首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult female Bennett's wallabies were treated with reductions in daylength, melatonin implants or injections of melatonin 2 h before dusk in early or mid-seasonal reproductive quiescence. In early reproductive quiescence (5 weeks after the winter solstice) reproductive quiescence did not end in response to 3 or 5 h of reduced daylength or in response to injections (400 ng/kg) or implants (0.5 g in a Silastic rubber envelope) of melatonin. Reductions in daylength at this time of year did, however, result in an extension of the circadian pattern of melatonin secretion. In mid-reproductive quiescence (21 weeks after the winter solstice) treatment with a 5 h reduction in daylength, melatonin injections administered 2 h before dusk or melatonin implants did result in the termination of reproductive quiescence and reactivation of the quiescent corpus luteum within a period of 5 days. The results of these experiments indicate that, in early reproductive quiescence, the Bennett's wallaby is refractory to the influence of reduced daylength or melatonin, although capable of responding to such reduced days in terms of an increased duration of melatonin secretion. Bennett's wallabies therefore exhibit a refractoriness to short days similar to that of some seasonal eutherians although it remains to be established whether this refractory response is the cause of the transition to seasonal reproductive quiescence.  相似文献   

2.
Adult female Bennett's wallabies (N = 6) were maintained in artificial winter solstitial daylengths commencing 3 weeks before the winter solstice for 16 or 42 weeks. Such treatment effectively prevented the normal establishment of seasonal reproductive quiescence with animals continuing to exhibit reproductive cycles beyond the time of the normal termination of the breeding season. Animals maintained in natural photoperiods or simulated natural changes in daylength after the winter solstice all entered reproductive quiescence by early February. In the Bennett's wallaby, therefore, the breeding season does not terminate as a result of refractoriness to short daylengths. Our results indicate that the relatively small increases in photoperiod shortly after the winter solstice provide the environmental signal responsible for initiating the onset of seasonal reproductive quiescence which normally occurs 5-8 weeks after the solstice. These results contrast with the effect of fixed artificial summer solstitial daylengths on the onset of the breeding season in which breeding begins spontaneously at the normal time of year as a result of long-day photorefractoriness.  相似文献   

3.
From 17 February 1987 (Day 1) to 5 June 1988 (Day 475), 6 red deer hinds which had been in natural daylength (NL/M) and 6 hinds which had been in continuous artificial light for the previous month (CL/M) were each given melatonin (5 mg in feed) daily at 15:00 h. Six controls (C) received unsupplemented feed. From Day 1 all hinds were in natural daylight and ovarian cyclicity was assessed from plasma progesterone concentrations. Group C first went into anoestrus on 15 March 1987 (Day 27 +/- 9.2 (s.e.m], recommenced cyclicity on 23 October (Day 249 +/- 2.3) and went into anoestrus again on 2 April 1988 (Day 411 +/- 8.7). Group CL/M first went into anoestrus 31 days earlier (P less than 0.05) on 12 February (Day -4 +/- 7.8), before the start of melatonin treatment; 4 hinds then recommenced ovarian cycles 132 days earlier (P less than 0.001) on 13 June (Day 117 +/- 5.8) and continued to cycle for a longer period than did controls. Group NL/M hinds were cyclic at the start of melatonin feeding and continued to cycle for 1 year or more (N = 6). Plasma prolactin concentrations remained suppressed (less than 20 ng/ml) for the duration of melatonin-feeding (Groups CL/M and NL/M) whereas control values (Group C) were elevated (20-120 ng/ml) between April and August (P less than 0.05). The ovarian response by hinds to melatonin therefore depends on initial reproductive status and recent photoperiodic history, and continued administration to cyclic hinds stimulates prolonged ovarian cyclicity irrespective of the time of year.  相似文献   

4.
Prepubertal, spring-born females (Group H: N = 5) living outdoors were given a daily injection of melatonin (0.70 microgram/kg, s.c.) late in the afternoon to produce a short-day melatonin pattern equivalent to a night of approximately 14 h. The dose of melatonin produced serum concentrations of melatonin which simply extended, within the 24 h day, the normal endogenous nighttime elevation (80-100 pg/ml). The study was started in March when the females were 23 months of age and continued through January. Parameters of sexual maturation for this group were compared to those of untreated, age-matched females (Group C: N = 5) which also lived outdoors under changing environmental conditions. Melatonin treatment significantly advanced age at first perineal swelling (23.9 +/- 0.5 vs 30.5 +/- 0.2 months) and menarche (26.2 +/- 0.9 vs 31.2 +/- 2.4 months). Since all of the females were spring-born, these events occurred earlier in the year in Group H females (swelling: April vs October; menarche: June vs November). Furthermore, 4/5 Group H females exhibited first ovulation in December at 31.8 +/- 0.3 months. None of the Group C females ovulated during their 2nd year, but all did so the next breeding season at 43.5 +/- 0.3 months. All first ovulations in females had luteal-phase progesterone concentrations elevated for at least 12 days with peaks greater than 3.0 ng/ml. Body weights were similar between groups until the post-menarchial interval when weight gain was greater in the melatonin-treated females. A similar pattern of group differences also was observed for serum concentrations of growth hormone and somatomedin-C. In addition, prolactin concentrations were seasonally elevated during the summer months in both groups, but concentrations fell to nadir values by August in Group H females and remained elevated until October in Group C animals. These results suggest that, in adolescent females housed outdoors, exposure to a short-day melatonin pattern permits sexual maturation to be initiated at an earlier age, allowing first ovulation to occur in the months immediately after menarche. A long-day melatonin pattern, typically experienced by females at this developmental age, may actually delay the initiation of maturational events until the subsequent fall months.  相似文献   

5.
Comparisons have been made between the effects of shortened daylength and melatonin treatment on plasma prolactin and melatonin levels in pinealectomised (Px) and sham-operated (Sh) ewes. Twenty-two anoestrous Merino crossbred ewes, maintained under normal grazing conditions, were assigned to four groups for a period of 9 weeks. Group 1 remained untreated (control), Group 2 was herded into a dark shed at 1600 h each day until dark (approx 4 h), ewes in Group 3 were injected with 100 μg melatonin s.c. at 1600 h each day and ewes in Group 4 were implanted with a melatonin capsule releasing 125–200 μg/day. Another group (Group 5) of 4 Px and 4 Sh ewes from the same flock was maintained in an animal house and subjected to shortened daylength (10. 5 h L : 13. 5 h D, lights off 1600 h). Three weeks after the treatments began, ewes in Groups 1–4 were exposed to a fertile ram and ewes in Group 5 to a vasectomised ram and the day of mating noted. No differences were evident between Groups 1–4 in the ewes' response to the ram, time taken to conceive, duration of gestation or number of lambs born. In untreated Px ewes no plasma melatonin (< 20 pg/ml) was found in either day or night samples, whereas intact animals showed the characteristic night-time rise. The silastic implants produced stable daytime blood levels of 90–120 pg/ml, whereas a single injection of 100 μg melatonin caused a transitory (2–3 h) rise. Shortened daylength (Group 2) or a single daily injection of melatonin (Group 3) lowered prolactin levels but only in ewes with an intact pineal gland, whereas melatonin implants (Group 4) caused a reduction in plasma prolactin in both Px and Sh sheep. The results indicate that light-induced alterations in prolactin production in sheep involve both the pineal gland and melatonin. Continuous melatonin release from implants caused changes in plasma prolactin levels similar to those seen following exposure to short days.  相似文献   

6.
The breeding season of the non-lactating Bennett's wallaby terminates when animals enter the state of seasonal quiescence. To examine this transition, pouch young were removed from females at intervals which were 3, 4 or 8 weeks (6, 11 and 8 animals respectively) after the winter solstice. Within 48 days, 3, 1 and 1 females gave birth respectively, indicating that these animals were not in seasonal quiescence when pouch young were removed. Those animals which did not give birth were either in seasonal quiescence or had undergone a non-pregnant cycle. To differentiate between the 2 possibilities, techniques which would ensure the detection of pregnant and non-pregnant cycles were assessed in 8 females during the breeding season. As has been previously reported for the wallaby, changes in peripheral progesterone concentrations and the vaginal smear occurred during pregnant and non-pregnant reproductive cycles. In addition, mating was detected by marking the male with a mixture of coloured crayon and paraffin wax. It was concluded that reproductive cycles in female wallabies could be monitored by collecting blood samples 2 times each week for progesterone determination and daily examination of females for mating marks. These techniques were then used to study the onset of seasonal quiescence in 9 females. All animals continued to show reproductive cycles after the winter solstice and it was not until 10 weeks after the winter solstice that all animals were in seasonal quiescence. This represents an increase in the duration of the breeding season over that previously reported for this species.  相似文献   

7.
The beginning of the breeding season of the female Bennett's wallaby occurs when seasonal quiescence terminates 1-2 months after the summer solstice. In this study, the role of photoperiod in terminating seasonal quiescence was examined. One week before the summer solstice, five non-lactating wallabies were transferred from natural to artificial summer solstice daylength for 5 months. The beginning of the breeding season in these animals as indicated by births, matings, and peripheral progesterone profiles was not different from that of five control animals maintained on natural photoperiod. The following year, three animals were transferred from natural to summer solstice daylength on February 25 and were held on the artificial photoperiod until September 30. Changes in plasma progesterone concentrations indicative of the beginning of the breeding season occurred on June 12-30 (range), which was significantly (P less than 0.01) advanced by 29 days when compared with six control animals. These results indicate that the decrease in daylength that occurs after the summer solstice is not required to induce the termination of seasonal quiescence at the beginning of the breeding season. Further, the beginning of the breeding season can be advanced by transferring animals to long daylength early in seasonal quiescence. Photorefractoriness to long daylengths may therefore be important in the initiation of the breeding season in this species. In further experiments, groups of six animals were transferred from natural to artificial summer solstice daylength on September 26 and December 9 and pouch young were removed 7 days after the transfer. In September, reactivation of the quiescent corpus luteum followed soon after removal of pouch young (RPY) indicating that exposure to long daylength had not induced a transition into seasonal quiescence. In December, RPY was not followed by reactivation of the quiescent corpus luteum indicating that animals were in seasonal quiescence. These results suggest that the female Bennett's wallaby may need to experience a period of shortening days after the summer solstice before exposure to long days can again initiate seasonal quiescence.  相似文献   

8.
Plasma prolactin and rectal temperature show a circadian rhythm in newborn sheep raised under continuous light. Melatonin lowers the concentration of plasma prolactin but it is not known if it affects its circadian rhythm. To detect whether melatonin acts on the circadian system we studied the effect of a subcutaneous melatonin implant in the circadian rhythms of prolactin and rectal temperature in newborn lambs raised under continuous light. We placed catheters in the pedal artery and vein in 9 newborn lambs (2-5 days of age). A subcutaneous melatonin implant was placed in 4 of the lambs at 9-12 days of age. Blood samples and rectal temperature measurements were obtained hourly for a period of 24 h, 11-15 days after the implant, at 20-27 days of age. To avoid interferences of heparin in our melatonin assay, serum melatonin concentration was measured before and during the implant in three additional newborns. Prolactin and melatonin were measured by RIA. Melatonin concentrations were 52.8 +/- 45.9 pg/ml (day) and 315.5 +/- 77.0 pg/ml (night) before treatment (SEM, P less than 0.001), and increased to 594.1 +/- 54.5 pg/ml after placing the implant (there was no difference in melatonin concentration between day and night during the time that the implant was in place). Melatonin had no effect on rectal temperature or its rhythm, but decreased basal plasma prolactin concentration (control: 97.5 +/- 11.3 ng/ml; treated: 25.1 +/- 2.4 ng/ml, P less than 0.001) and abolished the prolactin circadian rhythm, (Cosinor analysis): control: log prolactin (ng/ml) = 1.8 + 0.26 cos 15 (t - 11.16), p = 0.05; treated: log prolactin (ng/ml) = 1.2 + 0.14 cos 15 (t - 9.43), P = 0.36.  相似文献   

9.
The seasonal changes in testicular weight in the blue fox were associated with considerable variations in plasma concentrations of LH, prolactin, androstenedione and testosterone and in FSH-binding capacity of the testis. An increase in LH secretion and a 5-fold increase in FSH-binding capacity were observed during December and January, as testis weight increased rapidly. LH levels fell during March when testicular weight was maximal. Plasma androgen concentrations reached their peak values in the second half of March (androstenedione: 0.9 +/- 0.1 ng/ml: testosterone: 3.6 +/- 0.6 ng/ml). A small temporary increase in LH was seen in May and June after the breeding season as testicular weight declined rapidly before levels returned to the basal state (0.5-7 ng/ml) that lasted until December. There were clear seasonal variations in the androgenic response of the testis to LH challenge. Plasma prolactin concentrations (2-3 ng/ml) were basal from August until the end of March when levels rose steadily to reach peak values (up to 13 ng/ml) in May and June just before maximum daylength and temperature. The circannual variations in plasma prolactin after castration were indistinguishable from those in intact animals, but LH concentrations were higher than normal for at least 1 year after castration.  相似文献   

10.
Circadian variations of plasma melatonin and prolactin concentrations were determined during breeding as well as non-breeding seasons in yak. Blood samples (5 ml) were collected during different phases of estrous cycle, viz. early (0-6 days), mid (7-12 days) and late luteal (13-19 days) at 2 h interval for 24 h from eight yaks during one breeding month (November); the same yaks were bled at 2 h interval during one non-breeding month (February) for 24 h. Plasma melatonin concentrations rose sharply (P < 0.01) after sunset to record peak concentrations between midnight and 2 a.m. declining sharply thereafter in both breeding as well as non-breeding seasons. Basal melatonin concentrations were recorded between 0600 and 1600 h. Stage of luteal phase did not influence the diurnal hormone change (P < 0.01). In the breeding season, mean plasma prolactin concentrations displayed circadian variations with maximum value at 0400 h (41.22+ /- 1.5 ng/ml) and minimum at 1400 h (12.0 +/- 4.02 ng/ml). In the non-breeding season plasma prolactin concentrations showed circadian variation with maximum value at 0000 h (59.9 +/- 10.5 ng/ml) and minimum at 1200 h (32.13 +/- 3.2 ng/ml). A positive correlation in breeding (r = 0.75) and in non-breeding season (r = 0.65) between circadian changes in mean plasma prolactin and melatonin concentrations were seen. Circadian changes of mean plasma melatonin concentrations during breeding and non-breeding seasons were not different (P > 0.05). However, mean plasma prolactin concentrations were found to be higher (P < 0.01) in the non-breeding season. Three conclusions were drawn from the study: (i) melatonin and prolactin concentrations followed a circadian pattern of secretion (ii) melatonin and prolactin secretion may be closely interrelated and (iii) higher prolactin concentrations during the non-breeding season could be due to nutritional and environmental stress and hence might be contributing to lack of cyclicity.  相似文献   

11.
In seasonally breeding mammals, the hormone melatonin, produced at night by the pineal gland, is known to be important in transducing the effect of photoperiod in timing reproduction. In the Bennett's wallaby, an unimplanted unilaminar blastocyst is held in a state of seasonal diapause from mid-winter to mid-summer. Here we show that an implant of the hormone melatonin rapidly terminates seasonal diapause in this species. Blastocyst reactivation is not accompanied by a significant reduction in levels of the hormone prolactin, thereby refuting earlier suggestions that this hormone is responsible for maintaining seasonal embryonic diapause.  相似文献   

12.
Melatonin was administered intravaginally in Silastic tubing to adult and prepubertal ewes. In Exp. 1, ewe lambs (born early March) were given intravaginal melatonin implants at a mean age (+/- s.e.m.) of 7.5 +/- 0.1 weeks (Group E, N = 10) or 19.4 +/- 0.2 weeks (Group L, N = 10). The third group (Group C, N = 10) received empty implants. In Exp. 2 mature ewes were given implants on 13 May (Group E, N = 10) or 18 July (Group L, N = 10) or received empty implants (Group C, N = 10) on one of these two dates. Blood samples were taken twice weekly for progesterone assay. In Exp. 1 the mean age (+/- s.e.m.) at puberty (progesterone greater than 2 nmol/l for two consecutive samples) was 35.4 +/- 0.8 weeks. Puberty was advanced by 5.2 weeks in Group L lambs, occurring at a mean age of 30.2 +/- 0.7 weeks (P less than 0.001). In Group E lambs the timing of puberty was unaltered, occurring at a mean age of 34.8 +/- 0.6 weeks. Mature ewes in Group L (Exp. 2) showed increased incidence of ovarian activity (9/10 ewes cycling by 26 September) compared with the control ewes (1/10) (P less than 0.001), but there was no effect in Group E ewes (3/10). The results demonstrate that continuous melatonin administration to adult and prepubertal ewes can mimic the effect of short days in terms of the reproductive response, and that the present and previous exposure to melatonin is critical in determining the response.  相似文献   

13.
Seasonal cycles in the size of the testes, blood plasma concentration of testosterone, FSH and prolactin, intensity of the sexual skin flush, timing of rutting behaviour and moulting of the body coat were recorded in Soay rams after s.c. implantation of melatonin contained in a Silastic envelope which increased the circulating blood levels of melatonin to 200-600 pg/ml for many months. Two groups of 8 adult rams were held under alternating periods of short days (8L:16D) and long days (16L:8D) to drive the seasonal cycles and the treatments with melatonin were initiated during the long or short days, and one group of 8 ram lambs was kept out of doors and given implants during the long days of summer (4 melatonin-implanted and 4 control (empty implants) rams per group). The treatments demonstrated that melatonin implants during exposure to long days resulted in a rapid 'switch on' of reproductive redevelopment similar to that produced by exposure to short days melatonin implants prevented the rams from showing the normal responses to changes in the prevailing photoperiod rendering them nonphotoperiodic; and long-term cyclic changes in testicular activity, prolactin secretion and other characteristics occurred in the melatonin-implanted rams; the pattern was similar to that previously observed in rams exposed to prolonged periods of short days. The overall results are consistent with the view that melatonin is the physiological hormone that relays the effects of changing photoperiod on reproduction and other seasonal features, and that continuous exogenous melatonin from an implant interferes with the normal 'signal' and produces an over-riding short-day response.  相似文献   

14.
In Exp. 1, four groups of 8 yearling Soay rams were housed under long days (16L:8D) to induce reproductive quiescence and were treated daily for 12 weeks with: (I) vehicle (2 or 4 ml 50% ethanol/water), (II) ML23 (2 mg), (III) melatonin (2 mg) and (IV) melatonin and ML23 (2 mg of each). All treatments were given orally in the mid-light phase. In the rams receiving melatonin (Group III) there was an earlier increase in the plasma concentrations of FSH and testosterone and regrowth of the testes compared to the controls (time to maximum testicular diameter: 10.0 +/- 0.5 and 15.3 +/- 1.2 weeks). These differences were reversed after the end of the 12-week treatments when rapid testicular regression occurred in melatonin-treated rams but not in the controls. In the group receiving ML23 and melatonin (Group IV), there was early reactivation and regression of the reproductive axis as in the melatonin group (testis max. 9.9 +/- 0.7 and 10.0 +/- 0.5 weeks) while in the group receiving ML23 alone (Group II) there was a slower redevelopment and regression as in the controls (testis max. 15.7 +/- 1.1 and 15.3 +/- 1.2 weeks). The comparison between the 4 groups in the changes in the blood concentrations of prolactin, voluntary food intake and total body weight also indicated that the treatment with ML23 failed to modify the effect of melatonin (combined treatment vs melatonin) or the effect of the long day photoperiod (ML23 vs vehicle).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The objectives of this study were to determine if ewes subjected to frontal hypothalamic deafferentation (FHD) during anestrus remained anestrus or began to have estrous cycles, and if melatonin secretion was disrupted by FHD. Ovary-intact ewes in Group 1 were subjected to either FHD (n = 10) or sham FHD (n = 5) in early July 1983. Estrous cycles were monitored by measuring circulating progesterone concentrations from before FHD until September 1985. Group 2 ewes (n = 4) were subjected to FHD in October 1984. In late April 1985, blood samples were taken from all ewes at 1- to 4-h intervals from 1100 h to 0700 h of the following day to monitor diurnal changes of melatonin. Hypothalami were collected for histological evaluation of lesions. All Group 1 ewes (sham FHD and FHD) initiated normal estrous cycles in August and September 1983, and all ceased cycles by mid-February 1984. All sham FHD and 4 FHD ewes remained anestrus until August or September of 1984 and then resumed normal cycles. In contrast, 5 FHD ewes resumed cycles as early as April 1984 and then cycled intermittently or almost continuously. Two Group 2 ewes cycled continuously after FHD and 2 cycled infrequently. FHD ewes that showed prolonged breeding seasons had cuts that damaged the suprachiasmatic nucleus (SCN) and adjacent structures. Mean nocturnal (2000 h-0500 h) melatonin concentrations did not differ (p greater than 0.05) between sham FHD, FHD "normal season," and FHD "continuous cycle" ewes. In summary, damage to the SCN region by FHD during anestrus had no detectable effect on either onset or cessation of the next breeding season but greatly prolonged subsequent breeding seasons. Thus, the environmental signals that both initiated and terminated the 1983 breeding season apparently had been given before FHD was performed in midsummer. Damage to the SCN region during the breeding season caused some ewes to cycle continuously. The effects of FHD apparently were not due to disruption of melatonin secretion. FHD ewes that showed prolonged breeding seasons had normal seasonal changes of plasma prolactin concentrations. This suggests that different neural structures control seasonal patterns of gonadotropin and prolactin secretion.  相似文献   

16.
The time course for the decrease in norepinephrine concentration of rat pineal explants in culture indicated a significant fall starting at the 4th hour and completed after 16-24 h of incubation. Significant decreases of serotonin and 5-hydroxyindoleacetic acid (HIAA) levels in tissue, an increase of HIAA/serotonin ratio, and an increase of melatonin production rate in vitro were also observed as a function of the incubation time. Estradiol (10(-7)-10(-5) M) increased rat pineal melatonin content, testosterone (10(-5) M) decreased it and progesterone was devoid of activity when incubated with explants for up to 6 h. The in vitro stimulatory effect of estradiol on rat pineal methoxyindole synthesis was blocked by propranolol but not by phentolamine; propranolol also blocked the increase of nuclear estradiol-receptor complex produced by estrogen exposure of pineal explants. TSH (1-100 ng/ml), growth hormone (10-100 ng/ml) and LH (10 ng/ml) augmented rat pineal melatonin content while 100 ng/ml of FSH decreased it significantly. Prolactin exerted a biphasic effect on rat pineal explants, the lowest concentration augmenting melatonin content while the high concentration depressed it. Deep, intermediate and superficial segments of guinea-pig pineal glands showed an increase in melatonin concentration after a 6-h incubation in the presence of 10(-7)-10(-5) M estradiol.  相似文献   

17.
Melatonin administration to male blue foxes from August for 1 year resulted in profound changes in the testicular and furring cycles. The control animals underwent 5-fold seasonal changes in testicular volume, with maximal values in March and lowest volumes in August. In contrast, melatonin treatment allowed normal redevelopment of the testes and growth of the winter coat during the autumn but prevented testicular regression and the moult to a summer coat the following spring. At castration in August, 88% of the tubular sections in the testes of the controls contained spermatogonia as the only germinal cell type, whereas in the treated animals 56-79% of sections contained spermatids or even spermatozoa. Semen collection from a treated male in early August produced spermatozoa with normal density and motility. Measurement of plasma prolactin concentrations revealed that the spring rise in plasma prolactin values (from basal levels of 1.6-5.4 ng/ml to peak values of 4.1-18.3 ng/ml) was prevented; values in the treated animals ranged during the year from 1.8 to 6.3 ng/ml. Individual variations in plasma LH concentrations masked any seasonal variations in LH release in response to LHRH stimulation, but the testosterone response to LH release after LHRH stimulation was significantly higher after the mating season in the treated animals, indicating that testicular testosterone production was maintained longer than in the controls. The treated animals retained a winter coat, of varied quality and maturity, until the end of the study in August.  相似文献   

18.
In Exp. 1, 10 quiescent non-lactating tammars were exposed to 15L:9D (Days -41 to -1), 24L:0D (Days 0 to 14), 15L:9D (Days 15 to 34) and then to ambient increasing daylength from 13L:11D on Day 35. From Days 0 to 22 they received a s.c. injection of melatonin (400 ng/kg, N -5) on the arachis oil vehicle (N = 5) in the evening (19:30 h) 2.5 h before dark. Exposure to 24L:0D abolished the nocturnal plasma melatonin rise but this was reinstated by subsequent exposure to 15L:9D. Of 5 melatonin-treated tammars, 4 gave birth on Day 45, so had failed to respond to the melatonin injection alone but reactivated when this was combined with the endogenous melatonin rise during exposure to 15L:9D. Of 5 control tammars, 4 remained quiescent until reactivated by the decrease in daylength to 13L:11D, and gave birth significantly later (Day 63.7 +/- 2.2, mean +/- s.e.m., P less than 0.05). In Exp. 2, 6 tammars were exposed to 15L:9D (Days -15 to -1) and then to 12L:12D (Days 0 to 15) by extending the dark phase by 3 h in the morning. This extended the nocturnal melatonin rise by 2-3 h in the morning and all 6 tammars gave birth on Day 31.2 +/- 1.0. A transient pulse of peripheral plasma prolactin (81.5 +/- 31.0 ng/ml) was detected at dawn during 15L:9D in all 6 tammars but was not observed in any of them 5 days after exposure to 12L:12D. Together these results do not support the time of day hypothesis but indicate that increase in duration of the nocturnal melatonin rise mediates the effects of decreased daylength on reactivation of the corpus luteum, and that the first detectable result of this may be the abolition of a transient prolactin pulse at the end of the dark phase.  相似文献   

19.
The aim of this study was to determine whether advancing the seasonal changes associated with rams by treatment with exogenous melatonin and allowing the rams previous sexual experience would increase the proportion of anoestrous ewes ovulating in early July. North Country Mule ewes (n = 225) were grouped by live body weight and body condition score and allocated randomly to the following treatments: (i) isolated from rams (control; n = 25); (ii) introduced to rams (treatment 2); (iii) introduced to rams that had mated with ewes during the previous 2 days (treatment 3); (iv) introduced to rams implanted with melatonin (treatment 4); and (v) introduced to rams that were implanted with melatonin and had mated with ewes during the previous 2 days (treatment 5). Treatments 2-5 were replicated (2 x 25 ewes) and two rams were introduced to each replicate group. Introductions began on 4 July and were completed by 11 July. The rams were withdrawn from the ewes after 8 days. Melatonin was administered as a subcutaneous implant (Regulin((R))) on 22 May and again on 20 June. Blood samples were taken from all rams to determine plasma melatonin and testosterone concentrations (19 samples in 6 h). The behaviour of the sheep was videotaped continuously during the first 3 h after the ram was introduced. Ovulation was detected by an increase in plasma progesterone concentrations from < 0.5 ng ml(-1) to > 0.5 ng ml(-1). Mean +/- SE plasma melatonin concentrations were 649.7 +/- 281.4 and 18.3 +/- 2.4 pg ml(-1) in rams with and without melatonin implants, respectively (P < 0.001). Melatonin implants also increased plasma testosterone concentrations from 4.30 +/- 1.88 to 10.10 +/- 1.10 ng ml(-1) (P < 0.01), the libido of the rams and the proportion of ewes that ovulated in response to the rams (43 and 56% (treatments 4 and 5) versus 24% (treatments 2 and 3)). In conclusion, implanting rams with melatonin before introducing them to seasonally anoestrous ewes increases the proportion of ewes that ovulate in response to introduction of a ram, but previous sexual experience of rams appears to have little or no effect.  相似文献   

20.
A heterologous radioimmunoassay system developed for the sheep was shown to measure FSH in the plasma of the blue fox. FSH concentrations throughout the year showed a circannual rhythm with the highest values (61.6 +/- 14.8 ng/ml) occurring shortly before or at the onset of the mating season, a pattern similar to that of LH. The concentration of FSH then declined when androgen concentrations and testicular development were maximal at the time of the mating season (March to May). Thereafter, concentrations remained low (25.2 +/- 4.1 ng/ml) in contrast to those of LH. Implantation of melatonin in August and in February maintained high plasma values of FSH after the mating season (142.3 +/- 16.5 ng/ml) in association with a maintenance of testicular development and of the winter coat. The spring rise of prolactin was suppressed by melatonin treatment. The release of FSH after LHRH injection was also increased during this post-mating period in melatonin-treated animals, in contrast to the response of the control animals which remained low or undetectable. These results suggest that changes both in the secretions of FSH and prolactin may be involved in the prolongation of testicular activity and in the suppression of the spring moult after melatonin administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号