首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: To develop a method for in-vivo kinematic study of normal forearm rotation using computed tomographic (CT) images and a custom apparatus which allows for control of amount of forearm rotation. METHODS: The forearm of one asymptomatic volunteer was CT-scanned in five positions: neutral, 60 degrees pronation, maximal pronation, 60 degrees supination, and maximal supination. Surface registration of the pronated/supinated image datasets with the neutral position was performed. The resulting transformation matrices were decomposed into finite helical axis (FHA) parameters. Kinematics were expressed as motion of the radius relative to the ulna. RESULTS: The axes of the forearm passed through the volar region of the radial head at the proximal radioulnar joint (PRUJ), extending towards the dorsal region of the ulnar head at the distal radioulnar joint (DRUJ). Distinct FHAs were calculated for each forearm position analyzed relative to neutral rotation. Forearm pronation FHAs were different from forearm supination FHAs. CONCLUSIONS: Our experimental methodology is capable of describing the in-vivo kinematics of the forearm with good accuracy and reliability. Future in-vivo studies would need to be performed using a larger sample size to further validate our preliminary results. An ideal clinical application of this methodology would be in the comparative study of patients with forearm dysfunction.  相似文献   

2.
A method for measuring three-dimensional kinematics that incorporates the direct cross-registration of experimental kinematics with anatomic geometry from Computed Tomography (CT) data has been developed. Plexiglas registration blocks were attached to the bones of interest and the specimen was CT scanned. Computer models of the bone surface were developed from the CT image data. Determination of discrete kinematics was accomplished by digitizing three pre-selected contiguous surfaces of each registration block using a three-dimensional point digitization system. Cross-registration of bone surface models from the CT data was accomplished by identifying the registration block surfaces within the CT images. Kinematics measured during a biomechanical experiment were applied to the computer models of the bone surface. The overall accuracy of the method was shown to be at or below the accuracy of the digitization system used. For this experimental application, the accuracy was better than +/-0.1mm for position and 0.1 degrees for orientation for linkage digitization and better than +/-0.2mm and +/-0.2 degrees for CT digitization. Surface models of the radius and ulna were constructed from CT data, as an example application. Kinematics of the bones were measured for simulated forearm rotation. Screw-displacement axis analysis showed 0.1mm (proximal) translation of the radius (with respect to the ulna) from supination to neutral (85.2 degrees rotation) and 1.4mm (proximal) translation from neutral to pronation (65.3 degrees rotation). The motion of the radius with respect to the ulna was displayed using the surface models. This methodology is a useful tool for the measurement and application of rigid-body kinematics to computer models.  相似文献   

3.
The use of registration techniques to determine motion transformations noninvasively has become more widespread with the increased availability of the necessary software. In this study, three surface registration techniques were used to generate carpal bone kinematic results from a single cadaveric wrist specimen. Surface contours were extracted from specimen computed tomography volume images of the forearm, carpal, and metacarpal bones in four arbitrary positions. Kinematic results from each of three registration techniques were compared with results derived from multiple spherical markers fixed to the specimen. Kinematic accuracy was found to depend on the registration method and bone size and shape. In general, rotation errors of the capitate and scaphoid were less than 0.5 deg for all three techniques. Rotation errors for the other bones were generally less than 2 deg, although error for the trapezoid was greater than 2 deg in one technique. Translation errors of the bones were generally less than 1 mm, although errors of the trapezoid and trapezium were greater than 1 mm for two techniques. Tradeoffs existed in each registration method between image processing time and overall kinematic accuracy. Markerless bone registration (MBR) can provide accurate measurements of carpal kinematics and can be used to study the noninvasive, three-dimensional in vivo kinematics of the wrist and other skeletal joints.  相似文献   

4.
The in-vitro, three dimensional kinematic characteristics of the human ankle and subtalar joint were investigated in this study. The main goals of this investigation were: 1) To determine the range of motion of the foot-shank complex and the associated range of motion of the ankle and subtalar joints; 2) To determine the kinematic coupling characteristics of the foot-shank complex, and 3) To identify the relationship between movements at the ankle and subtalar joints and the resulting motion produced between the foot and the shank. The tests were conducted on fifteen fresh amputated lower limbs and consisted of incrementally displacing the foot with respect to the shank while the motion of the articulating bones was measured through a three dimensional position data acquisition system. The kinematic analysis was based on the helical axis parameters describing the incremental displacements between any two of the three articulating bones and on a joint coordinate system used to describe the relative position between the bones. From the results of this investigation it was concluded that: 1) The range of motion of the foot-shank complex in any direction (dorsiflexion/plantarflexion, inversion/eversion and internal rotation/external rotation) is larger than that of either the ankle joint or the subtalar joint.; 2) Large kinematic coupling values are present at the foot-shank complex in inversion/eversion and in internal rotation/external rotation. However, only a slight amount of coupling was observed to occur in dorsiflexion/plantarflexion.; 3) Neither the ankle joint nor the subtalar joint are acting as ideal hinge joints with a fixed axis of rotation.; 4) Motion of the foot-shank complex in any direction is the result of rotations at both the ankle and the subtalar joints. However, the contribution of the ankle joint to dorsiflexion/plantarflexion of the foot-shank complex is larger than that of the subtalar joint and the contribution of the subtalar joint to inversion/eversion is larger than that of the ankle joint.; 5) The ankle and the subtalar joints have an approximately equal contribution to internal rotation/external rotation movements of the foot-shank complex.  相似文献   

5.
A digital database of wrist bone anatomy and carpal kinematics   总被引:2,自引:0,他引:2  
The skeletal wrist consists of eight small, intricately shaped carpal bones. The motion of these bones is complex, occurs in three dimensions, and remains incompletely defined. Our previous efforts have been focused on determining the in vivo three-dimensional (3-D) kinematics of the normal and abnormal carpus. In so doing we have developed an extensive database of carpal bone anatomy and kinematics from a large number of healthy subjects. The purpose of this paper is to describe that database and to make it available to other researchers. CT volume images of both wrists from 30 healthy volunteers (15 males and 15 females) were acquired in multiple wrist positions throughout the normal range of wrist motion. The outer cortical surfaces of the carpal bones, radius and ulna, and proximal metacarpals were segmented and the 3-D motion of each bone was calculated for each wrist position. The database was constructed to include high-resolution surface models, measures of bone volume and shape, and the 3-D kinematics of each segmented bone. The database does not include soft tissues of the wrist. While there are numerous digital anatomical databases, this one is unique in that it includes a large number of subjects and it contains in vivo kinematic data as well as the bony anatomy.  相似文献   

6.
A mathematical model of Ihe human upper limb was developed based on high-resolution medical images of the muscles and bones obtained from the Visible Human Male ( HM) project. Three-dimensional surfaces of the muscles and bones were reconstructed from Computed Tomography (CT) images and Color Cryosection images obtained from the VHM cadaver. Thirteen degrees of freedom were used to describe the orientations of seven bones in the model: clavicle, scapula, humerus, radius, ulna, carpal bones, and hand. All of the major articulations from the shoulder girdle down to the wrist were included in the model. The model was actuated by 42 muscle bundles, which represented the actions of 26 muscle groups in the upper limb. The paths of the muscles were modeled using a new approach called the Obstacle-set Method (33) The calculated paths of the muscles were verified by comparing the muscle moment arms computed in the model with the results of anatomical studies reported in the literature, In-vivo measurements of maximum isometric muscle torques developed at the shoulder, elbow, and wrist were also used to estimate the architectural properties of each musculotendon actuator in the model. The entire musculoskeletal model can be reconstructed using the data given in this paper, along with information presented in a companion paper which defines the kinematic structure of the model (26)  相似文献   

7.
The development of a novel instrumented implant for ulnar head replacement is presented in this study. This implant was instrumented with strain gauges to quantify bending moments about the anatomic axes of the distal ulna, and subsequently the distal radioulnar joint (DRUJ) reaction force magnitude. The implant was surgically inserted in seven cadaveric upper extremities, which were subsequently mounted in a custom joint simulator. Simulated active unresisted pronation and supination motion trials were conducted using computer-controlled pneumatic actuators to simulate forearm musculature. Passive (unloaded) trials were also conducted. The reaction force across the DRUJ ranged from 2 to 10 N in magnitude during this unresisted motion. Increased bending moment magnitudes were measured when the forearm was positioned in supination compared to pronation. The magnitude of joint bending moments showed a consistent pattern with forearm position, regardless of simulated active or passive rotation, or supination and pronation motion trials. This result illustrates that the primary influence on joint load is likely the position and contact with the radial articulation. This study of DRUJ loading should be useful for biomechanical modeling, implant design considerations and improved knowledge of articular mechanics.  相似文献   

8.
A mathematical model of the human upper limb was developed based on high-resolution medical images of the muscles and bones obtained from the Visible Human Male (VHM) project. Three-dimensional surfaces of the muscles and bones were reconstructed from Computed Tomography (CT) images and Color Cryosection images obtained from the VHM cadaver. Thirteen degrees of freedom were used to describe the orientations of seven bones in the model: clavicle, scapula, humerus, radius, ulna, carpal bones, and hand. All of the major articulations from the shoulder girdle down to the wrist were included in the model. The model was actuated by 42 muscle bundles, which represented the actions of 26 muscle groups in the upper limb. The paths of the muscles were modeled using a new approach called the Obstacle-set Method [33]. The calculated paths of the muscles were verified by comparing the muscle moment arms computed in the model with the results of anatomical studies reported in the literature. In-vivo measurements of maximum isometric muscle torques developed at the shoulder, elbow, and wrist were also used to estimate the architectural properties of each musculotendon actuator in the model. The entire musculoskeletal model can be reconstructed using the data given in this paper, along with information presented in a companion paper which defines the kinematic structure of the model [26].  相似文献   

9.
Measuring three-dimensional (3D) forearm rotational motion is difficult. We aimed to develop and validate a new method for analyzing 3D forearm rotational motion. We proposed biplane fluoroscopic intensity-based 2D–3D matching, which employs automatic registration processing using the evolutionary optimization strategy. Biplane fluoroscopy was conducted for forearm rotation at 12.5 frames per second along with computed tomography (CT) at one static position. An arm phantom was embedded with eight stainless steel spheres (diameter, 1.5 mm), and forearm rotational motion measurements using the proposed method were compared with those using radiostereometric analysis, which is considered the ground truth. As for the time resolution analysis, we measured radiohumeral joint motion in a patient with posterolateral rotatory instability and compared the 2D–3D matching method with the simulated multiple CT method, which uses CTs at multiple positions and interpolates between the positions. Rotation errors of the radius and ulna between these two methods were 0.31 ± 0.35° and 0.32 ± 0.33°, respectively, translation errors were 0.43 ± 0.35 mm and 0.29 ± 0.25 mm, respectively. Although the 2D–3D method could detect joint dislocation, the multiple CT method could not detect quick motion during joint dislocation. The proposed method enabled high temporal- and spatial-resolution motion analyses with low radiation exposure. Moreover, it enabled the detection of a sudden motion, such as joint dislocation, and may contribute to 3D motion analysis, including joint dislocation, which currently cannot be analyzed using conventional methods.  相似文献   

10.
The purpose of this study was to determine if the repeatability and pattern of elbow kinematics are affected by changing the relative magnitudes of loads applied to muscles around the elbow in vitro. In eight cadaveric upper extremities, passive and three methods of simulated active elbow flexion were tested with the forearm maintained in both pronation and supination. Passive flexion involved moving the elbow manually through a full arc of motion. Simulated active flexion used a custom designed loading system to generate elbow motion by applying loads to various tendons via pneumatic actuators. Three different simulated active loading protocols, with loading ratios based on muscle activity and physiologic cross-sectional area, were tested. Testing was performed initially on an intact elbow, and then an unstable elbow model created by transection of the lateral collateral ligament (i.e. the radial and lateral ulnar collateral ligaments). An electromagnetic tracking device was used to measure rotation of the ulna relative to the humerus. Varus-valgus angulation and internal-external rotation were less repeatable during passive flexion than simulated active flexion, regardless of the loading ratio used, in both the intact (p<0.05) and unstable (p<0.05) elbows. Throughout the arc of flexion, the motion pathways were similar for the three simulated active motion protocols employed in this study (p>0.05). The pathways followed during passive motion were different from those generated with simulated active motion, especially in the unstable elbow with the forearm supinated (p<0.001). These results suggest that using simulated active motion rather than manual passive motion can improve the repeatability of elbow kinematics generated in the laboratory, and that a wide range of muscle loading ratios may produce similar kinematic output.  相似文献   

11.
Fiber network theory was developed to describe cloth, a thin material with strength in the fiber directions. The interosseous ligament (IOL) of the forearm is a broad, thin ligament with highly aligned fibers. The objectives of this study were to develop a model of the stress and strain distributions in the IOL, based on fiber network theory, to compare the strains from the model with the experimentally measured strains, and to evaluate the force distribution across the ligament fibers from the model. The geometries of the radius, ulna, and IOL were reconstructed from CT scans. Position and orientation of IOL insertion sites and force in the IOL were measured during a forearm compression experiment in pronation, neutral rotation, and supination. An optical image-based technique was used to directly measure strain in two regions of the IOL in neutral rotation. For the network model, the IOL was represented as a parametric ruled three-dimensional surface, with rulings along local fiber directions. Fiber strains were calculated from the deformation field, and fiber stresses were calculated from the strains using average IOL tensile properties from a previous study. The in situ strain in the IOL was assumed uniform and was calculated so that the net force predicted by the network model in neutral rotation matched the experimental result. The net force in the IOL was comparable to experimental results in supination and pronation. The model predicted higher stress and strain in fibers near the elbow in neutral rotation, and higher stresses in fibers near the wrist in supination. Strains in neutral forearm rotation followed the same trends as those measured experimentally. In this study, a model of stress and strain in the IOL utilizing fiber network theory was successfully implemented. The model illustrates variations in the stress and strain distribution in the IOL. This model can be used to show surgeons how different fibers are taut in different forearm rotation positions-this information is important for understanding the biomechanical role of the IOL and for planning an IOL reconstruction.  相似文献   

12.
The purpose of this study was to compare passive to active testing on the kinematics of the elbow and forearm using a load-controlled testing apparatus that simulates muscle loading. Ten fresh-frozen upper extremities were tested. Active control was achieved by employing computer-controlled pneumatic actuators attached to the tendons of the brachialis, biceps, triceps, brachioradialis and pronator teres. Motion of the radius and ulna relative to the humerus was measured with an electromagnetic tracking system. Active elbow flexion produced more repeatable motion of the radius and ulna than when tested passively (p<0.05). The decrease in variability, as determined from the standard deviation of five successive trials in each specimen, was 76.5 and 58.0% for the varus-valgus and internal-external motions respectively (of the ulna relative to the humerus). The variability in flexion during simulated active forearm supination was 30.6% less than during passive testing. Thus under passive control, in the absence of stability provided by muscular loading across the joint, these uncontrolled motions produce increased variability amongst trials. The smooth and repeatable motions resulting from active control, that probably model more closely the physiologic state, appear to be beneficial in the evaluation of unconstrained kinematics of the intact elbow and forearm.  相似文献   

13.
In the sprawling gait of Varanus exanthematicus, the bicondylar distal humerus requires both the radius and ulna to rotate in the same direction. The joints between the radius and radiale and between the ulna and ulnare and pisiform accomodate these specific rotations. A ligament system between radius, ulna, radiale, and ulnare causes the radius and ulna to approximate one another during external rotation of the forearm. This approximation is conveyed distally resulting in a narrowing of the hand during external rotation of radius and ulna or during pronation of the free hand. The significance of these and related linkages is discussed.  相似文献   

14.
Continuous passive motion (CPM) is an orthopedic treatment or a physiotherapy and has been applied after surgery. After surgery for the injured ulna collateral ligament (UCL) which is a major clinical case in the elbow joint, the reaction force at the hand of the patient increases and may be excessively large due to an increase of the joint stiffness. For this, it will be effective to reduce the excessive reaction force by controlling pro-/supination of forearm. The UCL in the elbow joint is extended due to pro-/supination of forearm, but the excessive extension may aggravate the injury of the UCL. Thus, it is required to suppress both the excessive extension of the UCL and the reaction force. In this paper, a control scheme of CPM device that can suppress both the excessive extension of the UCL and the reaction force is proposed, and its effectiveness is confirmed from the experimental results.  相似文献   

15.
The aims of this study were: (i) to present the kinematic and electromyographic patterns of the choku-zuki punch performed by 18 experienced karatekas from the Portuguese team, and (ii) to compare it with the execution of 19 participants without any karate experience. The kinematic and electromyographic data were collected from the arm and forearm during the execution of the specific punch. A two-way analysis of variance (ANOVA) was used with significant level set at p ? 0.05. We found that the kinematic and neuromuscular activity in this punch occurs within 400 ms. Muscle activities and kinematic analysis presented a sequence of activation bracing a near-distal end, with the arm muscles showing greater intensity of activation than muscles in the forearm. In the skill performance, the arm, flexion and internal rotation, and the forearm extension and pronation movements were executed with smaller amplitude in the karate group. Based on the results of this study, the two groups’ presented distinct kinematic and electromyographic patterns during the performance of the choku-zuki punch.  相似文献   

16.
17.
We propose to model planar movements between two human segments by means of rolling-without-slipping kinematic pairs. We compute the path traced by the instantaneous center of rotation (ICR) as seen from the proximal and distal segments, thus obtaining the fixed and moving centrodes, respectively. The joint motion is then represented by the rolling-without-slipping of one centrode on the other. The resulting joint kinematic model is based on the real movement and accounts for nonfixed axes of rotation; therefore it could improve current models based on revolute pairs in those cases where joint movement implies displacement of the ICR. Previous authors have used the ICR to characterize human joint motion, but they only considered the fixed centrode. Such an approach is not adequate for reproducing motion because the fixed centrode by itself does not convey information about body position. The combination of the fixed and moving centrodes gathers the kinematic information needed to reproduce the position and velocities of moving bodies. To illustrate our method, we applied it to the flexion-extension movement of the head relative to the thorax. The model provides a good estimation of motion both for position variables (mean R(pos)=0.995) and for velocities (mean R(vel)=0.958). This approach is more realistic than other models of neck motion based on revolute pairs, such as the dual-pivot model. The geometry of the centrodes can provide some information about the nature of the movement. For instance, the ascending and descending curves of the fixed centrode suggest a sequential movement of the cervical vertebrae.  相似文献   

18.
External rotation of the foot has been implicated in high ankle sprains. Recent studies by this laboratory, and others, have suggested that torsional traction characteristics of the shoe-surface interface may play a role in ankle injury. While ankle injuries most often involve damage to ligaments due to excessive strains, the studies conducted by this laboratory and others have largely used surrogate models of the lower extremity to determine shoe-surface interface characteristics based on torque measures alone. The objective of this study was to develop a methodology that would integrate a motion analysis-based kinematic foot model with a computational model of the ankle to determine dynamic ankle ligament strains during external foot rotation. Six subjects performed single-legged, internal rotation of the body with a planted foot while a marker-based motion analysis was conducted to track the hindfoot motion relative to the tibia. These kinematic data were used to drive an established computational ankle model. Ankle ligament strains, as a function of time, were determined. The anterior tibiofibular ligament (ATiFL) experienced the highest strain at 9.2±1.1%, followed by the anterior deltoid ligament (ADL) at 7.8±0.7%, averaged over the six subjects. The peak ATiFL strain occurred prior to peak strain in the ADL in all subjects. This novel methodology may provide new insights into mechanisms of high ankle sprains and offer a basis for future evaluations of shoe-surface interface characteristics using human subjects rather than mechanical surrogate devices.  相似文献   

19.
Forelimb proportions have been used to infer locomotor adaptation in Australopithecus afarensis. However, little is known about proportions among individual forelimb segments in extant or fossil hominoids. The partial A. afarensis skeleton A.L. 438-1 and the more complete skeleton A.L. 288-1 provide the opportunity to assess relative length of the arm, forearm, wrist, and palm. We compare scaling relationships between pairs of forelimb bones of extant hominoids and A. afarensis, and length of individual forelimb elements to a body size surrogate. Hylobatids, and to a lesser extent orangutans, have the longest forelimb bones relative to size, although the carpus varies little among taxa, perhaps due to functional constraints of the wrist. Pan species are unique in having long metacarpals relative to ulnar length, demonstrating that they probably differ from the common chimp-human ancestor, and also that developmental mechanisms can be altered to results in differential growth of individual forelimb segments. A. afarensis has no forelimb bones that are significantly longer than those of humans for its size. It falls within the range of variation seen in modern humans for all comparisons relative to size, but appears to differ from the typical human brachial index due to a slightly shorter humerus and/or slightly longer ulna. It has short metacarpals like humans only among hominoids. Thus, while Pan may have elongated its metacarpus relative to ulnar length, A. afarensis may have reduced the length of its metacarpals and possibly its humerus relative to body size from the primitive condition.  相似文献   

20.
The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号