首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Monoclonal antibody HNK-1-reactive carbohydrate epitope is expressed on proteins, proteoglycans, and sulfoglucuronyl glycolipids (SGGLs). The developmental expression of these HNK-1-reactive antigens was studied in rat cerebellum. The expression of sulfoglucuronyl lacto-N-neotetraosylceramide (SGGL-1) was biphasic with an initial maximum at postnatal day one (PD 1), followed by a second rise in the level at PD 20. The level of sulfoglucuronyl lacto-N-norhexaosyl ceramide (SGGL-2) in cerebellum was low until PD 15 and then increased to a plateau at PD 20. The levels of SGGLs increased during postnatal development of the cerebellum, contrary to their diminishing expression in the cerebral cortex. The expression of HNK-1-reactive glycoproteins decreased with development of the rat cerebellum from PD 1. Several HNK-1-reactive glycoproteins with apparent molecular masses between 150 and 325 kDa were visualized between PD 1 and PD 10. However, beyond PD 10, only two HNK-1-reactive bands at 160 and 180 kDa remained. The latter appeared to be neural cell adhesion molecule, N-CAM-180. A diffuse HNK-1-reactive band seen at the top of polyacrylamide electrophoretic gels was due mostly to proteoglycans. This band increased in its reactivity to HNK-1 between PD 15 and PD 25 and then decreased in the adult cerebellum. The lipid antigens were shown by two complementary methodologies to be localized primarily in the molecular layer and deep cerebellar nuclei as opposed to the granular layer and white matter. A fixation procedure which eliminates HNK-1-reactive epitope on glycoproteins and proteoglycans, but does not affect glycolipids, allowed selective immunoreactivity in the molecular layer and deep cerebellar nuclei.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Human natural killer antigen-1 (HNK-1) is a carbohydrate epitope associated with sulfoglucuronylglycolipids and glycoproteins. Biochemical analyses have demonstrated associations between the HNK-1 epitope and isoforms of the neural cell adhesion molecule (N-CAM) family. In the cerebellum, HNK-1 is prominently expressed in Purkinje cell dendrites and Golgi cells. Purkinje cell expression of HNK-1 reveals an array of parasagittal stripes and transverse zones. Interestingly, the parasagittal expression pattern of HNK-1 is different from those reported with several other markers such as zebrin II/aldolase C and the small heat shock protein HSP25. N-CAM null knockout mice were used to explore the possible role of the HNK-1/N-CAM interaction during the topographical organization of the cerebellar cortex. N-CAM null mice have no N-CAM immunoreactivity but otherwise the cerebellum appears morphologically normal. Further, in the N-CAM null HNK-1 immunoreactivity is abolished from Purkinje cell dendrites but is retained on Golgi cells and neurons of the cerebellar nuclei. Despite the absence of N-CAM/HNK-1, parasagittal stripes and transverse zones in the cerebellum as revealed by using zebrin II immunocytochemistry appear normal.  相似文献   

3.
P0, the most abundant glycoprotein of PNS myelin, is a homophilic and heterophilic adhesion molecule. P0 is known to contain a glycoform population that expresses the L2/HNK-1 carbohydrate epitope found on other neural adhesion molecules, and to be functionally implicated centrally in neural cell adhesion and neurite outgrowth. This carbohydrate epitope has been characterized previously from glycolipid structures and contains a sulphated glucuronic acid residue. However, the L2/HNK-1 carbohydrate epitope has not been characterized in glycoproteins. Because P0 possesses only one glycosylation sequon, the number of P0 glycoforms is equal to the heterogeneity of the glycan species. Here we report that the carbohydrate analysis of L2/HNK-1-reactive P0 showed the presence of anionic structures containing sialic acid and sulphate in various combinations. At least one sulphate residue was present in 80% of the monosaccharide sequences, and 20% contained three sulphates. High-resolution P4 gel chromatography of the desialylated and desulphated oligosaccharides showed substantial heterogeneity of monosaccharide sequences. Sequential exoglycosidase digestions indicated that the majority of the structures were of the hybrid class, although the sulphated structures were found to be endoglycosidase H-resistant.  相似文献   

4.
BackgroundThe human natural killer-1 (HNK-1) carbohydrate, a unique trisaccharide possessing sulfated glucuronic acid in a non-reducing terminus (HSO3-3GlcAß1-3Galß1-4GlcNAc-), is highly expressed in the nervous system and its spatiotemporal expression is strictly regulated. Mice deficient in the gene encoding a key enzyme, GlcAT-P, of the HNK-1 biosynthetic pathway exhibit almost complete disappearance of the HNK-1 epitope in the brain, significant reduction of long-term potentiation, and aberration of spatial learning and memory formation. In addition to its physiological roles in higher brain function, the HNK-1 carbohydrate has attracted considerable attention as an autoantigen associated with peripheral demyelinative neuropathy, which relates to IgM paraproteinemia, because of high immunogenicity. It has been suggested, however, that serum autoantibodies in IgM anti-myelin-associated glycoprotein (MAG) antibody-associated neuropathy patients show heterogeneous reactivity to the HNK-1 epitope.Scope of reviewWe have found that structurally distinct HNK-1 epitopes are expressed in specific proteins in the nervous system. Here, we overview the current knowledge of the involvement of these HNK-1 epitopes in the regulation of neural plasticity and discuss the impact of different HNK-1 antigens of anti-MAG neuropathy patients.Major conclusionsWe identified the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit GluA2 and aggrecan as HNK-1 carrier proteins. The HNK-1 epitope on GluA2 and aggrecan regulates neural plasticity in different ways. Furthermore, we found the clinical relationship between reactivity of autoantibodies to the different HNK-1 epitopes and progression of anti-MAG neuropathy.General significanceThe HNK-1 epitope is indispensable for the acquisition of normal neuronal function and can be a good target for the establishment of diagnostic criteria for anti-MAG neuropathy.  相似文献   

5.
The major 24- and 28-kDa glycoproteins in shark PNS and CNS myelin express high levels of the adhesion-associated HNK-1/L2 carbohydrate epitope. The 28-kDa protein, but not the 24-kDa protein, cross-reacts strongly with one of two anti-bovine P0 antisera not previously tested against fish myelin proteins. Shark PNS and CNS myelin also contains smaller amounts of high-molecular-weight HNK-1-positive proteins, including a prominent broad band in the 65-85-kDa range. Although myelin-associated glycoprotein (MAG) is well known to react with HNK-1 in some mammals, monoclonal and polyclonal anti-MAG antibodies did not react with the high-molecular-weight HNK-1-positive material in shark myelin, a result suggesting that it is not a MAG-like protein. The high expression of the HNK-1/L2 epitope in glycoproteins of shark myelin, including the major P0-related ones, suggests that this adhesion-related carbohydrate structure may have had an important role in the molecular evolution of the myelinating process.  相似文献   

6.
Sulfoglucuronyl carbohydrate linked to neolactotetraose reacts with HNK-1 antibody. The HNK-1 carbohydrate epitope is found in two major glycolipids, several glycoproteins and in some proteoglycans of the nervous system. Most of the HNK-1 reactive glycoproteins so far identified are neural cell adhesion molecules and/or are involved in cell-cell interactions. HNK-1 carbohydrate is highly immunogenic. Several HNK-1-like antibodies, including IgM of some patients with plasma cell abnormalities and having peripheral neuropathy, have been described. This article summarizes published work mainly on sulfoglucuronyl glycolipids, SGGLs and covers: structural requirements of the carbohydrate epitope for binding to HNK-1 and human antibodies, expression of the lipids in various neural areas, stage and region specific developmental expression in CNS and PNS, immunocytochemical localization, loss of expression in Purkinje cell abnormality murine mutations, biosynthetic regulation of expression by a single enzyme N-acetylglucosaminyl transferase, identification of receptor-like carbohydrate binding neural proteins (lectins), and perceived role of the carbohydrate in physiological functions. The latter includes role in: pathogenesis of certain peripheral neuropathies, in migration of neural crest cells, as a ligand in cell-cell adhesion/interaction and as a promoter of neurite outgrowth for motor neurons. Multiple expression of HNK-1 carbohydrate in several molecules and in various neural cell types at specific stages of nervous system development has puzzled investigators as to its specific biological function, but this may also suggest its importance in multiple systems during cell differentiation and migration processes.Special issue dedicated to Dr. Marjorie B. Lees.  相似文献   

7.
Abstract— Myelin/oligodendrocyte glycoprotein (MOG) is a quantitatively minor component of CMS myelin. In this study, human MOG was found to express the L2/HNK-1 epitope on N-linked oligosaccharide structures. This carbohydrate epitope has been found previously in three other characterized human myelin glycoproteins: the my-elin-associated glycoprotein, P0, and the oligodendrocyte-myelin glycoprotein. It seems, therefore, that the L2/HNK-1 epitope is expressed frequently in human myelin glycoproteins. Serial lectin affinity chromatography of 14C-glycopeptides indicated that MOG N -oligosaccharide structures are mainly of the complex type, accounting for 77.8% of total radioactivity. In contrast with myelin-asso-ciated glycoprotein and P0, which express the L2/HNK-1 epitope on fucosylated structures, in MOG the epitope was detected on all glycopeptide fractions obtained by serial lectin affinity chromatography, although a preferential expression of the L2/HNK-1 epitope was observed on fucosylated structures. Finally, the data indicated that, as for other human myelin glycoproteins, only a subpopulation of MOG molecules expresses the L2/HNK-1 epitope.  相似文献   

8.
Monoclonal antibody HNK-1 reacts with a carbohydrate epitope present in proteins, proteoglycans, and sulfoglucuronylglycolipids (SGGLs). On high-performance TLC plates, SGGLs of the CNS from several species migrated consistently slower than those from the PNS, a result indicating possible differences in the structures. The structural characteristics of the major SGGL, sulfoglucuronylneolactotetraosylceramide (SGGL-1), from CNS was compared with those of SGGL-1 from PNS. Although the composition, sequence, and linkages of the carbohydrate moiety of the SGGL-1 species were identical, SGGL-1 from CNS contained mainly short-chain fatty acids, 16:0, 18:0, and 18:1, amounting to 85% of the total fatty acids, whereas SGGL-1 from PNS contained large proportions (59%) of long-chain fatty acids (greater than 18:0). These differences in the fatty acid composition accounted for the different migration pattern observed. The developmental expression of SGGLs and HNK-1-reactive proteins was studied in rat cerebral cortex between embryonic day (ED) 15 to adulthood. SGGLs in the rat cortex were maximally expressed around ED 19 and almost completely disappeared by postnatal day (PD) 20. This expression was contrary to their increasing expression in the cerebellum and sciatic nerve with postnatal development. Six to eight protein bands with a molecular mass of greater than 160 kDa were HNK-1 reactive in the rat cerebral cortex at different ages. The major HNK-1 reactivity to the 160-kDa protein band seen in ED 19 to PD 10 cortex decreased and completely disappeared from the adult cortex, whereas several other proteins remained HNK-1 reactive even in the adult. Western blot analyses of the neural cell adhesion molecules (N-CAMs) during development of the rat cortex with a polyclonal anti-N-CAM antibody showed that the major HNK-1-reactive protein bands were not N-CAMs. Between PD 1 and 10, 190-200-kDa N-CAM was the major N-CAM, and between PD 15 to adulthood, 180-kDa N-CAM was the only N-CAM present in the rat cortex.  相似文献   

9.
Expression of the HNK-1/NC-1 epitope in early vertebrate neurogenesis   总被引:4,自引:0,他引:4  
Summary A family of glycoconjugates has recently been shown to share a common carbohydrate epitope recognized by the mouse monoclonal antibody HNK-1. The specificity of HNK-1 was found to be similar to that of another monoclonal antibody, NC-1. These two IgM monoclonal antibodies were raised after immunization of mice with a human T-cell line and avian neural crest-derived ganglia, respectively. The antigens recognized by these antibodies include the myelin-associated glycoprotein, MAG, a glycolipid of defined structure, and a set of molecules involved in cell adhesion. The timing and pattern of appearance of these antigens are distinct. Moreover, the epitope may be absent on an antigen at a given stage or in a given tissue. Therefore, although the molecules able to carry the NC-1/ HNK-1 epitope are numerous and expressed in various tissues, the use of the monoclonal antibodies on tissue sections has proven adequate for following the migration of avian neural crest cells, the major cell lineage recognized by NC-1 and HNK-1 during early embryogenesis. Analogies in several other species have been found on the basis of HNK-1 reactivity. In this study we show that NC-1 and HNK-1 can be used successfully to label migrating neural crest cells in dog, pig and human. On the other hand, the NC-l/HNK-1 epitope was not present on migrating crest cells in amphibians or mice and was found only transiently on the neural crest of rats.  相似文献   

10.
Rollenhagen  A.  Czaniera  R.  Albert  M.  Wintergerst  E. S.  Schachner  M. 《Brain Cell Biology》2001,30(4):337-351
The HNK-1 carbohydrate, an unusual 3′-sulfated glucuronic acid epitope characteristic of many neural recognition molecules, serves as a ligand in neural cell interactions and is differentially expressed in the quadriceps and saphenous branches of the femoral nerve in the PNS of adult mice. Based on these observations, we investigated the possibility that the HNK-1 carbohydrate may be differentially distributed in neurons and fiber tracts also in the CNS thereby contributing to different targeting and guidance mechanisms. We have used antibodies with different HNK-1 epitope specificities to probe for subtle differences in expression patterns. In the adult mouse cerebellum the HNK-1 carbohydrate is detectable in stripe-like compartments in the molecular and Purkinje cell layers, whereas N-CAM and its associated α2,8 polysialic acid does not show this compartmentation. In the adult hippocampus, the HNK-1 carbohydrate localizes to perineuronal nets of inhibitory interneurons and marks the inner third of the molecular layer of the dentate gyrus. In the adult spinal cord, HNK-1 labeling is most pronounced in gray matter areas. White matter enriched regions show differential labeling with regard to fiber tracts and antibody specificity. Whereas the different antibodies do not show differences in staining in the cerebellum and the hippocampus, they show differences in staining pattern of fiber tracts and motoneurons in the spinal cord. The HNK-1 expression pattern also differed in the adult spinal cord from that observed at embryonic day 14 and postnatal day 14. Our observations suggest a functional role in the specification of functionally discrete compartments in different areas of the CNS and during development.  相似文献   

11.
Monoclonal antibody HNK-1 is an important marker for embryonic neural crest cells and some of their differentiated derivatives. We have identified 3-sulfoglucuronylneolactotetraosylceramide (SGGL-1) as one of the HNK-1 antigens present in cultures of trunk neural crest cells. This lipid was present at 2 days in vitro and increased in amount with time in culture. Other major HNK-1-reactive antigens present in the culture were glycoproteins of apparent molecular masses of 120, 180, and 200 kDa. The 180- and 200-kDa bands were present at 2, 7, and 17 days in vitro, whereas the 120-kDa band was present only at 17 days in vitro. Gangliosides GD3, LD1, and LM1 were also found in the cultures and exhibited distinct temporal patterns of expression. Ganglioside GD3 was present at all stages examined and its expression peaked at 7 days in vitro. In contrast, LD1 was present only at 2 days in vitro and was not detectable at later times. Ganglioside LM1 increased in amount with time in culture in a pattern similar to that seen for SGGL-1. Taken together, these results indicate that several HNK-1-reactive molecules are expressed in neural crest cultures in a temporally regulated manner along with several glycolipids that do not bear this epitope.  相似文献   

12.
beta-O-linked N-acetylglucosamine (O-GlcNAc) is an abundant posttranslational modification of resident nuclear and cytoplasmic proteins in eukaryotes. Increasing evidence suggests that O-GlcNAc plays a regulatory role in numerous cellular processes. Here we report on the production and characterization of a highly specific mouse monoclonal antibody, MAb CTD110.6, that specifically reacts with O-GlcNAc. The antibody recognizes O-GlcNAc in beta-O-glycosidic linkage to both serine and threonine. We could detect no cross-reactivity with alpha-linked Ser/Thr-O-GlcNAc, alpha-linked Ser-O-linked N-acetylgalactosamine (O-GalNAc), or N-linked oligosaccharides on ovalbumin and immunoglobulin G. The monosaccharide GlcNAc, but not GalNAc, abolishes immunoreactivity, further demonstrating specificity toward O-GlcNAc. Furthermore, galactose capping of O-GlcNAc sites also inhibits CTD110.6 immunoreactivity. Enrichment of GlcNAc-containing glycoproteins using the lectin wheat germ agglutinin dramatically enriches for CTD110.6-reactive proteins. The antibody reacts with a large number of proteins from cytoplasmic and nuclear extracts and readily detects in vivo changes in O-GlcNAc modification. These studies demonstrate that CTD110.6 is highly specific toward O-GlcNAc, with no cross-reactivity toward similar carbohydrate antigens or toward peptide determinants.  相似文献   

13.
Summary The carbohydrate epitopes L2/HNK-1 and L3 belong to two overlapping families of adhesion molecules in the vertebrate, and probably the invertebrate nervous systems. To investigate their pattern of expression during the development of insects, cryosections of late third instar larvae and imagoes of Drosophila melanogaster and Calliphora vicina were studied by indirect immunofluorescence using several monoclonal antibodies to the L2/HNK-1 and one monoclonal antibody to the L3 epitope. Each monoclonal antibody to the L2/HNK-1 epitope showed a different immunohistological staining pattern, which differed from that of the L3 monoclonal antibody. In both insect species the immunohistological staining patterns for the two carbohydrate epitopes were similar at the two developmental stages, with immunoreactivity not confined to the nervous system. In larvae, immunoreactivities of the monoclonal antibodies L2.334 and L3.492 were predominantly associated with the extracellular matrix as indicated by co-localization with laminin, particularly in the imaginal discs, while L2.349 revealed a more cell surface-associated distribution. In imagoes, immunoreactivities were detectable in most organs studied.  相似文献   

14.
15.
Human papillomavirus type 1 (HPV1) virions, both as intact virion particles (IVP) and as detergent-denatured virions (DDV), were used to prepare polyclonal antisera and monoclonal antibodies (MAbs) in BALB/c mice. Anti-IVP antiserum contained type-specific HPV1 L2-reactive antibodies and no detectable HPV1 L1-reactive antibodies. Anti-IVP MAbs recognized a linear epitope between L2 amino acids 102 and 108 (PIDVVDP). Anti-DDV antiserum contained type-specific HPV1 L1-reactive and HPV1 L2-reactive antibodies. An anti-DDV MAb recognized a linear epitope between L1 amino acids 127 and 133 (AENPTNY). HPV1a L1- and L2-encoded polypeptides expressed in Saccharomyces cerevisiae and by in vitro translation were equivalent in size to the major and minor virion capsid proteins, respectively.  相似文献   

16.
The FORSE-1 (forebrain-surface-embryonic) monoclonal antibody (MAb) recognizes a carbohydrate cell surface epitope related to the Lewis-X (LeX) and stage-specific embryonic antigens (SSEAs). In the developing CNS, the FORSE-1 epitope is believed to serve as a marker of progenitor cells. We studied the expression of the FORSE-1 epitope in pulmonary neuroendocrine cells (PNECs) and related neuroepithelial bodies (NEBs), cell types implicated in paracrine regulation of lung development. We used dual immunolabeling to identify PNECs/NEBs in tissue sections from developing rabbit fetal lungs and corresponding primary lung cell cultures. During the early stage (E16), the FORSE-1 MAb labeled primitive airway epithelium, whereas serotonin (5HT) immunoreactivity, a marker of PNEC/NEB differentiation, was negative. After E18, FORSE-1 labeling became restricted to PNECs and NEBs, identified by co-expression with 5HT, then decreased coincident with an increase in 5HT. Expression of the FORSE-1 epitope correlated inversely with 5HT expression in PNEC/NEB cells. FORSE-1 immunoreactivity correlated with cell proliferation assessed by BrdU labeling. Downregulation of the FORSE-1 epitope correlated with maturation of PNECs/NEBs. The presence of few FORSE-1/5HT-positive cells in postnatal lung suggests retention of progenitors. The FORSE-1 epitope was associated with a high molecular weight (286 kD) glycoprotein that decreased with increasing gestational age, as demonstrated by immunoblotting. Overall expression of SSEA-1, -3, and -4 antigens was similar to FORSE-1/5HT, although the former was preferentially localized to neurite-like processes. Because the role of the FORSE-1 epitope in the CNS probably involves cell adhesion and differentiation, we propose a similar function in developing lung. The demonstration of LeX/SSEA antigen expression in the PNEC/NEB cell lineage underscores the importance of these cells in developing lung. Furthermore, the FORSE-1 antigen may identify committed progenitors of the PNEC/NEB cell system.  相似文献   

17.
A human malignant melanoma cell line, Melur, secretes several glycoproteins that contain a unique carbohydrate epitope shared by neural cell adhesion molecules and recognized by the monoclonal antibodies HNK-1, L2, and 10C5. In this report, we present evidence that one of the major melanoma glycoproteins containing the HNK-1/10C5 epitope is the cell adhesion molecule, fibronectin, or a fibronectin-like molecule. Melanoma-derived fibronectin was isolated from serum-free conditioned medium by gelatin-Sepharose affinity adsorption and shown to react with monoclonal antibodies HNK-1 and 10C5 in Western blot analysis. HNK-1-containing fibronectin was purified on a gelatin-Sepharose column followed by an affinity column using a monoclonal antibody against the HNK-1 carbohydrate. The purified HNK-1-fibronectin then could be incorporated into the extracellular matrix of hamster fibroblasts in vitro, and such a matrix was detectable using the HNK-1 monoclonal antibody in an immunofluorescence assay. Of the seven neuroectoderm-derived tumor cell lines tested, only the Melur melanoma cell secreted fibronectin containing the HNK-1 carbohydrate. Identification of human neuroectoderm-derived fibronectin as a potential carrier of the HNK-1 carbohydrate suggests a new role for fibronectin in neural development and regeneration, and represents a new model for studying the function of this carbohydrate domain in neural cell adhesion.  相似文献   

18.
We investigated whether the L2/HNK-1 carbohydrate epitope, expressed by two unusual glycolipids and several neural adhesion molecules, including L1, neural cell adhesion molecule, J1, and the myelin-associated glycoprotein, is involved in adhesion. Monoclonal L2 antibodies, the L2/HNK-1-reactive, sulfate-3-glucuronyl residue carrying glycolipids (L2 glycolipid) and a tetrasaccharide derived from the L2 glycolipid (L2 tetrasaccharide) were added to microexplant cultures of early postnatal mouse cerebellum, and cell migration and process extension were monitored. On the substrate poly-D-lysine, Fab fragments of L2 antibodies, L2 glycolipid, and L2 tetrasaccharide inhibited outgrowth of astrocytic processes and migration of cell bodies, but only L2 glycolipid and L2 tetrasaccharide reduced neurite outgrowth. On laminin, L2 antibodies, L2 glycolipid, and L2 tetrasaccharide inhibited outgrowth of astrocytic processes. Additionally, L2 glycolipid and L2 tetrasaccharide inhibited cell migration and neurite outgrowth. Several negatively charged glycolipids, lipids, and saccharides were tested for control and found to have no effect on outgrowth patterns, except for sulfatide and heparin, which modified outgrowth patterns in a similar fashion as L2 glycolipid and L2 tetrasaccharide. On astrocytes none of the tested compounds interfered with explant outgrowth. In short-term adhesion assays L2 glycolipid, sulfatide, and heparin inhibited adhesion of neural cells to laminin. L2 glycolipid and sulfatide interfered with neuron to astrocyte and astrocyte to astrocyte adhesion, but not with neuron-neuron adhesion. The most straightforward interpretation of these observations is that the L2/HNK-1 carbohydrate and the sulfated carbohydrates, sulfatide and heparin, act as ligands in cell adhesion.  相似文献   

19.
The same or a very similar carbohydrate determinant, as represented by some sulfated, glucuronic acid-containing glycosphingolipids of human peripheral nerve, occurs on several adhesion molecules in the mammalian nervous system. In the present study, the occurrence of this epitope on glycoproteins and glycolipids of the fly, Calliphora vicina, was investigated by Western blot analysis and thin-layer chromatogram immunostaining. Several monoclonal antibodies recognizing an epitope on various neural cell adhesion molecules, designated L2 (334, 336, 349, and 412); the monoclonal antibody HNK-1 (recognizing an epitope on human natural killer cells); and a human IgM M-protein were found to react by Western blot analysis with various glycoproteins from larval and adult brains, although the intensity of staining of bands recognized by each antibody varied. Acidic glycolipids from pupae were also recognized, but only by the L2 antibody 334 and IgM M-protein. After desulfation of the acidic glycolipid fraction, the immunostaining pattern remained the same, an observation suggesting that the L2/HNK-1 epitope on insect acidic glycolipids contains a nonsulfated, glucuronic acid moiety. These observations indicate that the L2/HNK-1 carbohydrate structure occurs not only in vertebrates but also in insects on both glycoproteins and glycolipids, a finding suggesting a high degree of phylogenetic stability of this functionally important carbohydrate.  相似文献   

20.
Abstract Monoclonal antibodies were obtained by the classic hybridoma technique with lymphocytes of BALB/c mice immunized with formalin killed Listeria monocytogenes cells. Among 1000 hybridomas issued from the fusion, four monoclonal antibodies (mAbs A6 A E4, C10 A F7, G4 A D6, G7 A D5) gave interesting results. By Western-blot analysis with various soluble extracts of different Listeria species, the four mAbs reacted with two major antigens of 38 and 41 kDa, with all Listeria species tested. The mAb A6 A E4 is an IgG2b with κ light chains and reacted only with Listeria antigens without any cross reaction with other organisms tested by ELISA, dot-blotting and Western-blotting. With the same conditions, the three other mAbs reacted with Listeria and with other genus extracts, particularly with Streptococcus and Enterococcus . mAb A6 A E4-reactive antigens are proteins, and glycoprotein immunoassay indicated that the epitope is devoid of carbohydrate moiety. This mAb A6 A E4-reactive protein was neither expressed on cell surface nor released outside the bacteria; immunogold electron microscopy showed that these antigens were localized in the cytoplasma area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号