sensitive to K+ but almost insensitive to ADP. The phosphoenzyme was sensitive to hydroxylamine treatment and the alpha-subunit of the enzyme was found to be phosphorylated. H+,K+-ATPase was inhibited as effectively as Na+,K+-ATPase by N-ethylmaleimide but was less inhibited by oligomycin or dimethyl sulfoxide. These results indicate that protons have an Na+-like effect on the Na+ sites of Na+,K+-ATPase and suggest that protons can be transported by the sodium pump in place of Na+.  相似文献   

4.
A rat brain cDNA library was screened by using as a probe a fragment of cDNA encoding the alpha-subunit of human Na+,K+-ATPase. Two different cDNA clones were obtained and analyzed. One of them was concluded to be a cDNA encoding the alpha-subunit of the weakly ouabain-sensitive rat kidney-type Na+,K+-ATPase. The deduced amino acid sequence consists of 1,018 amino acids. The alpha-subunit of the rat kidney-type Na+,K+-ATPase shows 97% homology in amino acid sequence with the alpha-subunit of human, sheep, or pig enzyme and 87% with that of Torpedo. Based on a comparison of the amino acid sequence at the extracellular domain of the alpha-subunit between weakly ouabain-sensitive rat kidney-type enzyme and the ouabain-sensitive human, sheep, pig, or Torpedo enzyme, it was proposed that only two significant amino acid replacements are unique to the rat kidney-type alpha-subunit. Another cDNA clone obtained showed 72% homology in nucleotide sequence with the former cDNA coding the alpha-subunit of the rat kidney-type Na+,K+-ATPase and the deduced amino acid sequence exhibited 85% homology with that of the alpha-subunit of rat kidney-type Na+,K+-ATPase.  相似文献   

5.
The nucleotide sequence of the cDNA, containing coding region of the alpha-subunit of the pig kidney Na+, K+-ATPase, was determined. The region contains 3063 b.p. coding for 1021 amino acid residues. In the course of processing, five amino acid residues are cleaved to yield the mature Na+, K+-ATPase alpha-subunit containing 1016 amino acid residues.  相似文献   

6.
2-Methyl-8-(phenylmethoxy)imidazo(1,2-a)pyridine-3acetonitrile+ ++ (SCH 28080) is a K+ site inhibitor specific for gastric H+,K+-ATPase and seems to be a counterpart of ouabain for Na+,K+-ATPase from the viewpoint of reaction pattern (i.e. reversible binding, K+ antagonism, and binding on the extracellular side). In this study, we constructed several chimeric molecules between H+,K+-ATPase and Na+,K+-ATPase alpha-subunits by using rabbit H+,K+-ATPase as a parental molecule. We found that the entire extracellular loop 1 segment between the first and second transmembrane segments (M1 and M2) and the luminal half of the M1 transmembrane segment of H+, K+-ATPase alpha-subunit were exchangeable with those of Na+, K+-ATPase, respectively, preserving H+,K+-ATPase activity, and that these segments are not essential for SCH 28080 binding. We found that several amino acid residues, including Glu-822, Thr-825, and Pro-829 in the M6 segment of H+,K+-ATPase alpha-subunit are involved in determining the affinity for this inhibitor. Furthermore, we found that a chimeric H+,K+-ATPase acquired ouabain sensitivity and maintained SCH 28080 sensitivity when the loop 1 segment and Cys-815 in the loop 3 segment of the H+,K+-ATPase alpha-subunit were simultaneously replaced by the corresponding segment and amino acid residue (Thr) of Na+,K+-ATPase, respectively, indicating that the binding sites of ouabain and SCH 28080 are separate. In this H+, K+-ATPase chimera, 12 amino acid residues in M1, M4, and loop 1-4 that have been suggested to be involved in ouabain binding of Na+, K+-ATPase alpha-subunit are present; however, the low ouabain sensitivity indicates the possibility that the sensitivity may be increased by additional amino acid substitutions, which shift the overall structural integrity of this chimeric H+,K+-ATPase toward that of Na+,K+-ATPase.  相似文献   

7.
The BATP gene coding for the beta-subunit of Na+,K+-ATPase has been localized on chromosome 13 of the American mink (Mustela vison) using mink-Chinese hamster somatic cell hybrids and pig cDNA clones as probes. The AATP gene for the alpha-subunit of Na+,K+-ATPase is on mink chromosome 2 [(1987) FEBS Lett. 217, 42-44]. Consequently, the AATP and BATP genes for the Na+,K+-ATPase occupy separate mink chromosomes.  相似文献   

8.
Ouabain is a glycoside that binds to and inhibits the action of Na+,K+-ATPase. Little is known, however, about the specific requirements of the protein surface for glycoside binding. Using chimeras of gastric H+,K+-ATPase and Na+,K+-ATPase, we demonstrated previously that the combined presence of transmembrane hairpins M3-M4 and M5-M6 of Na+,K+-ATPase in a backbone of H+,K+-ATPase (HN34/56) is both required and sufficient for high affinity ouabain binding. Since replacement of transmembrane hairpin M3-M4 by the N terminus up to transmembrane segment 3 (HNN3/56) resulted in a low affinity ouabain binding, hairpin M5-M6 seems to be essential for ouabain binding. To assess which residues of M5-M6 are required for ouabain action, we divided this transmembrane hairpin in seven parts and individually replaced these parts by the corresponding sequences of H+,K+-ATPase in chimera HN34/56. Three of these chimeras failed to bind ouabain following expression in Xenopus laevis oocytes. Altogether, these three chimeras contained 7 amino acids that were specific for Na+,K+-ATPase. Individual replacement of these 7 amino acids by the corresponding amino acids in H+,K+-ATPase revealed a dramatic loss of ouabain binding for F783Y, T797C, and D804E. As a proof of principle, the Na+,K+-ATPase equivalents of these 3 amino acids were introduced in different combinations in chimera HN34. The presence of all 3 amino acids appeared to be required for ouabain action. Docking of ouabain onto a three-dimensional-model of Na+,K+-ATPase suggests that Asp804, in contrast to Phe783 and Thr797, does not actually form part of the ouabain-binding pocket. Most likely, the presence of this amino acid is required for adopting of the proper conformation for ouabain binding.  相似文献   

9.
The existence of a chromosome gene family containing at least one gene and one pseudogene was shown for the Na+,K+-ATPase beta-subunit. A partial structure of the beta 1-gene was determined, the coding part of which was completely homologous to cDNA of the Na+,K+-ATPase beta I-subunit from HeLa cells. The region encoding the putative protein transmembrane domain was shown to be bordered by two introns. The structure of a pseudogene (beta psi) was determined. This pseudogene is processed and contains multiple stop codons. Its homology to the beta I-subunit cDNA from HeLa cells is about 88%.  相似文献   

10.
Transepithelial Na+ reabsorption across tight epithelia is regulated by aldosterone. Mineralocorticoids modulate the expression of a number of proteins. Na+,K+-ATPase has been identified as an aldosterone-induced protein (Geering, K., M. Girardet, C. Bron, J. P. Kraehenbuhl, and B. C. Rossier, 1982, J. Biol. Chem., 257:10338-10343). Using A6 cells (kidney of Xenopus laevis) grown on filters we demonstrated by Northern blot analysis that the induction of Na+,K+-ATPase was mainly mediated by a two- to fourfold accumulation of both alpha- and beta-subunit mRNAs. The specific competitor spironolactone decreased basal Na+ transport, Na+,K+-ATPase mRNA, and the relative rate of protein biosynthesis, and it blocked the response to aldosterone. Cycloheximide inhibited the aldosterone-dependent sodium transport but did not significantly affect the cytoplasmic accumulation of Na+,K+-ATPase mRNA induced by aldosterone.  相似文献   

11.
A Na+,K+-ATPase inhibitor protein has been purified to homogeneity from rat brain cytosol by ammonium sulphate precipitation, DEAE anion-exchange chromatography and hydroxyapatite adsorption column chromatography. The purified protein migrates as a single polypeptide band of 75 kDa on 7.5% SDS/PAGE. Amino acid composition data shows the presence of a high number of acidic amino acids in the molecule in relation to the pI value of 4.6. The inhibitor binds Na+,K+-ATPase reversibly and blocks ATP binding sites at micromolar concentrations with an I50 of approximately 700 nm. As a result, formation of the phosphorylated intermediate of Na+,K+-ATPase is hindered in the presence of the inhibitor. It does not affect p-nitrophenylphosphatase activity. Tryptophan fluorescence studies and CD analysis suggest conformational changes of Na+,K+-ATPase on binding to the inhibitor.  相似文献   

12.
Gastric H(+),K(+)-ATPase consists of alpha-subunit with 10 transmembrane domains and beta-subunit with a single transmembrane domain. We constructed cDNAs encoding chimeric beta-subunits between the gastric H(+),K(+)-ATPase and Na(+),K(+)-ATPase beta-subunits and co-transfected them with the H(+),K(+)-ATPase alpha-subunit cDNA in HEK-293 cells. A chimeric beta-subunit that consists of the cytoplasmic plus transmembrane domains of Na(+),K(+)-ATPase beta-subunit and the ectodomain of H(+),K(+)-ATPase beta-subunit assembled with the H(+),K(+)-ATPase alpha-subunit and expressed the K(+)-ATPase activity. Therefore, the whole cytoplasmic and transmembrane domains of H(+),K(+)-ATPase beta-subunit were replaced by those of Na(+),K(+)-ATPase beta-subunit without losing the enzyme activity. However, most parts of the ectodomain of H(+),K(+)-ATPase beta-subunit were not replaced by the corresponding domains of Na(+), K(+)-ATPase beta-subunit. Interestingly, the extracellular segment between Cys(152) and Cys(178), which contains the second disulfide bond, was exchangeable between H(+),K(+)-ATPase and Na(+), K(+)-ATPase, preserving the K(+)-ATPase activity intact. Furthermore, the K(+)-ATPase activity was preserved when the N-terminal first 4 amino acids ((67)DPYT(70)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the corresponding amino acids ((63)SDFE(66)) of Na(+),K(+)-ATPase beta-subunit. The ATPase activity was abolished, however, when 4 amino acids ((76)QLKS(79)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the counterpart ((72)RVAP(75)) of Na(+),K(+)-ATPase beta-subunit, indicating that this region is the most N-terminal one that discriminates the H(+),K(+)-ATPase beta-subunit from that of Na(+), K(+)-ATPase.  相似文献   

13.
A series of Northern blot hybridization experiments using probes derived from the rat gastric H+,K(+)-ATPase cDNA and the human ATP1AL1 gene revealed the presence of a 4.3-kilobase mRNA in colon that seemed likely to encode the distal colon H+,K(+)-ATPase, the enzyme responsible for K+ absorption in mammalian colon. A rat colon library was then screened using a probe from the ATP1AL1 gene, and cDNAs containing the entire coding sequence of a new P-type ATPase were isolated and characterized. The deduced polypeptide is 1036 amino acids in length and has an Mr of 114,842. The protein exhibits 63% amino acid identity to the gastric H+,K(+)-ATPase alpha-subunit and 63% identity to the three Na+,K(+)-ATPase alpha-subunit isoforms, consistent with the possibility that it is a K(+)-transporting ATPase. Northern blot analyses show that the 4.3-kilobase mRNA is expressed at high levels in distal colon; at much lower levels in proximal colon, kidney, and uterus; and at trace levels in heart and forestomach. The high mRNA levels in distal colon and the similarity of the colon pump to both gastric H+,K(+)- and Na+,K(+)-ATPases suggest that it is the distal colon H+,K(+)-ATPase. Furthermore, expression of its mRNA in kidney raises the possibility that the enzyme also corresponds to the H+,K(+)-ATPase that seems to play a role in K+ absorption and H+ secretion in the distal nephron.  相似文献   

14.
Little is known concerning the effects of Na+-coupled solute transport on (Na+,K+)-ATPase mediated cation pumping in the intact cell. We investigated the effect of amino acid transport and growth factor addition on the short term regulation of (Na+,K+)-ATPase cation transport in HeLa cells. The level of pump activity in the presence of amino acids or growth factors was compared to the level measured in phosphate buffered saline. These rates were further related to the maximal pump capacity, operationally defined as ouabain inhibitable 86Rb+ influx in the presence of 15 microM monensin. Of the growth factors tested, only insulin was found to moderately (22%) increase (Na+,K+)-ATPase cation transport. The major determinant of pump activity was found to be the transport of amino acids. Minimal essential medium (MEM) amino acids increased ouabain inhibitable 86Rb+ influx to a level close to that obtained with monensin, indicating that the (Na+,K+)-ATPase is operating near maximal capacity during amino acid transport. This situation may apply to tissue culture conditions and consequently measurements of (Na+,K+)-ATPase activity in buffer solutions alone may yield little information about cation pumping under culture conditions. This finding applies especially to cells having high rates of amino acid transport. Furthermore, rates of amino acid transport may be directly or indirectly involved in the long-term regulation of the number of (Na+,K+)-ATPase molecules in the plasma membrane.  相似文献   

15.
Na+,K+-ATPase (porcine alpha/his10-beta) has been expressed in Pichia Pastoris, solubilized in n-dodecyl-beta-maltoside and purified to 70-80% purity by nickel-nitrilotriacetic acid chromatography combined with size exclusion chromatography. The recombinant protein is inactive if the purification is done without added phospholipids. The neutral phospholipid, dioleoylphosphatidylcholine, preserves Na+,K+-ATPase activity of protein prepared in a Na+-containing medium, but activity is lost in a K+-containing medium. By contrast, the acid phospholipid, dioleoylphosphatidylserine, preserves activity in either Na+- or K+-containing media. In optimal conditions activity is preserved for about 2 weeks at 0 degrees C. Both recombinant Na+,K+-ATPase and native pig kidney Na+,K+-ATPase, dissolved in n-dodecyl-beta-maltoside, appear to be mainly stable monomers (alpha/beta) as judged by size exclusion chromatography and sedimentation velocity. Na+,K+-ATPase activities at 37 degrees C of the size exclusion chromatography-purified recombinant and renal Na+,K+-ATPase are comparable but are lower than that of membrane-bound renal Na+,K+-ATPase. The beta subunit is expressed in Pichia Pastoris as two lightly glycosylated polypeptides and is quantitatively deglycosylated by endoglycosidase-H at 0 degrees C, to a single polypeptide. Deglycosylation inactivates Na+,K+-ATPase prepared with dioleoylphosphatidylcholine, whereas dioleoylphosphatidylserine protects after deglycosylation, and Na+,K+-ATPase activity is preserved. This work demonstrates an essential role of phospholipid interactions with Na+,K+-ATPase, including a direct interaction of dioleoylphosphatidylserine, and possibly another interaction of either the neutral or acid phospholipid. Additional lipid effects are likely. A role for the beta subunit in stabilizing conformations of Na+,K+-ATPase (or H+,K+-ATPase) with occluded K+ ions can also be inferred. Purified recombinant Na+,K+-ATPase could become an important experimental tool for various purposes, including, hopefully, structural work.  相似文献   

16.
The effects of some gangliosides on active uptake of nonmetabolizable alpha-aminoisobutyric acid (AIB) and Na+, K+-ATPase and Ca2+, Mg2+-ATPase activities in superior cervical ganglia (SCG) and nodose ganglia (NG) excised from adult rats were examined during aerobic incubation at 37 degrees C for 2 h. In NG, amino acid uptake was greatly accelerated with the addition of galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylgluc osyl ceramide (GM1) (85%) and also with N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide (GM2) or [N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetyl- neuraminyl]-galactosylglucosyl ceramide (GD1a) (43% each) compared with a nonaddition control at a 5 nM concentration. Under identical conditions, Na+, K+-ATPase activity was strongly stimulated with GM1 (180%) and GD1a (93%), whereas Ca2+, Mg2+-ATPase activity showed no change. In SCG, on the other hand, AIB uptake was apparently inhibited (-27%) by addition of GM1, with a slight decrease in Na+, K+-ATPase but no change in Ca2+, Mg2+-ATPase activity in the tissue. Both asialo-GM1, in which N-acetylneuraminic acid is deficient, and Forssman glycolipid, which is not present in nervous tissue, failed to produce any significant increase in both SCG and NG not only in amino acid uptake, but also in Na+, K+-ATPase activity. A kinetic study of active AIB uptake showed that GM1 ganglioside produced an increase in Km with no change in Vmax in SCG, whereas it caused a decrease in Km with a slight increase in Vmax in NG. Treatment of NG and SCG with neuraminidase from Vibrio cholerae, an enzyme that split off sialic acid from polysialoganglioside, leaving GM1 intact, caused little inhibition of the amino acid uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Raman spectra of active Na+,K+-ATPase from pig kidney and membrane-bound products of its two-stage trypsinolysis, including alpha-subunit hydrophobic regions as well as the intact beta-subunit and hydrophobic regions of alpha- and beta-subunits, were measured to calculate the secondary structure of hydrophilic and hydrophobic regions of the enzyme. Consequent comparison demonstrated unambiguously that (i) membrane-bound hydrophobic parts of polypeptide chains of Na+,K+-ATPase subunits are in the alpha-helical conformation; (ii) essential contents of the alpha-helix as well as beta-sheet are estimated to form the hydrophilic (mainly cytoplasmic) domain of the Na+,K+-ATPase alpha-subunit; (iii) the exoplasmic hydrophilic domain of the beta-subunit is shown to include several antiparallel beta-pleated sheets and a small amount of the alpha-helix and unordered conformations. The model of the secondary structure organization of hydrophilic domains as well as 8 hydrophobic transmembrane segments of the enzyme molecule was proposed on the basis of experimental results and predictional calculations.  相似文献   

18.
The polarized distribution of Na+,K+-ATPase plays a paramount physiological role, because either directly or through coupling with co- and countertransporters, it is responsible for the net movement of, for example, glucose, amino acids, Ca2+, K+, Cl-, and CO3H- across the whole epithelium. We report here that the beta-subunit is a key factor in the polarized distribution of this enzyme. 1) Madin-Darby canine kidney (MDCK) cells (epithelial from dog kidney) express the Na+,K+-ATPase over the lateral side, but not on the basal and apical domains, as if the contact with a neighboring cell were crucial for the specific membrane location of this enzyme. 2) MDCK cells cocultured with other epithelial types (derived from human, cat, dog, pig, monkey, rabbit, mouse, hamster, and rat) express the enzyme in all (100%) homotypic MDCK/MDCK borders but rarely in heterotypic ones. 3) Although MDCK cells never express Na+,K+-ATPase at contacts with Chinese hamster ovary (CHO) cells, they do when CHO cells are transfected with beta1-subunit from the dog kidney (CHO-beta). 4) This may be attributed to the adhesive property of the beta1-subunit, because an aggregation assay using CHO (mock-transfected) and CHO-beta cells shows that the expression of dog beta1-subunit in the plasma membrane does increase adhesiveness. 5) This adhesiveness does not involve adherens or tight junctions. 6) Transfection of beta1-subunit forces CHO-beta cells to coexpress endogenous alpha-subunit. Together, our results indicate that MDCK cells express Na+,K+-ATPase at a given border provided the contacting cell expresses the dog beta1-subunit. The cell-cell interaction thus established would suffice to account for the polarized expression and positioning of Na+,K+-ATPase in epithelial cells.  相似文献   

19.
Three unique inhibitors (SPAI-1, -+2, and -3) were first purified from porcine duodenal extract based on the Na+, K+-ATPase inhibitory activity. These peptide inhibitors had four disulfide bridges in common. The sequencing results of their S-carboxymethyl derivatives, lysilendopeptidase fragments, and chymotryptic peptides disclosed their entire primary structures. Both SPAI-2 and -3 consisted of 61 amino acids, respectively, and had almost the same sequences except for two amino acid substitutions, while SPAI-1 was found to lack the N-terminal twelve amino acid sequence of SPAI-2. The kinetics study revealed that SPAIs inhibited Na+, K+-ATPase by the competitive mode against Na+ and were uncompetitive with K+.  相似文献   

20.
Raman spectra of active Na+,K+-ATPase from pig kidney in media containing Na+ (E1), K+ (E2) or without exogenous ions (E1 conformation) were recorded in order to calculate the changes in the enzyme's secondary structure induced by binding of monovalent cations. It is demonstrated that: (i) K+ binding to the E1 form of the enzyme leads to conversion of approximately 100 peptide groups from the beta-structure to alpha-helical conformation; (ii) the transition is reversible and fully reproducible in the E1----E2----E1 and E2----E1----E2 experimental schemes. Predictional calculations revealed polypeptide chain segments involved in the alpha----beta transformations. These segments reside mainly in the two highly conserved regions of the alpha-subunit in the cytoplasmic domain of Na+,K+-ATPase. A possible role for the beta-subunit is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号