首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
We report a significant negative correlation between nonsynonymous polymorphism and intron length in Drosophila melanogaster. This correlation is similar to that between protein divergence and intron length previously reported in Drosophila. We show that the relationship can be explained by the content of conserved noncoding sequences (CNS) within introns. In addition, genes with a high regulatory complexity and many genetic interactions also exhibit larger amounts of CNS within their introns and lower values of nonsynonymous polymorphism. The present study provides relevant evidence on the importance of intron content and expression patterns on the levels of coding polymorphism. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. [Reviewing Editor: Dr. Dmitri Petrov]  相似文献   

2.
TheArtemia hemoglobin contains two sub-units that are similar or different chains of nine globin domains. The domains are ancestrally related and are presumed to be derived from copies of an original single-domain parent gene. Since the gene copies have remained in the same environment for several hundred million years they provide an excellent model for the investigation of intron stability. The cDNA for one of the two types of nine-domain subunit (domains T1–T9) has been sequenced. Comparison with the corresponding genomic DNA reveals a total of 17 intradomain introns. Fourteen of the introns are in locations on the protein that are conventional in globins of other species. In eight of the nine domains an intron corresponds to the B helix, amino acid B12, following the second nucleotide (phase 2), and in six domains a G-helix intron is located between G6 and G7 (phase 0). The consistency of this pattern is supportive of the introns having been inherited from a single-domain parent gene. The remaining three introns are in unconventional locations. Two occur in the F helix, either in amino acid F3 (phase 1) in domain T3, or between F2 and F3 (phase 0) in domain T6. The two F introns strengthen an interpretation of intron inheritance since globin F introns are rare, and in domains T3 and T6 they replace rather than supplement the conventional G introns, as though displacement from G to F occurred before that part of the gene became duplicated. It is inferred that one of the F introns subsequently moved by one nucleotide. Similarly, the third unconventional intron location is the G intron in domain T4 which is in G6, phase 2, one nucleotide earlier than the other G introns. Domain T4 is also unusual in lacking a B intron. The pattern of introns in theArtemia globin gene supports a concept of general positional stability but the exceptions, where introns have moved out of reading frame, or have moved by several codons, or have been deleted, suggest that intron displacements can occur after inheritance from an ancient source. Correspondence to: C.N.A. Trotman  相似文献   

3.
Characterization of exon skipping mutants of the COP1 gene from Arabidopsis   总被引:4,自引:1,他引:3  
The removal of introns from pre-mRNA requires accurate recognition and selection of the intron splice sites. Mutations which alter splice site selection and which lead to skipping of specific exons are indicative of intron/exon recognition mechanisms involving an exon definition process. In this paper, three independent mutants to the COP1 gene in Arabidopsis which show exon skipping were identified and the mutations which alter the normal splicing pattern were characterized. The mutation in cop1–1 was a G→A change 4 nt upstream from the 3′ splice site of intron 5, while the mutation in cop1–2 was a G→A at the first nucleotide of intron 6, abolishing the conserved G within the 5′ splice site consensus. The effect of these mutations was skipping of exon 6. The mutation in cop1–8 was G→A in the final nucleotide of intron 10 abolishing the conserved G within the 3′ splice site consensus and leading to skipping of exon 11. The splicing patterns surrounding exons 6 and 11 of COP1 in these three mutant lines of Arabidopsis provide evidence for exon definition mechanisms operating in plant splicing.  相似文献   

4.
Phylogenetic and exon–intron structure analyses of intra- and interspecific fungal subtilisins in this study provided support for a mixed model of intron evolution: a synthetic theory of introns-early and introns-late speculations. Intraspecifically, there were three phase zero introns in Pr1A and its introns 1 and 2 located at the highly conserved positions were phylogentically congruent with coding region, which is in favor of the view of introns-early speculation, while intron 3 had two different sizes and was evolutionarily incongruent with coding region, the evidence for introns-late speculation. Noticeably, the subtilisin Pr1J gene from different strains of M. ansiopliae contained different number of introns, the strong evidence in support of introns-late theory. Interspecifically, phylogenetic analysis of 60 retrievable fungal subtilisins provided a clear relationship between amino acid sequence and gene exon–intron structure that the homogeneous sequences usually have a similar exon–infron structure. There were 10 intron positions inserted by highly biased phase zero introns across examined fungal subtilisin genes, half of these positions were highly conserved, while the others were species-specific, appearing to be of recent origins due to intron insertion, in favor of the introns-late theory. High conservations of positions 1 and 2 inserted by the high percentage of phase zero introns as well as the evidence of phylogenetic congruence between the evolutionary histories of intron sequences and coding region suggested that the introns at these two positions were primordial.Reviewing Editor:Dr. Manyuan Long  相似文献   

5.
With a long-term goal of constructing a linkage map of Rhododendron enriched with gene-specific markers, we utilized Rhododendron catawbiense ESTs for the development of high-efficiency (in terms of generating polymorphism frequency) PCR-based markers. Using the gene-sequence alignment between Rhododendron ESTs and the genomic sequences of Arabidopsis homologs, we developed ‘intron-flanking‘ EST–PCR-based primers that would anneal in conserved exon regions and amplify across the more highly diverged introns. These primers resulted in increased efficiency (61% vs. 13%; 4.7-fold) of polymorphism-detection compared with conventional EST–PCR methods, supporting the assumption that intron regions are more diverged than exons. Significantly, this study demonstrates that Arabidopsis genome database can be useful in developing gene-specific PCR-based markers for other non-model plant species for which the EST data are available but genomic sequences are not. The comparative analysis of intron sizes between Rhododendron and Arabidopsis (made possible in this study by aligning of Rhododendron ESTs with Arabidopsis genomic sequences and the sequencing of Rhododendron genomic PCR products) provides the first insight into the gene structure of Rhododendron. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
The Brassica napus genome contains more than four phospho enol pyruvate carboxylase (PEPCase) genes. Although the nucleotide sequences of these genes highly resemble each otehr, an intron corresponding to the 7th intron in the maize gene is present in PE15- and PE105-PEPCase genes but absent in PE3-PEPCase. The intron corresponding to the maize 3rd intron is absent in PE15- and PE105-PEPCase genes. Deletion of these introns occurred precisely such that the coding sequence is faithfully preserved with respect to the maize gene. The PE19-PEPCase gene contains a deletion in the 8th exon instead of the presence of those introns.  相似文献   

7.
We have isolated three independent clones for nuclear elongator tRNAMet genes from an Arabidopsis DNA library using a tRNAMet-specific probe generated by PCR. Each of the coding sequences for tRNAMet in these clones is identical and is interrupted by an identical 11 bp long intervening sequence at the same position in the anticodon loop of the tRNA. Their sequences differ at two positions from the intron in a soybean counterpart. Southern analysis of Arabidopsis DNA demonstrates that a gene family coding for tRNAMet is dispersed at at least eight loci in the genome. The unspliced precursor tRNAMet intermediate was detected by RNA analysis using an oligonucleotide probe complementary to the putative intron sequence. In order to know whether introns commonly interrupt plant tRNAMet genes, their coding sequences were PCR-amplified from the DNAs of eight phylogenetically separate plant species. All 53 sequences determined contain 10 to 13 bp long intervening sequences, always positioned one base downstream from the anticodon. They can all be potentially folded into the secondary structure characteristic for plant intron-containing precursor tRNAs. Surprisingly, GC residues are always present at the 5-distal end of each intron.  相似文献   

8.
Summary The core histone gene family ofAspergillus nidulans was characterized. The H2A, H2B and H3 genes are unique in theA. nidulans genome. In contrast there are two H4 genes, H4.1 and H4.2. As previously reported for the H2A gene (May and Morris 1987) introns also interrupt the other core histone genes. The H2B gene, like the H2A gene, is interrupted by three introns, the H3 and H4.1 gene are each interrupted by two introns and the H4.2 gene contains one intron. The position of the single intron in H4.2 is the same as that the first intron of the H4.1 gene. The H2A and H2B genes are arranged as a gene pair separated by approximately 600 by and are divergently transcribed. The H3 and H4.1 genes are similarly arranged and are separated by approximately 800 bp. The H4.2 gene is not closely linked to either the H2A-H2B or H3-H4.1 gene pairs. Using pulse field gel electrophoresis an electrophoretic karyotype was established forA. nidulans. This karyotype was used to assign the H3–H4.1 gene pair and the H4.2 gene to linkage group VIII and the H2A–H2B gene pair to either linkage group III or VI. The abundance of each of the histone messenger RNAs was determined to be cell cycle regulated but the abundance of the H4.2 mRNA appears to be regulated differently from the others.  相似文献   

9.
10.
Barley homolog of the Arabidopsis necrotic (disease lesion mimic) mutant HLM1 that encodes the cyclic nucleotide-gated ion channel 4 was cloned. Barley gene was mapped genetically to the known necrotic locus nec1 and subsequent sequence analysis identified mutations in five available nec1 alleles confirming barley homolog of Arabidopsis HLM1 as the NEC1 gene. Two fast neutron (FN) induced mutants had extensive deletions in the gene, while two previously described nec1 alleles had either a STOP codon in exon 1 or a MITE insertion in intron 2 which caused alternative splicing, frame shift and production of a predicted non-functional protein. The MITE insertion was consistent with the reported spontaneous origin of the nec1 Parkland allele. The third FN mutant had a point mutation in the coding sequence which resulted in an amino acid change in the conserved predicted cyclic nucleotide-gated ion channel pore region. The expression of two pathogenesis-related genes, HvPR-1a and β-1,3-glucanase, was elevated in two FN necrotic lines. Ten other members of the barley cyclic nucleotide-gated ion channel gene family were identified and their position on barley linkage map is reported. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

11.
12.
Myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1.) is in Brassicaceae species such as Brassica napus and Sinapis alba encoded by two differentially expressed gene families, MA and MB, consisting of about 4 and 10 genes, respectively. Southern blot analysis showed that Arabidopsis thaliana contains three myrosinase genes. These genes were isolated from a genomic library and two of them, TGG1 and TGG2, were sequenced. They were found to be located in an inverted mode with their 3 ends 4.4 kb apart. Their organization was highly conserved with 12 exons and 11 short introns. Comparison of nucleotide sequences of TGG1 and TGG2 exons revealed an overall 75% similarity. In contrast, the overall nucleotide sequence similarity in introns was only 42%. In intron 1 the unusual 5 splice border GC was used. Phylogenetic analyses using both distance matrix and parsimony programs suggested that the Arabidopsis genes could not be grouped with either MA or MB genes. Consequently, these two gene families arose only after Arabidopsis had diverged from the other Brassicaceae species. In situ hybridization experiments showed that TGG1 and TGG2 expressing cells are present in leaf, sepal, petal, and gynoecium. In developing seeds, a few cells reacting with the TGG1 probe, but not with the TGG2 probe, were found indicating a partly different expression of these genes.  相似文献   

13.
Calcium serves as a second messenger in various signal transduction pathways in plants. CBL-interacting protein kinases (CIPKs), which have a variety of functions, are involved in calcium signal transduction. Previous, the studies on CIPK family members focused on Arabidopsis and rice. Here, we present a comparative genomic analysis of the CIPK gene family in Arabidopsis and poplar, a model tree species. Twenty-seven potential CIPKs were identified from poplar using genome-wide analysis. Like the CIPK gene family from Arabidopsis, CIPK genes from poplar were also divided into intron-free and intron-harboring groups. In the intron-harboring group, the intron distribution of CIPKs is rather conserved during the genome evolutionary process. Many homologous gene pairs were found in the CIPK gene family, indicating duplication events might contribute to the amplification of this gene family. The phylogenetic comparison of CIPKs in combination with intron distribution analysis revealed that CIPK genes from both Arabidopsis and poplar might have an ancient origin, which formed earlier than the separation of these two eudicot species. Our genomic and bioinformatic analysis will provide an important foundation for further functional dissection of the CBL-CIPK signaling network in poplars. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
We identified 411 processed sequences in the Arabidopsis thaliana genome based on the fact that they have lost their intron(s) and have a length that is at least 95% of the length of the gene that gave rise to them. These sequences were generated by 230 different genes and clearly originated from retrotranspositons events because most of them (91%) have a poly(A)-tail. They are composed of 376 sequences with frame shifts and/or premature stop codons (processed pseudogenes) and 35 sequences without disablements (processed genes). Eleven of these processed genes are likely functional retrotransposed genes because they have low Ka/Ks ratios and high Ks values, and their sequences match numerous Arabidopsis ESTs. Processed sequences are mostly randomly distributed in the Arabidopsis genome and their rate of accumulation has steadily been decreasing since it peaked some 50 MYA. In contrast with the situation observed in mammals, the processed sequences found in the Arabidopsis genome originate from genes with high copy numbers and not from highly expressed genes. The patterns of spontaneous mutations in Arabidopsis are slightly different than those of mammals but are similar to those observed in Drosophila. This suggests that methylated cytosine deamination is less frequent in Arabidopsis than in mammals. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Juergen Brosius]  相似文献   

15.
Arabidopsis thaliana is an important model system for the study of plant biology. We have analyzed the complete genome sequences of Arabidopsis by using a newly developed windowless method for the GC content computation, the cumulative GC profile. It is shown that the Arabidopsis genome is organized into a mosaic structure of isochores. All the centromeric regions are located in GC-rich isochores, called centromere-isochores, which are characterized by a high GC content but low gene and T-DNA insertion densities. This characteristic distinguishes centromere-isochores from the other class of GC-rich isochores, called GC-isochores, which have high gene and T-DNA insertion densities. Consequently, 15 isochores have been identified, i.e., 7 AT-isochores, 3 GC-isochores, and 5 centromere-isochores. The genes in centromere-isochores, which have the highest GC content, have much shorter intron lengths and lower intron numbers, compared to those of the other two types. There is also considerable difference in the numbers and lengths of transposable elements (TEs) between AT and GC-isochores, i.e., the TE number (length) of AT-isochores is 6.3 (7.3) times that of GC-isochores. It is generally believed that TEs are accumulated in the regions surrounding the centromeres. However, within these TE-rich regions, there are regions of extremely low TE numbers (TE deserts), which correspond to the positions of centromere-isochores. In addition, a heterochromatic knob is located at the boundary of an AT-isochore. Furthermore, we show that the differences in GC content among isochores are mainly due to the GC content variation of introns, the third codon positions and intergenic regions.[Reviewing Editor: Martin Kreitman]  相似文献   

16.
17.
Unusual two-domain arginine kinases (AKs) arose independently at least two times during molecular evolution of phosphagen kinases: AKs from the primitive sea anemone Anthopleura japonicus and from the clam Pseudocardium sachalinensis. To elucidate its unusual evolution, the structures of Anthopleura and Pseudocardium AK genes have been determined. The Anthopleura gene consisted of 4 exons and 3 introns: two domains are linked by a bridge intron, and each domain contains one intron in different positions. On the other hand, the Pseudocardium gene consisted of 10 exons and 9 introns: two domains are also linked by a bridge intron, and domains 1 and 2 contains 3 and 5 introns, respectively, of which 3 introns are located in exactly same positions. Since the two domains of Pseudocardium AK are estimated to have diverged about 290 million years ago, the 3 introns have been conserved at least for this long. Comparison of intron positions in Anthopleura, Pseudocardium and C. elegans AK genes indicates that there is no intron conserved through the three AK lineages, in sharp contrast to relatively conservative intron positions in creatine kinase (CK) gene family.  相似文献   

18.
Intron-bearing replacement histone H3 genes in Arabidopsis and other plants are highly and constitutively expressed. We demonstrate that the introns located within the 5-untranslated regions (5-UTR) of the two Arabidopsis replacement H3 genes will abolish the cell cycle dependence of an endogenous histone H4 promoter. We demonstrate that these introns, functionally combined with their endogenous promoters, could produce the high and constitutive expression of the replacement H3 genes observed in planta. They strongly increase gene expression whatever the promoter, from the strong 35S CaMV promoter to complete and resected promoters of cell cycle-dependent and replacement histone genes. Quantitative analysis of the extent of reporter gene enhancement in different parts of developing transgenic plantlets, ranging from 2-fold to 70-fold, supports the notion that trans-acting factors are responsible for this effect. Such factors appear most abundant in roots.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号