首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Training-induced alterations of glucose flux in men   总被引:5,自引:0,他引:5  
Friedlander, Anne L., Gretchen A. Casazza, Michael A. Horning, Melvin J. Huie, and George A. Brooks. Training-induced alterations of glucose flux in men. J. Appl.Physiol. 82(4): 1360-1369, 1997.We examined thehypothesis that glucose flux was directly related to relative exerciseintensity both before and after a 10-wk cycle ergometer trainingprogram in 19 healthy male subjects. Two pretraining trials [45and 65% of peak O2 consumption(O2 peak)] andtwo posttraining trials (same absolute and relative intensities as 65%pretraining) were performed for 90 min of rest and 1 h of cyclingexercise. After training, subjects increasedO2 peak by9.4 ± 1.4%. Pretraining, the intensity effect on glucose kinetics was evident with rates of appearance(Ra; 5.84 ± 0.23 vs. 4.73 ± 0.19 mg · kg1 · min1),disappearance (Rd; 5.78 ± 0.19 vs. 4.73 ± 0.19 mg · kg1 · min1),oxidation (Rox; 5.36 ± 0.15 vs. 3.41 ± 0.23 mg · kg1 · min1),and metabolic clearance (7.03 ± 0.56 vs. 5.20 ± 0.28 ml · kg1 · min1)of glucose being significantly greater(P  0.05) in the 65% than the 45%O2 peak trial. WhenRd was expressed as a percentage of total energy expended per minute(Rd E), there was nodifference between the 45 and 65% intensities. Training did reduceRa (4.63 ± 0.25),Rd (4.65 ± 0.24),Rox (3.77 ± 0.43), andRd E (15.30 ± 0.40 to12.85 ± 0.81) when subjects were tested at the same absolute workload (P  0.05). However, whenthey were tested at the same relative workload,Ra,Rd, andRd E were not different,although Rox was lowerposttraining (5.36 ± 0.15 vs. 4.41 ± 0.42, P  0.05). These results show1) glucose use is directly relatedto exercise intensity; 2) trainingdecreases glucose flux for a given power output;3) when expressed as relativeexercise intensity, training does not affect the magnitude of bloodglucose use during exercise; 4)training alters the pathways of glucose disposal.

  相似文献   

2.
Fee, Lawrence L., Richard M. Smith, and Michael B. English.Enhanced ventilatory and exercise performance in athletes withslight expiratory resistive loading. J. Appl.Physiol. 83(2): 503-510, 1997.We determined thecardiorespiratory and performance effects of slight (1.5-3.0cmH2O) expiratory resistiveloading (ERL). Twenty-eight highly fit [peakO2 uptake(O2 peak) = 63.6 ± 1.3 ml · kg1 · min1]athletes (age = 33.5 ± 1.3 yr) performed pairedO2 peak cycle ergometer tests (control vs. ERL). End-expiratory lung volume wasseparately determined in a subset of subjects(n = 12) at steady-state 75% maximumpower output (POmax) and wasfound to increase (0.67 ± 0.29 liter) with ERL. In theO2 peaktests, peak expiratory pressure at the mouth, mean inspiratory flow, minute ventilation, and O2 pulsewere greater with ERL at every intensity level (i.e., 75, 80, 85, and90% POmax). Increased minute ventilation was largely due to a trend toward increased tidal volume(P < 0.05 at 80%POmax).O2 uptake was greater at 90%POmax with ERL. IncreasedO2 pulse with ERL at comparativeworkloads suggests that stroke volume was augmented with ERL. Also,with ERL, athletes attained higherO2 peak (63.0 ± 1.4 vs. 60.1 ± 1.3 ml · kg1 · min1)and greater POmax (352.0 ± 9.9 vs. 345.7 ± 9.5 W). We conclude that elevated end-expiratory lungvolume in response to slight ERL during strenuous exercise served toattenuate both airflow and blood flow limitations, which enhancedexercise capacity.

  相似文献   

3.
Frame, Mary D. S., and Ingrid H. Sarelius. Endothelialcell dilatory pathways link flow and wall shear stress in an intactarteriolar network. J. Appl. Physiol.81(5): 2105-2114, 1996.Our purpose was to determine whether theendothelial cell-dependent dilatory pathways contribute to theregulation of flow distribution in an intact arteriolar network. Cellflow, wall shear stress (T),diameter, and bifurcation angle were determined for four sequentialbranches of a transverse arteriole in the superfused cremaster muscleof pentobaribtal sodium (Nembutal, 70 mg/kg)-anesthetized hamsters(n = 51). Control cell flow wassignificantly greater into upstream than into downstream branches[1,561 ± 315 vs. 971 ± 200 (SE) cells/s,n = 12]. Tissue exposure to 50 µMN-nitro-L-arginine + 50 µM indomethacin (L-NNA + Indo) produced arteriolar constriction of 14 ± 4% and decreasedflow into the transverse arteriole. More of the available cell flow wasdiverted to downstream branches, yet flow distribution remainedunequal. Control T was higherupstream than downstream (31.3 ± 6.8 vs. 9.8 ± 1.5 dyn/cm2).L-NNA + Indo decreasedT upstream and increasedT downstream to become equal inall branches, in contrast to flow. To determine whether constriction ingeneral induced the same changes, 5%O2 (8 ± 4% constriction) or109 M norepinephrine (NE;4 ± 3% constriction) was added to the tissue (n = 7). WithO2, flow was redistributed tobecome equal into each branch. With NE, flow decreased progressivelymore into the first three branches. The changes in flow distributionwere thus predictable and dependent on the agonist. WithO2 or NE, the spatial changes inflow were mirrored by spatial changes inT. Changes in diameter and incell flux were not related forL-NNA + Indo (r = 0.45),O2(r = 0.07), or NE(r = 0.36). For all agonists, when thebifurcation angle increased, cell flow to the branch decreasedsignificantly, whereas if the angle decreased, flow was relativelypreserved; thus active changes in bifurcation angle may influence redcell distribution at arteriolar bifurcations. Thus, when theendothelial cell dilatory pathways were blocked, the changes in flowand in T were uncoupled; yet when they were intact, flowand T changed together.

  相似文献   

4.
Henke, Kathe G. Upper airway muscle activity and upperairway resistance in young adults during sleep. J. Appl. Physiol. 84(2): 486-491, 1998.To determinethe relationship between upper airway muscle activity and upper airwayresistance in nonsnoring and snoring young adults, 17 subjects werestudied during sleep. Genioglossus and alae nasi electromyogramactivity were recorded. Inspiratory and expiratory supraglotticresistance (Rinsp and Rexp, respectively) were measured at peak flow,and the coefficients of resistance(Kinsp andKexp,respectively) were calculated. Data were recorded during control,with continuous positive airway pressure (CPAP), and on the breathimmediately after termination of CPAP. Rinsp during control averaged 7 ± 1 and 10 ± 2 cmH2O · l1 · sand Kinspaveraged 26 ± 5 and 80 ± 27 cmH2O · l1 · s2in the nonsnorers and snorers, respectively(P = not significant). Onthe breath immediately after CPAP,Kinsp did notincrease over control in snorers (80 ± 27 for control vs. 46 ± 6 cmH2O · l1 · s2for the breath after CPAP) or nonsnorers (26 ± 5 vs. 29 ± 6 cmH2O · l1 · s2).These findings held true for Rinsp.Kexp did notincrease in either group on the breath immediately after termination ofCPAP. Therefore, 1) increases inupper airway resistance do not occur, despite reductions inelectromyogram activity in young snorers and nonsnorers, and2) increases in Rexp and expiratoryflow limitation are not observed in young snorers.

  相似文献   

5.
Kayser, Bengt, Roland Favier, Guido Ferretti, DominiqueDesplanches, Hilde Spielvogel, Harry Koubi, Brigitte Sempore, and HansHoppeler. Lactate and epinephrine during exercise in altitudenatives. J. Appl. Physiol. 81(6):2488-2494, 1996.We tested the hypothesis that the reported lowblood lactate accumulation ([La]) during exercise inaltitude-native humans is refractory to hypoxia-normoxia transitions byinvestigating whether acute changes in inspiredO2 fraction(FIO2) affect the[La] vs. power output ()relationship or, alternatively, as reported for lowlanders, whetherchanges in [La] vs. on changes inFIO2 are related tochanges in blood epinephrine concentration ([Epi]). Altitude natives [n = 8, age 24 ± 1 (SE) yr, body mass 62 ± 3 kg, height 167 ± 2 cm]in La Paz, Bolivia (3,600 m) performed incremental exercise with twolegs and one leg in chronic hypoxia and acute normoxia (AN). Submaximalone- and two-leg O2 uptake (O2) vs. relationships were not altered byFIO2. AN increased two-legpeak O2 by 10% and peak by 7%. AN paradoxically decreasedone-leg peak O2 by 7%,whereas peak remained the same. The[La] vs. relationships were similar tothose reported in unacclimatized lowlanders. There was a shift to theright on AN, and maximum [La] was reduced by 7 and 8% forone- and two-leg exercises, respectively. [Epi] and[La] were tightly related (mean r = 0.81) independently ofFIO2. Thus normoxiaattenuated the increment in both [La] and [Epi]as a function of , whereas the correlation between[La] and [Epi] was unaffected. These data suggest loose linkage of glycolysis to oxidative phosphorylation under influence from [Epi]. In conclusion, high-altitudenatives appear to be not fundamentally different from lowlanders with regard to the effect of acute changes inFIO2 on [La] during exercise.

  相似文献   

6.
Klaesner, Joseph W., N. Adrienne Pou, Richard E. Parker,Charlene Finney, and Robert J. Roselli. Optical measurement ofisolated canine lung filtration coefficients at normal hematocrits. J. Appl. Physiol. 83(6):1976-1985, 1997.In this study, lung filtration coefficient(Kfc) valueswere measured in eight isolated canine lung preparations at normalhematocrit values using three methods: gravimetric, blood-correctedgravimetric, and optical. The lungs were kept in zone 3 conditions andsubjected to an average venous pressure increase of 10.24 ± 0.27 (SE) cmH2O. The resulting Kfc(ml · min1 · cmH2O1 · 100 g dry lung wt1) measuredwith the gravimetric technique was 0.420 ± 0.017, which wasstatistically different from theKfc measured bythe blood-corrected gravimetric method (0.273 ± 0.018) or theproduct of the reflection coefficient(f) andKfc measuredoptically (0.272 ± 0.018). The optical method involved the use of aCellco filter cartridge to separate red blood cells from plasma, whichallowed measurement of the concentration of the tracer in plasma atnormal hematocrits (34 ± 1.5). The permeability-surface areaproduct was measured using radioactive multiple indicator-dilutionmethods before, during, and after venous pressure elevations. Resultsshowed that the surface area of the lung did not change significantlyduring the measurement ofKfc. Thesestudies suggest thatfKfccan be measured optically at normal hematocrits, that this measurement is not influenced by blood volume changes that occur during the measurement, and that the opticalfKfcagrees with theKfc obtained viathe blood-corrected gravimetric method.

  相似文献   

7.
Tantucci, C., P. Bottini, M. L. Dottorini, E. Puxeddu, G. Casucci, L. Scionti, and C. A. Sorbini. Ventilatory response toexercise in diabetic subjects with autonomic neuropathy.J. Appl. Physiol. 81(5):1978-1986, 1996.We have used diabetic autonomic neuropathy as amodel of chronic pulmonary denervation to study the ventilatoryresponse to incremental exercise in 20 diabetic subjects, 10 with(Dan+) and 10 without (Dan) autonomic dysfunction, and in 10 normal control subjects. Although both Dan+ and Dan subjectsachieved lower O2 consumption andCO2 production(CO2) thancontrol subjects at peak of exercise, they attained similar values ofeither minute ventilation(E) oradjusted ventilation (E/maximalvoluntary ventilation). The increment of respiratory rate withincreasing adjusted ventilation was much higher in Dan+ than inDan and control subjects (P < 0.05). The slope of the linearE/CO2relationship was 0.032 ± 0.002, 0.027 ± 0.001 (P < 0.05), and 0.025 ± 0.001 (P < 0.001) ml/min inDan+, Dan, and control subjects, respectively. Bothneuromuscular and ventilatory outputs in relation to increasingCO2 were progressivelyhigher in Dan+ than in Dan and control subjects. At peak ofexercise, end-tidal PCO2 was muchlower in Dan+ (35.9 ± 1.6 Torr) than in Dan (42.1 ± 1.7 Torr; P < 0.02) and control (42.1 ± 0.9 Torr; P < 0.005) subjects.We conclude that pulmonary autonomic denervation affects ventilatoryresponse to stressful exercise by excessively increasing respiratoryrate and alveolar ventilation. Reduced neural inhibitory modulationfrom sympathetic pulmonary afferents and/or increasedchemosensitivity may be responsible for the higher inspiratoryoutput.

  相似文献   

8.
Zhang, Haibo, Peter Rogiers, Nadia Smail, Ana Cabral,Jean-Charles Preiser, Marie-Odile Peny, and Jean-Louis Vincent.Effects of nitric oxide on blood flow distribution andO2 extraction capabilities duringendotoxic shock. J. Appl. Physiol.83(4): 1164-1173, 1997.The effects of the nitric oxide (NO)synthase inhibitorNG-monomethyl-L-arginine(L-NMMA) and the NO donor3-morpholinosydnonimine (SIN-1) were tested in 18 endotoxic dogs. L-NMMA infusion(10 mg · kg1 · h1)increased arterial and pulmonary artery pressures and systemic andpulmonary vascular resistances but decreased cardiac index, leftventricular stroke work index, and blood flow to the hepatic, portal,mesenteric, and renal beds. SIN-1 infusion (2 µg · kg1 · min1)increased cardiac index; left ventricular stroke work index; andhepatic, portal, and mesenteric blood flow. It did not significantly influence arterial and pulmonary artery pressures but decreased renalblood flow. The critical O2delivery was similar in the L-NMMA group and in the controlgroup (13.3 ± 1.6 vs. 12.8 ± 3.3 ml · kg1 · min1)but lower in the SIN-1 group (9.1 ± 1.8 ml · kg1 · min1,both P < 0.05). The criticalO2 extraction ratio was alsohigher in the SIN-1 group than in the other groups (58.7 ± 10.6 vs.42.2 ± 7.6% in controls, P < 0.05; 43.0 ± 15.5% inL-NMMA group,P = not significant). We conclude thatNO is not implicated in the alterations inO2 extraction capabilitiesobserved early after endotoxin administration.

  相似文献   

9.
Wells, U. M., S. Duneclift, and J. G. Widdicombe.H2O2increases sheep tracheal blood flow, permeability, and vascular response to luminal capsaicin. J. Appl.Physiol. 82(2): 621-631, 1997.Exogenous hydrogenperoxide(H2O2)causes airway epithelial damage in vitro. We have studied the effectsof luminalH2O2in the sheep trachea in vivo on tracheal permeability tolow-molecular-weight hydrophilic (technetium-99m-labeleddiethylenetriamine pentaacetic acid;99mTc-DTPA) and lipophilic([14C]antipyrine;[14C]AP) tracers andon the tracheal vascular response to luminal capsaicin, whichstimulates afferent nerve endings. A tracheal artery was perfused, andtracheal venous blood was collected. H2O2exposure (10 mM) reduced tracheal potential difference(42.0 ± 6.4 mV) to zero. It increased arterial andvenous flows (56.7 ± 6.1 and 57.3 ± 10.0%,respectively; n = 5, P < 0.01, paired t-test) but not tracheal lymph flow(unstimulated flow 5.0 ± 1.2 µl · min1 · cm1,n = 4). DuringH2O2exposure, permeability to 99mTc-DTPA increased from2.6 to 89.7 × 107 cm/s(n = 5, P < 0.05), whereas permeability to[14C]AP (3,312.6 × 107 cm/s,n = 4) was not altered significantly(2,565 × 107cm/s). Luminal capsaicin (10 µM) increased tracheal blood flow (10.1 ± 4.1%, n = 5)and decreased venous 99mTc-DTPAconcentration (19.7 ± 4.0, P < 0.01), and these effects weresignificantly greater after epithelial damage (28.1 ± 6.0 and45.7 ± 4.3%, respectively,P < 0.05, unpairedt-test). Thus H2O2increases the penetration of a hydrophilic tracer into tracheal bloodand lymph but has less effect on a lipophilic tracer. It also enhancesthe effects of luminal capsaicin on blood flow and tracer uptake.

  相似文献   

10.
The purpose ofthis study was to examine the influence of the type of exercise(running vs. cycling) on the O2uptake (O2) slow component.Ten triathletes performed exhaustive exercise on a treadmill and on acycloergometer at a work rate corresponding to 90% of maximalO2 (90% work rate maximalO2). The duration of thetests before exhaustion was superimposable for both type of exercises(10 min 37 s ± 4 min 11 s vs. 10 min 54 s ± 4 min 47 s forrunning and cycling, respectively). TheO2 slow component (difference between O2 atthe last minute and minute 3 ofexercise) was significantly lower during running compared with cycling(20.9 ± 2 vs. 268.8 ± 24 ml/min). Consequently, there was norelationship between the magnitude of theO2 slow component and thetime to fatigue. Finally, because blood lactate levels at the end of the tests were similar for both running (7.2 ± 1.9 mmol/l) and cycling (7.3 ± 2.4 mmol/l), there was a clear dissociation between blood lactate and the O2slow component during running. These data demonstrate that1) theO2 slow component dependson the type of exercise in a group of triathletes and2) the time to fatigue isindependent of the magnitude of theO2 slow component and bloodlactate concentration. It is speculated that the difference in muscularcontraction regimen between running and cycling could account for thedifference in theO2 slow component.

  相似文献   

11.
Theodorou, Andreas, Natalie Weger, Kathleen Kunke, KyooRhee, David Bice, Bruce Muggenberg, and Richard Lemen. Ragweed sensitization alters pulmonary vascular responses to bronchoprovocation in beagle dogs. J. Appl. Physiol.83(3): 912-917, 1997.In ragweed (RW)-sensitized beagle dogs, wetested the hypothesis that reactivity of the pulmonary vasculature wasenhanced with aerosolized histamine (Hist) and RW. Seven dogs wereneonatally sensitized with repeated intraperitoneal RW injections, and12 dogs were controls (Con). The dogs were anesthetizedwith intravenous chloralose, mechanically ventilated, and instrumentedwith femoral arterial and pulmonary artery catheters. Specific lungcompliance(CLsp),specific lung conductance (Gsp),systemic vascular resistance index, and pulmonary vascular resistanceindex (PVRI) were measured before and after bronchoprovocation withHist and RW. After Hist inhalation (5 breaths of 30 mg/ml), both Conand RW dogs had significant (P < 0.05) decreases inCLsp(51 ± 4 and 53 ± 5%, respectively) andGsp (65 ± 5 and69 ± 3%, respectively), but only RW-sensitized dogs had asignificant increase in PVRI (38 ± 10%). After RW inhalation (60 breaths of 0.8 mg/ml), only RW-sensitized dogs had significant increases (62 ± 20%) in PVRI and decreases inGsp (77 ± 4%) and CLsp(65 ± 7%). We conclude that, compared with Con,RW-sensitized beagle dogs have increased pulmonary vasoconstrictiveresponses with Hist or RW inhalation.

  相似文献   

12.
Schwanke, Uwe, Harald Strauss, Gunther Arnold, and Jochen D. Schipke. Analysis of respiratory watera new method for evaluation of myocardial energy metabolism. J. Appl.Physiol. 81(5): 2115-2122, 1996.Aerobic ATPsynthesis via oxidative phosphorylation causes a proportionalproduction of respiratory water. Thus the amount of respiratory waterproduced at a given time should be a reliable measure of the currentATP demand of the mammalian myocardium. Respiratory water from isolatedrabbit hearts was labeled by using the stable oxygen isotope18O. The hearts were perfusedaccording to the method of Langendorff (O. Langendorff.Pfluegers Arch. 61: 291-332,1895) with18O2-equilibratedKrebs-Henseleit solution. Control hearts were exclusively perfused withcarbogen-equilibrated Krebs-Henseleit solution. Myocardial tissue wasthen lyophilized; the extracted water and samples from the coronaryvenous effluent were converted toCO2 by using the guanidinehydrochloride technique. The18O values within theCO2 samples were determined bymass spectrometry and related to the standard mean ocean water(SMOW) scale. Compared with controlhearts, the 18O-labeled heartsexhibited a significant increase of18O values from tissue water(47.50 ± 0.64 vs. 40.35 ± 2.05SMOW; P < 0.05). The values were alsosignificantly increased in the coronary venous effluent after aperfusion time of only 50 s (47.50 ± 0.64 vs. 43.66 ± 0.91 SMOW;P < 0.05). Thus this firstadaptation of the guanidine hydrochloride technique on microlitersamples of myocardial tissue water and coronary venous effluentdemonstrates that this method can be used to evaluate both respiratoryactivity and the kinetics of cardiac metabolic processes.

  相似文献   

13.
In this study, lung filtration coefficient(Kfc) wasmeasured in eight isolated canine lung preparations by using threemethods: standard gravimetric (Std), blood-corrected gravimetric (BC), and optical. The lungs were held in zone III conditions and were subjected to an average venous pressure increase of 8.79 ± 0.93 (mean ± SD) cmH2O. Thepermeability of the lungs was increased with an infusion of alloxan (75 mg/kg). The resultingKfc values (inmilliliters · min1 · cmH2O1 · 100 g dry lung weight1)measured by using Std and BC gravimetric techniques before vs. afteralloxan infusion were statistically different: Std, 0.527 ± 0.290 vs. 1.966 ± 0.283; BC, 0.313 ± 0.290 vs. 1.384 ± 0.290. However, the optical technique did not show any statisticaldifference between pre- and postinjury with alloxan, 0.280 ± 0.305 vs. 0.483 ± 0.297, respectively. The alloxan injury, quantified byusing multiple-indicator techniques, showed an increase in permeability and a corresponding decrease in reflection coefficient for albumin (f). Because the opticalmethod measures the product ofKfc and f, this study shows thatalbumin should not be used as an intravascular optical filtrationmarker when permeability is elevated. However, the optical technique,along with another means of measuringKfc (such as BC),can be used to calculate the fof a tracer (in this study, fof 0.894 at baseline and 0.348 after injury). Another important findingof this study was that the ratio of baseline-to-injury Kfc values wasnot statistically different for Std and BC techniques, indicating thatthe percent contribution of slow blood-volume increases does not changebecause of injury.

  相似文献   

14.
Van der Touw, T., A. B. H. Crawford, and J. R. Wheatley.Effects of a synthetic lung surfactant on pharyngeal patency inawake human subjects. J. Appl.Physiol. 82(1): 78-85, 1997.We examined theeffects of separate applications of saline and a synthetic lungsurfactant preparation (Surf; Exosurf Neonatal) into the supraglotticairway (SA) on the anteroposterior pharyngeal diameter(Dap) and theairway pressures required to close (Pcl) and reopen (Pop) theSA in five awake normal supine subjects. Dap, Pcl, and Popwere determined during lateral X-ray fluoroscopy and voluntary glotticclosure when pressure applied to the SA lumen was decreasedfrom 0 to 20 cmH2O and thenincreased to +20 cmH2O. After Surfapplication and relative to control,Dap was largerfor most of the applied pressures, Pcl decreased (12.3 ± 1.9 to 18.7 ± 0.9 cmH2O;P < 0.01), Pop decreased (13.4 ± 1.9 to 6.0 ± 3.4 cmH2O;P < 0.01), and genioglossus electromyographic activity did not change (P > 0.05).Saline had no effect. These observations suggest that pharyngealintraluminal surface properties are important in maintaining pharyngealpatency. We propose that surfactants enhance pharyngeal patency byreducing surface tension and adhesive forces acting on intraluminal SAsurfaces.

  相似文献   

15.
Watchko, Jon F., Monica J. Daood, Gary C. Sieck, John J. LaBella, Bill T. Ameredes, Alan P. Koretsky, and BeWieringa. Combined myofibrillar and mitochondrialcreatine kinase deficiency impairs mouse diaphragm isotonic function.J. Appl. Physiol. 82(5): 1416-1423, 1997.Creatine kinase (CK) is an enzyme central to cellular high-energy phosphate metabolism in muscle. To characterize the physiological role of CK in respiratory muscle during dynamic contractions, we compared the force-velocity relationships, power, andwork output characteristics of the diaphragm (Dia) from mice withcombined myofibrillar and sarcomeric mitochondrial CK deficiency (CK[/]) with CK-sufficient controls (Ctl).Maximum velocity of shortening was significantly lower inCK[/] Dia (14.1 ± 0.9 Lo/s,where Lo isoptimal fiber length) compared with Ctl Dia (17.5 ± 1.1 Lo/s)(P < 0.01). Maximum power wasobtained at 0.4-0.5 tetanic force in both groups; absolute maximumpower (2,293 ± 138 W/m2) andwork (201 ± 9 J/m2) werelower in CK[/] Dia compared with Ctl Dia(2,744 ± 146 W/m2 and 284 ± 26 J/m2, respectively)(P < 0.05). The ability ofCK[/] Dia to sustain shortening duringrepetitive isotonic activation (75 Hz, 330-ms duration repeated eachsecond at 0.4 tetanic force load) was markedly impaired, withCK[/] Dia power and work declining to zero by 37 ± 4 s, compared with 61 ± 5 s in Ctl Dia. We conclude that combined myofibrillar and sarcomeric mitochondrial CK deficiency profoundly impairs Dia power and work output, underscoring the functional importance of CK during dynamic contractions in skeletal muscle.

  相似文献   

16.
Moon, Jon K., and Nancy F. Butte. Combined heart rateand activity improve estimates of oxygen consumption and carbon dioxideproduction rates. J. Appl. Physiol.81(4): 1754-1761, 1996.Oxygen consumption(O2) andcarbon dioxide production (CO2) rates were measuredby electronically recording heart rate (HR) and physical activity (PA).Mean daily O2 andCO2 measurements by HR andPA were validated in adults (n = 10 women and 10 men) with room calorimeters. Thirteen linear and nonlinear functions of HR alone and HR combined with PA were tested as models of24-h O2 andCO2. Mean sleepO2 andCO2 were similar to basalmetabolic rates and were accurately estimated from HR alone[respective mean errors were 0.2 ± 0.8 (SD) and0.4 ± 0.6%]. The range of prediction errorsfor 24-h O2 andCO2 was smallestfor a model that used PA to assign HR for each minute to separateactive and inactive curves(O2, 3.3 ± 3.5%; CO2, 4.6 ± 3%). There were no significant correlations betweenO2 orCO2 errors and subject age,weight, fat mass, ratio of daily to basal energy expenditure rate, orfitness. O2,CO2, and energy expenditurerecorded for 3 free-living days were 5.6 ± 0.9 ml · min1 · kg1,4.7 ± 0.8 ml · min1 · kg1,and 7.8 ± 1.6 kJ/min, respectively. Combined HR and PA measured 24-h O2 andCO2 with a precisionsimilar to alternative methods.

  相似文献   

17.
Grassi, Bruno, Claudio Marconi, Michael Meyer, Michel Rieu,and Paolo Cerretelli. Gas exchange and cardiovascular kinetics with different exercise protocols in heart transplant recipients. J. Appl. Physiol. 82(6): 1952-1962, 1997.Metabolicand cardiovascular adjustments to various submaximal exercises wereevaluated in 82 heart transplant recipients (HTR) and in 35 controlsubjects (C). HTR were tested 21.5 ± 25.3 (SD) mo (range1.0-137.1 mo) posttransplantation. Three protocols were used:protocol A consisted of 5 min of rectangular 50-W load repeatedtwice, 5 min apart [5 min rest, 5 min 50 W (Ex 1), 5 minrecovery, 5 min 50 W (Ex 2)]; protocol B consistedof 5 min of rectangular load at 25, 50, or 75 W; protocol Cconsisted of 15 min of rectangular load at 25 W. Breath-by-breathpulmonary ventilation (E),O2 uptake (O2),and CO2 output(CO2) were determined.During protocol A, beat-by-beat cardiacoutput () was estimated by impedance cardiography. The half times (t1/2) of the on- andoff-kinetics of the variables were calculated. In all protocols,t1/2 values forO2 on-,E on-, andCO2 on-kinetics were higher(i.e., the kinetics were slower) in HTR than in C, independently ofworkload and of the time posttransplantation. Also,t1/2 on- was higher in HTRthan in C. In protocol A, no significant difference of t1/2 O2on- was observed in HTR between Ex 1 (48 ± 9 s) and Ex2 (46 ± 8 s), whereas t1/2 on- was higher during Ex 1 (55 ± 24 s)than during Ex 2 (47 ± 15 s). In all protocols and for all variables, the t1/2 off-values were higher in HTRthan in C. In protocol C, no differences of steady-stateE,O2, andCO2 were observed in bothgroups between 5, 10, and 15 min of exercise. We conclude that1) in HTR, a "priming" exercise, while effective inspeeding up the adjustment of convective O2 flow to muscle fibers during a second on-transition, did not affect theO2 on-kinetics, suggestingthat the slower O2 on- inHTR was attributable to peripheral (muscular) factors; 2) thedissociation between on- andO2 on-kinetics in HTRindicates that an inertia of muscle metabolic machinery is the mainfactor dictating theO2 on-kinetics; and 3) theO2 off-kinetics was slowerin HTR than in C, indicating a greater alactic O2 deficitin HTR and, therefore, a sluggish muscleO2 adjustment.

  相似文献   

18.
We examined the hypothesis that glucose flux wasdirectly related to relative exercise intensity both beforeand after a 12-wk cycle ergometer training program [5days/wk, 1-h duration, 75% peakO2 consumption(O2 peak)] inhealthy female subjects (n = 17; age23.8 ± 2.0 yr). Two pretraining trials (45 and 65% of O2 peak)and two posttraining trials [same absolute workload (65% of oldO2 peak)and same relative workload (65% of new O2 peak)] wereperformed on nine subjects by using a primed-continuous infusion of[1-13C]- and[6,6-2H]glucose.Eight additional subjects were studied by using[6,6-2H]glucose.Subjects were studied postabsorption for 90 min of rest and 1 h ofcycling exercise. After training, subjects increased O2 peak by 25.2 ± 2.4%. Pretraining, the intensity effect on glucose kinetics wasevident between 45 and 65% ofO2 peak with rates ofappearance (Ra: 4.52 ± 0.25 vs. 5.53 ± 0.33 mg · kg1 · min1),disappearance (Rd: 4.46 ± 0.25 vs. 5.54 ± 0.33 mg · kg1 · min1),and oxidation (Rox: 2.45 ± 0.16 vs. 4.35 ± 0.26 mg · kg1 · min1)of glucose being significantly greater(P  0.05) in the 65% thanin the 45% trial. Training reducedRa (4.7 ± 0.30 mg · kg1 · min1),Rd (4.69 ± 0.20 mg · kg1 · min1),and Rox (3.54 ± 0.50 mg · kg1 · min1)at the same absolute workload (P  0.05). When subjects were tested at the same relative workload,Ra,Rd, andRox were not significantlydifferent after training. However, at both workloads after training,there was a significant decrease in total carbohydrate oxidation asdetermined by the respiratory exchange ratio. These results show thefollowing in young women: 1)glucose use is directly related to exercise intensity;2) training decreasesglucose flux for a given power output;3) when expressed asrelative exercise intensity, training does not affect the magnitude ofblood glucose flux during exercise; but4) training does reduce totalcarbohydrate oxidation.

  相似文献   

19.
Tyler, Catherine M., Lorraine C. Golland, David L. Evans,David R. Hodgson, and Reuben J. Rose. Changes in maximum oxygenuptake during prolonged training, overtraining, and detraining inhorses. J. Appl. Physiol. 81(5):2244-2249, 1996.Thirteen standardbred horses were trained asfollows: phase 1 (endurance training, 7 wk),phase 2 (high-intensity training, 9 wk),phase 3 (overload training, 18 wk), andphase 4 (detraining, 12 wk). Inphase 3, the horses were divided intotwo groups: overload training (OLT) and control (C). The OLT groupexercised at greater intensities, frequencies, and durations than groupC. Overtraining occurred after 31 wk of training and was defined as asignificant decrease in treadmill run time in response to astandardized exercise test. In the OLT group, there was a significantdecrease in body weight (P < 0.05).From pretraining values of 117 ± 2 (SE)ml · kg1 · min1,maximal O2 uptake(O2 max) increased by15% at the end of phase 1, and when signs of overtraining werefirst seen in the OLT group,O2 max was 29%higher (151 ± 2 ml · kg1 · min1in both C and OLT groups) than pretraining values. There was nosignificant reduction inO2 max until after 6 wk detraining whenO2 max was 137 ± 2 ml · kg1 · min1.By 12 wk detraining, meanO2 max was134 ± 2 ml · kg1 · min1,still 15% above pretraining values. When overtraining developed, O2 max was notdifferent between C and OLT groups, but maximal values forCO2 production (147 vs. 159 ml · kg1 · min1)and respiratory exchange ratio (1.04 vs. 1.11) were lower in the OLTgroup. Overtraining was not associated with a decrease inO2 max and, afterprolonged training, decreases inO2 max occurredslowly during detraining.

  相似文献   

20.
Kolka, Margaret A., and Lou A. Stephenson. Effect ofluteal phase elevation in core temperature on forearm blood flow duringexercise. J. Appl. Physiol. 82(4):1079-1083, 1997.Forearm blood flow (FBF) as an index of skinblood flow in the forearm was measured in five healthy women by venousocclusion plethysmography during leg exercise at 80% peak aerobicpower and ambient temperature of 35°C (relative humidity 22%;dew-point temperature 10°C). Resting esophagealtemperature (Tes) was 0.3 ± 0.1°C higher in the midluteal than in the early follicular phase ofthe menstrual cycle (P < 0.05).Resting FBF was not different between menstrual cycle phases. TheTes threshold for onset of skinvasodilation was higher (37.4 ± 0.2°C) in midluteal than inearly follicular phase (37.0 ± 0.1°C; P < 0.05). The slope of the FBF toTes relationship was not different between menstrual cycle phases (14.0 ± 4.2 ml · 100 ml1 · min1 · °C1for early follicular and 16.3 ± 3.2 ml · 100 ml1 · min1 · °C1for midluteal phase). Plateau FBF was higher during exercise inmidluteal (14.6 ± 2.2 ml · 100 ml1 · min1 · °C1)compared with early follicular phase (10.9 ± 2.4 ml · 100 ml1 · min1 · °C1;P < 0.05). The attenuation of theincrease in FBF to Tes occurred when Tes was 0.6°C higher andat higher FBF in midluteal than in early follicular experiments(P < 0.05). In summary, the FBF response is different during exercise in the two menstrual cycle phasesstudied. After the attenuation of the increase in FBF and whileTes was still increasing, thegreater FBF in the midluteal phase may have been due to the effects ofincreased endogenous reproductive endocrines on the cutaneousvasculature.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号