首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optimal expansion, trafficking, and function of adoptively transferred CD8(+) T cells are parameters that currently limit the effectiveness of antitumor immunity to established tumors. In this study, we addressed the mechanisms by which priming of self tumor-associated Ag-specific CD8(+) T cells influenced antitumor functionality in the presence of the inflammatory cytokine IL-12. In vitro priming of mouse tumor-specific CD8(+) T cells in the presence of IL-12 induced a diverse and rapid antitumor effector activity while still promoting the generation of memory cells. Importantly, IL-12-primed effector T cells dramatically reduced the growth of well-established s.c. tumors and significantly increased survival to highly immune resistant, established intracranial tumors. Control of tumor growth by CD8(+) T cells was dependent on IL-12-mediated upregulation of the high-affinity IL-2R (CD25) and a subsequent increase in the sensitivity to IL-2 stimulation. Finally, IL-12-primed human PBMCs generated tumor-specific T cells both phenotypically and functionally similar to IL-12-primed mouse tumor-specific T cells. These results highlight the ability of IL-12 to obviate the strict requirement for administering high levels of IL-2 during adoptive cell transfer-mediated antitumor responses. Furthermore, acquisition of a potent effector phenotype independent of cytokine support suggests that IL-12 could be added to adoptive cell transfer clinical strategies in cancer patients.  相似文献   

2.
Induction of antitumor immunity involves the presence of both CD8(+) CTLs and CD4(+) Th cells specific for tumor-associated Ags. Attempts to eradicate cancer by adoptive T cell transfer have been limited due to the difficulty of generating T cells with defined Ag specificity. The current study focuses on the generation of CTL and Th cells against the tumor-associated Ag HER2 using autologous dendritic cells (DC) derived from CD34(+) hematopoietic progenitor cells which have been retrovirally transduced with the human epidermal growth factor receptor 2 (HER2) gene. HER2-transduced DC elicited HER2-specific CD8(+) CTL that lyse HER2-overexpressing tumor cells in context of distinct HLA class I alleles. The induction of both HLA-A2 and -A3-restricted HER2-specific CTL was verified on a clonal level. In addition, retrovirally transduced DC induced CD4(+) Th1 cells recognizing HER2 in context with HLA class II. HLA-DR-restricted CD4(+) T cells were cloned that released IFN-gamma upon stimulation with DC pulsed with the recombinant protein of the extracellular domain of HER2. These data indicate that retrovirally transduced DC expressing the HER2 molecule present multiple peptide epitopes and subsequently elicit HER2-specific CTL and Th1 cells. The method of stimulating HER2-specific CD8(+) and CD4(+) T cells with retrovirally transduced DC was successfully implemented for generating HER2-specific CTL and Th1 clones from a patient with HER2-overexpressing breast cancer. The ability to generate and expand HER2-specific, HLA-restricted CTL and Th1 clones in vitro facilitates the development of immunotherapy regimens, in particular the adoptive transfer of both autologous HER2-specific T cell clones in patients with HER2-overexpressing tumors without the requirement of defining immunogenic peptides.  相似文献   

3.
BACKGROUND: The adoptive transfer of ex vivo-induced tumor-specific T-cell lines provides a promising approach for cancer immunotherapy. We have demonstrated previously the feasibility of inducing in vitro long-term anti-tumor cytotoxic T-cell (CTL) lines directed against different types of solid tumors derived from both autologous and allogeneic PBMC. We have now investigated the possibility of producing large amounts of autologous anti-tumor CTL, in compliance with good manufacturing practices, for in vivo use. METHODS: Four patients with advanced solid tumors (two sarcoma, one renal cell cancer and one ovarian cancer), who had received several lines of anticancer therapy, were enrolled. For anti-tumor CTL induction, patient-derived CD8-enriched PBMC were stimulated with DC pulsed with apoptotic autologous tumor cells (TC) as the source of tumor Ag. CTL were then restimulated in the presence of TC and expanded in an Ag-independent way. RESULTS: Large amounts of anti-tumor CTL (range 14-20 x 10(9)), which displayed high levels of cytotoxic activity against autologous TC, were obtained in all patients by means of two-three rounds of tumor-specific stimulation and two rounds of Ag-independent expansion, even when a very low number of viable TC was available. More than 90% of effector cells were CD3(+) CD8(+) T cells, while CD4(+) T lymphocytes and/or NK cells were less than 10%. DISCUSSION: Our results demonstrate the feasibility of obtaining large quantities of anti-tumor specific CTL suitable for adoptive immunotherapy approaches.  相似文献   

4.
A number of tumor studies have indicated a link between CD4 help and the magnitude and persistence of CTL activity; however, the mechanisms underlying this have been largely unclear. To evaluate and determine the mechanisms by which CD4(+) T cells synergize with CD8(+) T cells to prevent tumor growth, we used the novel technique of monitoring in vivo CTL by labeling target cells with CFSE. This approach was supported by the direct visualization of CTL using peptide-MHC tetramers to follow tumor-specific T cells. The data presented demonstrate that while cotransfer of Ag-specific CD4(+) T cells was not required for the generation of CTLs, because adoptive transfer of CD8(+) T cells alone was sufficient, CD4(+) T cells were required for the maintenance of CD8(+) T cell numbers. Our data suggest that there is a correlation among the number of CD8(+) T cells, in vivo CTL function, and IFN-gamma production, with no evidence of a partial or nonresponsive phenotype among tetramer-positive cells. We also show that CD4(+) T cells are required for CD8(+) T cell infiltration of the tumor.  相似文献   

5.
Interleukin-10 (IL-10) is widely known as an immunosuppressive cytokine by virtue of its ability to inhibit macrophage-dependent antigen presentation, T-cell proliferation, and Th1 cytokine secretion. However, several studies have challenged the perception of IL-10 solely as an immunosuppressive cytokine. As part of an investigation on potentiation of the cytotoxic activity of human papillomavirus E7-specific CD8(+) cytotoxic T lymphocytes (CTL) for adoptive transfusions to cervical cancer patients, we found that IL-10 in combination with IL-2, unlike several other combinations, including IL-2 with IL-12, gamma interferon (IFN-gamma), tumor necrosis factor alpha, and transforming growth factor beta, was able to consistently increase cytotoxicity. This augmentation in cytotoxic activity correlated with a significant increase in the cytoplasmic accumulation of perforin as detected by fluorescence-activated cell sorter. Surface expression of both the alpha and beta chains of the CD8 heterodimeric coreceptor and CD56 molecules was increased by exposure of CTL to IL-10. More importantly, we found that administration of IL-10 in combination with IL-2 after antigen stimulation consistently increased the intracellular expression of Th1 cytokines (i.e., IFN-gamma and IL-2) compared to results for control CD8(+) T cells cultured in IL-2 alone. In kinetic studies, proliferation, intracellular perforin levels, cytotoxic activity, and IFN-gamma expression were consistently elevated in CTL cultures containing IL-10 compared to control cultures, both at early and late time points following stimulation. In contrast, intracellular IL-2 expression was consistently increased only at early time points following stimulation with autologous tumor cells or solid-phase anti-CD3 antibody. Taken together, these data support the use of IL-10 in combination with IL-2 for the in vitro expansion and potentiation of tumor-specific CTL for clinical use in the therapy of cancer.  相似文献   

6.
Dengue hemorrhagic fever, the severe form of dengue virus infection, is believed to be an immunopathological response to a secondary infection with a heterologous serotype of dengue virus. Dengue virus capsid protein-specific CD4(+) cytotoxic T-lymphocyte (CTL) clones were shown to be capable of mediating bystander lysis of non-antigen-presenting target cells. After activation by anti-CD3 or in the presence of unlabeled antigen-presenting target cells, these clones could lyse both Jurkat cells and HepG2 cells as bystander targets. Lysis of HepG2 cells suggests a potential role for CD4(+) CTL in the liver involvement observed during dengue virus infection. Three CD4(+) CTL clones were demonstrated to lyse cognate, antigen-presenting target cells by a mechanism that primarily involves perforin, while bystander lysis occurred through Fas/Fas ligand interactions. In contrast, one clone used a Fas/Fas ligand mechanism to lyse both cognate and bystander targets. Cytokine production by the CTL clones was also examined. In response to stimulation with D2 antigen, CD4(+) T-cell clones produced gamma interferon, tumor necrosis factor alpha (TNF-alpha) and TNF-beta. The data suggest that CD4(+) CTL clones may contribute to the immunopathology observed upon secondary dengue virus infections through direct cytolysis and/or cytokine production.  相似文献   

7.
A previous study using a Nef-defective human immunodeficiency virus type 1 (HIV-1) mutant suggested that Nef-mediated down-regulation of HLA class I on the infected cell surface affects the cytolytic activity of HIV-1-specific cytotoxic T-lymphocyte (CTL) clones for HIV-1-infected primary CD4(+) T cells. We confirmed this effect by using a nef-mutant HIV-1 strain (NL-M20A) that expresses a Nef protein which does not induce down-regulation of HLA class I molecules but is otherwise functional. HIV-1-specific CTL clones were not able to kill primary CD4(+) T cells infected with a Nef-positive HIV-1 strain (NL-432) but efficiently lysed CD4(+) T cells infected with NL-M20A. Interestingly, CTL clones stimulated with NL-432-infected CD4(+) T cells were able to produce cytokines, albeit at a lower level than when stimulated with NL-M20A-infected CD4(+) T cells. This indicates that Nef-mediated HLA class I down-regulation affects CTL cytokine production to a lesser extent than cytolytic activity. Replication of NL-432 was partially suppressed in a coculture of HIV-1-infected CD4(+) T cells and HIV-1-specific CTL clones, while replication of NL-M20A was completely suppressed. These results suggest that HIV-1-specific CD8(+) T cells are able to partially suppress the replication of HIV-1 through production of soluble HIV-1-suppressive factors such as chemokines and gamma interferon. These findings may account for the mechanism whereby HIV-1-specific CD8(+) T cells are able to partially but not completely control HIV-1 replication in vivo.  相似文献   

8.
A chimeric receptor, consisting of the single-chain variable (scFv) domains of an anti-erbB-2 mAb linked via a CD8 membrane-proximal hinge to the Fc receptor γ chain, was expressed in the mouse cytotoxic T lymphocyte (CTL) hybridoma cell line, MD45. This cell line was grafted with the additional specificity to recognise and bind erbB-2-expressing breast carcinoma target cells T47D, MCF-7 and BT-20 in a non-MHC-restricted manner. Tumour cell lysis was antigen-specific since erbB-2-negative tumours were insensitive to lysis by MD45-scFv-anti-erbB-2-γ clones, and lysis of erbB-2+ tumour targets was inhibited in the presence of an anti-erbB-2 mAb. Furthermore, target cell death correlated with the level of chimeric receptor expression on the effector MD45 subclones. Redirected MD45 CTL utilised Fas ligand to induce target cell death since soluble Fas-Fc fusion protein completely inhibited cytolysis. The sensitivity of tumour target cells to Fas ligand was further enhanced by treating them with interferon-γ, a regulator of Fas and downstream signalling components of the Fas pathway. Overall, this study has demonstrated the requirement for successful activation of Fas ligand function in conjunction with cytokine treatment for effective lysis of breast carcinoma target cells mediated by redirected CTL. Received: 23 July 1998 / Accepted: 5 October 1998  相似文献   

9.
10.
EBV transformation of human B cells in vitro results in establishment of immortalized cell lines (lymphoblastoid cell lines (LCL)) that express viral transformation-associated latent genes and exhibit a fixed, lymphoblastoid phenotype. In this report, we show that CD4(+) T cells can modify the differentiation state of EBV-transformed LCL. Coculture of LCL with EBV-specific CD4(+) T cells resulted in an altered phenotype, characterized by elevated CD38 expression and decreased proliferation rate. Relative to control LCL, the cocultured LCL were markedly less susceptible to lysis by EBV-specific CD8(+) CTL. In contrast, CD4(+) T cell-induced differentiation of LCL did not diminish sensitivity of LCL to lysis by CD8(+) CTL specific for an exogenously loaded peptide Ag or lysis by alloreactive CD8(+) CTL, suggesting that differentiation is not associated with intrinsic resistance to CD8(+) T cell cytotoxicity and that evasion of lysis is confined to EBV-specific CTL responses. CD4(+) T cell-induced differentiation of LCL and concomitant resistance of LCL to lysis by EBV-specific CD8(+) CTL were associated with reduced expression of viral latent genes. Finally, transwell cocultures, in which direct LCL-CD4(+) T cell contact was prevented, indicated a major role for CD4(+) T cell cytokines in the differentiation of LCL.  相似文献   

11.
Human papillomavirus (HPV) type 16 (HPV 16) and HPV type 18 (HPV 18) are implicated in the induction and progression of the majority of cervical cancers. Since the E6 and E7 oncoproteins of these viruses are expressed in these lesions, such proteins might be potential tumor-specific targets for immunotherapy. In this report, we demonstrate that recombinant, full-length E7-pulsed autologous dendritic cells (DC) can elicit a specific CD8(+) cytotoxic T-lymphocyte (CTL) response against autologous tumor target cells in three patients with HPV 16- or HPV 18-positive cervical cancer. E7-specific CTL populations expressed strong cytolytic activity against autologous tumor cells, did not lyse autologous concanavalin A-treated lymphoblasts or autologous Epstein-Barr virus-transformed lymphoblastoid cell lines (LCL), and showed low levels of cytotoxicity against natural killer cell-sensitive K562 cells. Cytotoxicity against autologous tumor cells could be significantly blocked by anti-HLA class I (W6/32) and anti-CD11a/LFA-1 antibodies. Phenotypically, all CTL populations were CD3(+)/CD8(+), with variable levels of CD56 expression. CTL induced by E7-pulsed DC were also highly cytotoxic against an allogeneic HLA-A2(+) HPV 16-positive matched cell line (CaSki). In addition, we show that specific lymphoproliferative responses by autologous CD4(+) T cells can also be induced by E7-pulsed autologus DC. E7-specific CD4(+) T cells proliferated in response to E7-pulsed LCL but not unpulsed LCL, and this response could be blocked by anti-HLA class II antibody. Finally, with two-color flow cytometric analysis of intracellular cytokine expression at the single-cell level, a marked Th1-like bias (as determined by the frequency of gamma interferon- and interleukin 4-expressing cells) was observable for both CD8(+) and CD4(+) E7-specific lymphocyte populations. Taken together, these data demonstrate that full-length E7-pulsed DC can induce both E7-specific CD4(+) T-cell proliferative responses and strong CD8(+) CTL responses capable of lysing autologous naturally HPV-infected cancer cells in patients with cervical cancer. These results may have important implications for the treatment of cervical cancer patients with active or adoptive immunotherapy.  相似文献   

12.
Recent studies increasingly point to a pivotal role of CD4(+) T cells in human anti-tumor immune response. Here we show that lymphocytes purified from a tumor-infiltrated lymph node of a melanoma patient that had remained disease free for 10 years after surgical resection of a lymph node metastasis comprised oligoclonal class II HLA-restricted CD4(+) T cells recognizing the autologous tumor cells in vitro. In fact, the CD4(+) T cell clones isolated from these lymphocytes displayed a tumor-specific, cytotoxic activity in addition to a Th1-like cytokine profile. By a genetic approach, a peptide derived from a mutated receptor-like protein tyrosine phosphatase kappa was identified as a novel HLA-DR10-restricted epitope for all the melanoma-specific CD4(+) T cell clones. The immunogenic peptide was shown to contain the mutated residue that was crucial for T cell recognition and activation. Moreover, a systemic immunity against the mutated peptide was detectable in the patient's peripheral blood T lymphocytes obtained during the disease-free period of follow-up. These findings further support the relevance of CD4(+) T cells directed against mutated epitopes in tumor immunity and provide the rationale for a possible usage of mutated, tumor-specific Ags for immunotherapy of human cancer.  相似文献   

13.
Tumor escape and recurrence are major impediments for successful immunotherapy. It is well-documented that the emergence of Ag-loss variants, as well as regulatory mechanisms suppressing T cell function, have been linked to inadequate antitumor activity. However, little is known regarding the role of Fas-mediated cytotoxicity by tumor-specific CD8(+) CTL in causing immune evasion of Fas resistant variants during adoptive immunotherapy. In this study, we made use of an adoptive transfer model of experimental lung metastasis using tumor-specific CTL as a relevant immune-based selective pressure, and wherein the Fas ligand pathway was involved in the antitumor response. Surviving tumor cells were recovered and examined for alterations in antigenic, functional, and biologic properties. We showed that diminished susceptibility to Fas-mediated cytotoxicity in vivo was an important determinant of tumor escape following CTL-based immunotherapy. Tumor escape variants (TEV) recovered from the lungs of CTL-treated mice exhibited more aggressive behavior in vivo. However, these TEV retained relevant MHC class I and tumor Ag expression and sensitivity to CTL via the perforin pathway but reduced susceptibility to Fas-mediated lysis. Moreover, TEV were significantly less responsive to eradication by CTL adoptive immunotherapy paradigms as a consequence of increased Fas resistance. Overall, we identified that Fas(low)-TEV emerged as a direct consequence of CTL-tumor interactions in vivo, and that such an altered neoplastic Fas phenotype compromised immunotherapy efficacy. Together, these findings may have important implications for both tumor progression and the design of immunotherapeutic interventions to confront these selective pressures or escape mechanisms.  相似文献   

14.
Adoptive transfer of antigen-specific cytotoxic T lymphocyte (CTL) into patients holds promise in treating cancer. Such anti-cancer CTL are stimulated by professional antigen-presenting dendritic cells (DC). We hypothesize the gene delivery of various Th1-response cytokines, such as interleukin 7 (IL-7), should further enhance CTL stimulation and activity. However, the issue as to which cell type, DC (paracrine) or the T cell (autocrine), should express a particular Th1 cytokine gene for optimal CTL stimulation has never been addressed. We used adeno-associated virus-2 (AAV) to compare delivery of IL-7 and IL-2 genes into DC or T cells and to exogenous commercial cytokines for generating robust carcinoembryonic antigen (CEA)-specific CTL. AAV/IL-7 transduction of T cells (autocrine delivery) generated CTL with the highest killing capability. Consistent with this, AAV/IL-7 delivery generated T cell populations with the highest proliferation, highest interferon γ expression, highest CD8(+):CD4(+) ratio, highest CD8(+), CD69(+) levels, and lowest CD4(+), CD25(+) (Treg) levels. These data are consistent with higher killing by the AAV/IL-7-altered CTL. These data strongly suggest that IL-7 autocrine gene delivery is optimal for CTL generation. These data also suggest Th1 cytokine autocrine versus paracrine delivery is an important issue for immuno-gene therapy and uncovers new questions into cytokine mechanism of action.  相似文献   

15.
Kidney cancer is a devastating disease; however, biological therapies have achieved some limited success. The murine renal cancer Renca has been used as a model for developing new preclinical approaches to the treatment of renal cell carcinoma. Successful cytokine-based approaches require CD8(+) T cells, but the exact mechanisms by which T cells mediate therapeutic benefit have not been completely identified. After successful biological therapy of Renca in BALB/c mice, we generated CTLs in vitro using mixed lymphocyte tumor cultures. These CTL mediated tumor-specific H-2K(d)-restricted lysis and production of IFN-gamma, TNF-alpha, and Fas ligand (FasL) in response to Renca. CTL used both granule- and FasL-mediated mechanisms to lyse Renca, although granule-mediated killing was the predominant lytic mechanism in vitro. The cytokines IFN-gamma and TNF-alpha increased the sensitivity of Renca cells to CTL lysis by both granule- and FasL-mediated death pathways. Adoptive transfer of these anti-Renca CTL into tumor-bearing mice cured most mice of established experimental pulmonary metastases, and successfully treated mice were immune to tumor rechallenge. Interestingly, we were able to establish Renca-specific CTL from mice gene targeted for perforin (pfp(-/-)) mice. Although these pfp(-/-) CTL showed reduced cytotoxic activity against Renca, their IFN-gamma production in the presence of Renca targets was equivalent to that of wild-type CTL, and adoptive transfer of pfp(-/-) CTL was as efficient as wild-type CTL in causing regression of established Renca pulmonary metastases. Therefore, although granule-mediated killing is of paramount importance for CTL-mediated lysis in vitro, some major in vivo effector mechanisms clearly are independent of perforin.  相似文献   

16.
In this study, we developed a mouse model of adoptive immunotherapy reflecting immune recognition of syngeneic tumor cells naturally expressing an endogenous rejection Ag. Specifically, in a pulmonary metastases model, we examined the potency and maintenance of an antitumor CD8(+) CTL response in vivo, as well as its effectiveness against an "extensive" tumor burden. The approach taken was to first generate tumor-specific CTL from mice challenged with the CMS4 sarcoma coadministered with anti-CTLA4 mAb, which has been shown to facilitate the induction of Ag-specific T cell responses in vivo. An H-2L(d)-restricted nonamer peptide, derived from an endogenous murine leukemia provirus was identified as a CMS4-reactive CTL epitope based upon the following: CTL cross-recognition of another syngeneic tumor cell line (CT26 colon carcinoma) previously characterized to express that gene product; sensitization of Ag-negative lymphoblasts or P815 targets with the peptide; and by cold target inhibition assays. In vivo, the adoptive transfer of CMS4-reactive CTL (> or =1 x 10(6)) resulted in nearly the complete regression of 3-day established lung metastases. Furthermore, mice that rejected CMS4 following a single adoptive transfer of CTL displayed antitumor activity to a rechallenge 45 days later, not only in the lung, but also at a s.c. distal site. Lastly, the adoptive transfer of CTL to mice harboring extensive pulmonary metastases (> 150 nodules) led to a substantial reduction in tumor burden. Overall, these data suggest that the adoptive transfer of tumor-specific CTL may have therapeutic potential for malignancies that proliferate in or metastasize to the lung.  相似文献   

17.
Cytotoxic T lymphocytes (CTL) specific for autologous human melanoma have been successfully generated in vitro from tumor bearing lymph nodes without any stimulation by the autologous tumor. Tumor-involved lymph node cells (LNC) were cultured in serum free medium (AIM-V) containing 1,000 U/ml of recombinant interleukin-2. The best expansion and specific cytotoxicity of CTL were achieved in 4 to 6 weeks of culture. The predominant populations in cultured LNC-derived CTL were CD2+, CD3+, CD4-, CD8+, CD56-, and HLA-DR+ T cells. These data suggested that tumor-involved LNC may provide an alternative source for the generation of tumor-specific CTL in adoptive immunotherapy.  相似文献   

18.
During the priming phase of an antitumor immune response, CD8(+) T cells undergo a program of differentiation driven by professional APCs in secondary lymphoid organs. This leads to clonal expansion and acquisition both of effector functions and a specific adhesion molecule pattern. Whether this program can be reshaped during the effector phase to adapt to the effector site microenvironment is unknown. We investigated this in murine brain tumor models using adoptive transfer of tumor-specific CD8(+) T cells, and in spontaneous immune responses of patients with malignant glioma. Our data show proliferation of Ag-experienced tumor-specific T cells within the brain parenchyma. Moreover, CD8(+) T cells further differentiated in the brain, exhibiting enhanced IFN-gamma and granzyme B expression and induction of alpha(E)(CD103)beta(7) integrin. This unexpected integrin expression identified a subpopulation of CD8(+) T cells conditioned by the brain microenvironment and also had functional consequences: alpha(E)(CD103)beta(7)-expressing CD8(+) T cells had enhanced retention in the brain. These findings were further investigated for CD8(+) T cells infiltrating human malignant glioma; CD8(+) T cells expressed alpha(E)(CD103)beta(7) integrin and granzyme B as in the murine models. Overall, our data indicate that the effector site plays an active role in shaping the effector phase of tumor immunity. The potential for local expansion and functional reprogramming should be considered when optimizing future immunotherapies for regional tumor control.  相似文献   

19.
Following infection by human T cell lymphotrophic virus-I (HTLV-I), high frequencies of polyclonal Tax11-19-reactive CD8(+) T cells can be detected in the peripheral blood. To investigate whether there are differences in the effector functions of these cells, we generated a panel of Tax11-19-reactive T cell clones by single cell sorting of HLA-A2/Tax11-19 tetramer binding CD8(+) T cells followed by repeated stimulation with PHA and IL-2. Examination of the TCRs revealed 17 different T cell clones with unique clonal origins. Nine representative CD8(+) T cell clones showed a similar cytotoxic dose-response activity against Ag-pulsed target cells, even though they express different TCRs. This cytotoxic effector function was not influenced by the engagement of either CD28 or CD2 costimulatory molecules. In contrast to the cytotoxic activity, qualitatively different degrees of proliferative response and cytokine secretion were observed among T cell clones of different clonal origin. The induction of proliferation and cytokine secretion required the engagement of costimulatory molecules, particularly CD2-LFA-3 interaction. These results indicate that functionally diverse, polyclonal CTL populations can be activated specific to a single immunodominant viral epitope; they can manifest virtually identical cytotoxic effector function but have marked differences in proliferation and cytokine secretion.  相似文献   

20.
 The adoptive transfer of in vitro generated tumor-specific cytotoxic T lymphocytes (CTL) is considered a promising perspective in cancer therapy. One possible drawback lies in the inappropriate homing of in vitro cultured lymphocytes, which could be circumvented by introducing the appropriate targeting molecules. Here we describe a protocol that allows a rapid and stable transfection of cytotoxic T cell clones. As a model system we used a CTL clone specific for the melanoma-associated antigen gp100 and a cDNA encoding for murine CD14 containing the variant exen v10 which is supposed to facilitate lymphocyte homing towards the skin. CD44v10 cDNA was ligated into the retroviral vector pMV-7, which was used to transfect the ecotropic GP-E-86 and the amphotropic PA317 cells. After several cycles of transduction to increase the viral titre, supernatants of the amphotropic PA317-CD44v10 line were used for transduction of CD44v10 into a human CTL clone. After three cycles of transduction at 12-h intervals, low but stable expression of CD44v10 was observed throughout the culture period of 10 weeks. The phenotype of the transduced CTL clone was unaltered and the cytotoxic potential was only slightly reduced as compared to the parental clone. The efficiency of stable transduction within a period of 1 week makes the protocol well suited for the in vivo transfer of transduced cells and, in the special case, should guarantee appropriate homing of the transduced CTL clone. Received: 14 August 1997 / Accepted: 20 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号