首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rollenhagen  A.  Czaniera  R.  Albert  M.  Wintergerst  E. S.  Schachner  M. 《Brain Cell Biology》2001,30(4):337-351
The HNK-1 carbohydrate, an unusual 3′-sulfated glucuronic acid epitope characteristic of many neural recognition molecules, serves as a ligand in neural cell interactions and is differentially expressed in the quadriceps and saphenous branches of the femoral nerve in the PNS of adult mice. Based on these observations, we investigated the possibility that the HNK-1 carbohydrate may be differentially distributed in neurons and fiber tracts also in the CNS thereby contributing to different targeting and guidance mechanisms. We have used antibodies with different HNK-1 epitope specificities to probe for subtle differences in expression patterns. In the adult mouse cerebellum the HNK-1 carbohydrate is detectable in stripe-like compartments in the molecular and Purkinje cell layers, whereas N-CAM and its associated α2,8 polysialic acid does not show this compartmentation. In the adult hippocampus, the HNK-1 carbohydrate localizes to perineuronal nets of inhibitory interneurons and marks the inner third of the molecular layer of the dentate gyrus. In the adult spinal cord, HNK-1 labeling is most pronounced in gray matter areas. White matter enriched regions show differential labeling with regard to fiber tracts and antibody specificity. Whereas the different antibodies do not show differences in staining in the cerebellum and the hippocampus, they show differences in staining pattern of fiber tracts and motoneurons in the spinal cord. The HNK-1 expression pattern also differed in the adult spinal cord from that observed at embryonic day 14 and postnatal day 14. Our observations suggest a functional role in the specification of functionally discrete compartments in different areas of the CNS and during development.  相似文献   

2.
The L2/HNK-1 carbohydrate is carried by many neural recognition molecules and is involved in neural cell interactions during development, regeneration in the peripheral nervous system, synaptic plasticity, and autoimmune-based neuropathies. Its key structure consists of a sulfated glucuronic acid linked to lactosaminyl residues. Because of its biological importance but limited availability, the phage display method was used to isolate a collection of peptide mimics that bind specifically to an L2/HNK-1 antibody. The phages isolated from a 15-mer peptide library by adsorption to this antibody share a consensus sequence of amino acids. The peptide mimicked several important functions of the L2/HNK-1 carbohydrate, such as binding to motor neurons in vitro, and preferential promotion of in vitro neurite outgrowth from motor axons compared with sensory neurons. A scrambled version of the peptide had no activity. The combined observations indicate that we have isolated a mimic of the L2/HNK-1 carbohydrate that is able to act as its functional substitute.  相似文献   

3.
A cDNA encoding a novel glucuronyltransferase was cloned from a rat brain cDNA library. The cDNA sequence contained an open reading frame encoding 324 amino acids, with type II transmembrane topology. The amino acid sequence revealed 49% homology to rat GlcAT-P, a glucuronyltransferase involved in the biosynthesis of the HNK-1 carbohydrate epitope of glycoproteins, [Terayama et al. (1997) Proc. Natl. Acad. Sci. USA 94, 6093-6098] and the highest sequence homology was found in the catalytic region. Northern blot analysis indicated that this newly cloned glucuronyltransferase is expressed in the nervous system, consistent with the selective localization of the HNK-1 carbohydrate epitope in the nervous system. Transfection of this cDNA into COS-1 cells induced the expression of the HNK-1 carbohydrate epitope on cell surfaces, and induced the morphological changes in these cells. These results indicated that this newly cloned cDNA is a second glucuronyltransferase involved in the biosynthesis of the HNK-1 carbohydrate epitope.  相似文献   

4.
The L2/HNK-1 carbohydrate epitope has been shown to carry an unusual 3-sulfoglucuronic acid linkedO-glycosidically through a neolactosyl-type back bone to a ceramide residue. Using monoclonal antibodies, the same or a closely related epitope has also been detectedN-glycosidically linked to glycoproteins, amongst them several neural cell adhesion molecules. We used synthetic glycolipids carrying sulfated or non-sulfated glucuronic acid attached to ceramide through glycans of different length to show that not only the sulfated glucuronic acid but also the neolactosyl-type backbone is essential for the recognition of the L2/HNK-1 carbohydrate by a monoclonal antibody, its binding to laminin and its role in neural cell migration and outgrowth of processes from neurons and astrocytes.Abbreviations mab monoclonal antibody - TLC thin layer chromatography - HRP horseradish peroxidase - glcA glucuronic acid - gal galactose - glcNAc N-acetyl-glucosamine - man mannose  相似文献   

5.
Recently, embryonic chicken brain extract was shown to contain a glucuronyltransferase, which transfers glucuronic acid from UDP-glucuronic acid to glycolipid acceptors (neolactotetraosyl ceramide). The enzyme was also suggested to transfer glucuronic acid to glycoprotein acceptors (asialoorosomucoid) (Das, K. K., Basu, M., Basu, S., Chou, D. K. H., and Jungalwala, F. B. (1991) J. Biol. Chem. 266, 5238-5243). In this study, the glucuronyltransferase activity in rat brain extract was separated into two groups by UDP-glucuronic acid-Sepharose CL-6B column chromatography. The enzyme recovered predominantly in the effluent fraction (GlcAT-L) catalyzed the transfer of glucuronic acid to glycolipid acceptors but not to glycoprotein acceptors, whereas the enzyme recovered in the eluate fraction (GlcAT-P) transferred glucuronic acid most predominantly to glycoprotein acceptors and very little to glycolipid acceptors. GlcAT-P was able to transfer glucuronic acid to oligosaccharide chains on asialoorosomucoid. The enzyme recognized a terminal lactosamine structure, Gal beta 1-4GlcNAc, on glycoproteins. It was localized in the nervous system and was hardly detectable in other tissues, including the thymus, spleen, lung, kidney, and liver. Although GlcAT-L and GlcAT-P shared some properties in common such as tissue distributions and developmental changes, they exhibited marked differences in their phospholipid dependence and in their pH profiles, apart from their respective acceptor preference to glycolipids and glycoproteins. The acceptor specificity and tissue distribution suggest that a novel glucuronyltransferase, GlcAT-P, is involved in the biosynthesis of the sulfoglucuronylgalactose structure in the HNK-1 carbohydrate epitope that is expressed on glycoproteins.  相似文献   

6.
The HNK-1 carbohydrate epitope is found in various neural cell adhesion molecules. Two glucuronyltransferases (GlcAT-P and GlcAT-S) are involved in the biosynthesis of HNK-1 carbohydrate. Our previous study on the crystal structure of GlcAT-P revealed the reaction and substrate recognition mechanisms of this enzyme. Comparative analyses of the enzymatic activities of GlcAT-S and GlcAT-P showed that there are notable differences in the acceptor substrate specificities of these enzymes. To elucidate differences between their specificities, we now solved the crystal structure of GlcAT-S. Residues interacting with UDP molecule, which is a part of the donor substrate, are highly conserved between GlcAT-P and GlcAT-S. On the other hand, there are some differences between these proteins in the manner they recognize their respective acceptor substrates. Phe245, one of the most important GlcAT-P residues for the recognition of acceptors, is a tryptophan in GlcAT-S. In addition, Val320, which is located on the C-terminal long loop of the neighboring molecule in the dimer and critical in the recognition of the acceptor sugar molecule by the GlcAT-P dimer, is an alanine in GlcAT-S. These differences play key roles in establishing the distinct specificity for the acceptor substrate by GlcAT-S, which is further supported by site-directed mutagenesis of GlcAT-S and a computer-aided model building of GlcAT-S/substrate complexes.  相似文献   

7.
The complete primary structure of the human oligodendrocyte-myelin glycoprotein (OMgp), a glycophospholipid-linked membrane protein of oligodendrocytes and central nervous system myelin, has been determined. The deduced amino acid sequence predicts a polypeptide of 433 amino acids which includes a 17-amino acid leader sequence. OMgp consists of four domains: (a) a short cysteine-rich motif at the NH2 terminus; (b) a series of tandem leucine-rich repeats (LRs) present in several other proteins where they may play roles in adhesion; (c) a serine/threonine-rich region that contains probable attachment sites for O-linked carbohydrates; and (d) a hydrophobic COOH-terminal segment that is likely to be cleaved concomitant with the attachment of lipid during biosynthesis of OMgp. OMgp shares the first three of its four domains with the platelet glycoprotein Ib, which is responsible for the initial adhesion of platelets to the exposed subendothelium during hemostasis. Together with glycoprotein Ib and several other proteins, OMgp belongs to a family of proteins that contain both an NH2-terminal cysteine-rich motif and an adjacent series of LRs. In addition, we report that a subpopulation of OMgp molecules contains the HNK-1 carbohydrate, which has been shown to mediate interactions among cells in the central nervous system.  相似文献   

8.
A Gocht 《Acta anatomica》1992,145(4):434-441
The carbohydrate epitope 3-fucosyl-N-acetyllactosamine (CD15) is involved in cell-to-cell recognition processes in various tissues. In the present study the subcellular localization of CD15 was immunocytochemically studied in normal and pathological central nervous system fiber tracts of humans and rats. In normal human white matter of the brain, CD15 immunoreactivity was found on the cell surface of astrocytes and within the cytoplasm of oligodendrocytes. In freshly demyelinated lesions of two human diseases (central pontine myelinolysis and multiple sclerosis) strong cytoplasmic CD15 staining was observed in reactive astrocytes. In normal rats CD15 immunostaining was restricted to the surface of astrocytes. In crush-induced lesions of rat optic nerves, however, astrocytes showed a cytoplasmic localization of CD15, 4 and 6 days after injury. In conclusion, abnormal localization of CD15 in reactive astrocytes may be related to altered functional states of these cells during disease processes.  相似文献   

9.
Summary In order to study the morphological interrelationships between immunocytochemically identified neuronal systems, a double labelling procedure — suitable for correlative light and electron microscopic observations — is introduced. The technique is based on the consecutive use of the silver-gold (SG) intensified and non-intensified forms of the oxidized 3,3-diaminobenzidine (DAB) chromogen in the framework of the peroxidase-antiperoxidase complex (PAP) indirect immunocytochemical procedure. The first tissue antigen is detected by the SG intensified DAB chromogen, which has a black color and high electron density. The structures containing the second antigen are visualized by the non-intensified DAB-endproduct, which is less electron dense than the silver-gold amplified form and is brown. The metallic shield that forms around the labeled antibody sequences associated with the first antigen prevents non-specific binding of immunoglobulins used for the detection of the second tissue antigen.The application of this method for the simultaneous detection of tyrosine hydroxylase (TH)- and corticotropin releasing factor (CRF)-immunoreactive structures revealed that black colored TH-immunopositive fibers contacted brown colored CRF-synthesizing neurons in the hypothalamic paraventricular nucleus. The juxtaposition of TH-and CRF-containing elements was apparent in both thick vibratome (40 m) and semithin (1 m) sections. At the ultrastructural level, TH-positive terminals — labeled by silvergold grains — were observed to establish asymmetric synapses with both CRF- and TH-immunoreactive neurons. The former finding indicates a direct, TH-immunopositive, catecholaminergic influence upon the hypothalamic CRF system, while the latter demonstrates the existence of intrinsic connections between TH-positive elements.Supported by NIH Grant NS19266  相似文献   

10.
The HNK-1 carbohydrate epitope is found on many neural cell adhesion molecules. Its structure is characterized by a terminal sulfated glucuronyl acid. The glucuronyltransferases, GlcAT-P and GlcAT-S, are involved in the biosynthesis of the HNK-1 epitope, GlcAT-P as the major enzyme. We overexpressed and purified the recombinant human GlcAT-P from Escherichia coli. Analysis of its enzymatic activity showed that it catalyzed the transfer reaction for N-acetyllactosamine (Galbeta1-4GlcNAc) but not lacto-N-biose (Galbeta1-3GlcNAc) as an acceptor substrate. Subsequently, we determined the first x-ray crystal structures of human GlcAT-P, in the absence and presence of a donor substrate product UDP, catalytic Mn(2+), and an acceptor substrate analogue N-acetyllactosamine (Galbeta1-4GlcNAc) or an asparagine-linked biantennary nonasaccharide. The asymmetric unit contains two independent molecules. Each molecule is an alpha/beta protein with two regions that constitute the donor and acceptor substrate binding sites. The UDP moiety of donor nucleotide sugar is recognized by conserved amino acid residues including a DXD motif (Asp(195)-Asp(196)-Asp(197)). Other conserved amino acid residues interact with the terminal galactose moiety of the acceptor substrate. In addition, Val(320) and Asn(321), which are located on the C-terminal long loop from a neighboring molecule, and Phe(245) contribute to the interaction with GlcNAc moiety. These three residues play a key role in establishing the acceptor substrate specificity.  相似文献   

11.
12.
13.
We have developed a new primary fixative that permits the localization of intracellular antigens with well preserved ultrastructural morphology. This primary fixation method employs a mixture of a water soluble carbodiimide with glutaraldehyde, and preserves morphology, yet produces a permeable cytosol matrix so that antibodies can gain access to fixed proteins. Cultured cells were primarily fixed, treated with detergent to permeabilize their membranes, reacted with peroxidase labeled antibodies, secondarily fixed, and embedded in situ. The variations in morphology and accessibility of intracellular antigens were evaluated for a variety of fixatives. Concanavalin A and alpha 2 macroglobulin were chosen as examples of intracellular protein antigens to evaluate these fixation methods. Both of the proteins were localized in intracellular vesicles.  相似文献   

14.
15.
Protein A-peroxidase: a valluable tool for the localization of antigens.   总被引:12,自引:0,他引:12  
Protein A of Staphylococcus aureus has been conjugated to horseradish peroxidase and used in an indirect immunolabeling technique to visualize membrane and viral antigens. The same Protein A-peroxidase conjugate was used with antisera from five different species. Using this indirect test, membrane markers for T and B lymphocytes were labeled with a greater specificity than when peroxidase conjugated anti-immunoglobulin was used in the second step. Viral antigens on cells infected with measles, vesicular stomatitis, herpes or visna virus, respectively, were also stained in the protein A-peroxidase indirect test with a greater specificity than indirect method using anti-immunoglobulin. Paired preparations were examined in the light and electron microscope. Ultrastructural analysis showed that the protein A-peroxidase conjugate penetrated well through fixed viral membranes and resulted in fine resolution of antigenic sites.  相似文献   

16.
The human beta1,3-glucuronosyltransferases galactose-beta1,3-glucuronosyltransferase I (GlcAT-I) and galactose-beta1,3-glucuronosyltransferase P (GlcAT-P) are key enzymes involved in proteoglycan and HNK-1 carbohydrate epitope synthesis, respectively. Analysis of their acceptor specificity revealed that GlcAT-I was selective toward Galbeta1,3Gal (referred to as Gal2-Gal1), whereas GlcAT-P presented a broader profile. To understand the molecular basis of acceptor substrate recognition, we constructed mutants and chimeric enzymes based on multiple sequence alignment and structural information. The drastic effect of mutations of Glu227, Arg247, Asp252, and Glu281 on GlcAT-I activity indicated a key role for the hydrogen bond network formed by these four conserved residues in dictating Gal2 binding. Investigation of GlcAT-I determinants governing Gal1 recognition showed that Trp243 could not be replaced by its counterpart Phe in GlcAT-P. This result combined with molecular modeling provided evidence for the importance of stacking interactions with Trp at position 243 in the selectivity of GlcAT-I toward Galbeta1,3Gal. Mutation of Gln318 predicted to be hydrogen-bonded to 6-hydroxyl of Gal1 had little effect on GlcAT-I activity, reinforcing the role of Trp243 in Gal1 binding. Substitution of Phe245 in GlcAT-P by Ala selectively abolished Galbeta1,3Gal activity, also highlighting the importance of an aromatic residue at this position in defining the specificity of GlcAT-P. Finally, substituting Phe245, Val320, or Asn321 in GlcAT-P predicted to interact with N-acetylglucosamine (GlcNAc), by their counterpart in GlcAT-I, moderately affected the activity toward the reference substrate of GlcAT-P, N-acetyllactosamine, indicating that its active site tolerates amino acid substitutions, an observation that parallels its promiscuous substrate profile. Taken together, the data clearly define key residues governing the specificity of beta1,3-glucuronosyltransferases.  相似文献   

17.
The chondroitin sulfate proteoglycans of brain contain several core proteins bearing HNK-1 antibody epitopes. Endo-beta-galactosidase treatment resulted in the almost complete disappearance of HNK-1 staining of proteoglycan immunoblots, indicating that a significant portion of the 3-sulfated sugar residues recognized by this antibody are present on poly(N-acetyllactosaminyl) oligosaccharides. However, after treatment with chondroitinase ABC followed by endo-beta-galactosidase, several proteoglycan species showed HNK-1 reactivity, presumably due to the presence of this epitope on other oligosaccharides which are both resistant to endo-beta-galactosidase and inaccessible to the antibody in the native proteoglycan. Immunostaining of the endo-beta-galactosidase degradation products after separation by thin-layer chromatography demonstrated that HNK-1 reactivity was confined to a minor population of large oligosaccharides. Only a relatively small portion of the native chondroitin sulfate proteoglycans of brain enter a 6-12% SDS-polyacrylamide gel. However, after treatment of the proteoglycans with chondroitinase ABC (or chondroitinase and endo-beta-galactosidase) in the presence of protease inhibitors, seven bands with molecular sizes ranging from 80 to 200 kDa appear in Coomassie Blue stained gels, and two additional bands with molecular sizes of 67 and 350-400 kDa are apparent in fluorographs of sodium [35S]sulfate labeled proteoglycans. Most of these components probably represent individual proteoglycan species rather than different degrees of nonchondroitin sulfate/keratan sulfate glycosylation of a single protein core, since [35S]methionine-labeled proteins of comparable molecular size were synthesized by an in vitro translation system. These findings suggest that chondroitin sulfate proteoglycans which differ in molecular size and composition may be specific to particular cell types in brain.  相似文献   

18.
Two sets of anti-glycosyl antibodies have been isolated by affinity chromatography methods from the antisera of rabbits immunized with a vaccine of nonviable cells of Streptococcus faecalis, strain N. Both types of antibodies are directed against a dineteroglycan of glucose and galactose present in the cell wall of this organism. The members of one set, anti-galactose antibodies, combine with the terminal lactose residues of the glycan and the member of the other set, anti-lactose antibodies, combine with terminal lactose residues of the same glycan. Each set of antibodies is composed of multiprotein components. The electrofocusing method had been used to isolate the individual antibody proteins in homogeneous states as shown by both electrophoresis and ultracentrifugation techniques. Since the components of each set combine with the same structural unit of the antigen, they have been designated as isoantibodies. The sedimentation constants, electrophoretic properties, carbohydrate constituents, and amino acid compositions of the two sets of antibodies are recorded.  相似文献   

19.
The HNK-1 carbohydrate epitope is a 3-sulfo-glucuronyl residue attached to lactosamine structures on glycoproteins, proteoglycans, or glycolipids mostly expressed in the nervous system. Here, using monoclonal antibodies against the sulfated HNK-1 carbohydrate epitope, we first examined its distribution in developing and adult kidneys, then its expression in kidneys with tubular necrosis and renal neoplasms. This HNK-1 epitope was expressed in the human, rabbit, and rat, but not mouse kidney. It was detected within a subset of epithelial cells in the renal vesicle and in comma- and S-shaped bodies during early stages of nephrogenesis. In ureteral bud derivatives, the epitope was present transiently in the area where the collecting duct fused with the nephron. In the adult kidney, expression of the HNK-1 epitope became mainly restricted to the thin ascending loop of Henle where this epitope was carried by heparan- and chondro-proteoglycan. In pathological conditions, HNK-1 epitope expression increased dramatically in proximal epithelial tubule cells in kidneys with acute tubular necrosis. In tumors, the HNK-1 epitope was expressed in the epithelial component of nephroblastomas and in a subgroup of papillary renal cell carcinomas. These data suggest that molecules carrying the sulfated HNK-1 carbohydrate epitope may play an important role in critical stages of renal development and in the physiology of thin ascending loop of Henle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号