首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A soluble protein termed "supernatant protein factor" (SPF) that stimulates microsomal squalene epoxidase has been isolated in this laboratory (Ferguson, J.B., and Bloch, K. (1977) J. Biol. Chem. 252, 5381-5385). We now show that the purified protein also stimulates microsomal squalene-2,3-oxide leads to lanosterol cyclase but has no effect on the subsequent conversion of lanosterol to cholesterol. Phospholipid, specifically phosphatidylglycerol or phosphatidylethanolamine, is required for maximal stimulation of the cyclase by purified SPF. The response of microsomal squalene epoxide-lanosterol cyclase to SPF was abolished by pretreatment of the membranes with phospholipase A2 or by low concentrations of deoxycholate, indicating that an intact membrane system is required. Digestion of intact microsomes with trypsin had no effect on the SPF-stimulated cyclase activity. However, in the presence of 0.4% deoxycholate, trypsin completely inhibited microsomal squalene epoxide-lanosterol cyclase. We conclude that the cyclase is located on the luminal side of the microsomal membrane. SPF also significantly enhances the formation of lanosterol from squalene-2,3-oxide already bound to microsomes. This finding is constant with the proposal that SPF influences intramembrane events.  相似文献   

2.
The biosynthesis of C27 sterols (used as a generic term for 3 β-hydroxysterols containing 27 carbon atoms) from squalene and lanosterol, of cholesterol from desmosterol, and of lanosterol from squalene by microsomal fractions from adult rat heart, kidney, and brain was investigated. These conversions required the presence of 105,000g supernatant fraction. Heat treatment of the supernatant fractions resulted in a significant loss of their capacity to stimulate the conversion of squalene to sterols, but the capacity to stimulate conversion of lanosterol to C27 sterols and desmosterol to cholesterol was unaffected. The stimulatory activity (for the conversion of all three substrates) of both the heated and unheated supernatant fractions was lost on treatment with trypsin. Thus the soluble fraction appears to contribute at least two essential protein components for the overall conversion of squalene to cholesterol; one a heat labile protein, which functions in the squalene to lanosterol sequence, and the other a heat-stable protein, which is operative in the pathway between lanosterol and cholesterol. Hepatic supernatant factors required for cholesterol synthesis by liver microsomal enzymes function with heart, kidney, and brain microsomal enzymes in stimulating sterol synthesis from squalene and sterol precursors. Moreover, heart, kidney, and brain supernatant fractions prepared in 100 mm phosphate buffer stimulated cholesterol synthesis from squalene and other sterol precursors by liver microsomes. The supernatant fractions of the extrahepatic tissues prepared in 20 mm phosphate buffer lacked the ability to stimulate the biosynthesis of lanosterol from squalene by liver microsomes but were able to stimulate the conversion of lanosterol to C27 sterols or conversion of desmosterol to cholesterol. These findings indicate that the heat-stable protein factor present in the supernatant fractions from extrahepatic tissues is perhaps identical to that in liver, but that the heat-labile factor in extrahepatic tissues, which catalyzes the cyclization of squalene to lanosterol, differs in some respect from that in liver.  相似文献   

3.
Squalene monooxygenase is a microsomal enzyme that catalyzes the conversion of squalene to 2,3(s)-oxidosqualene, the immediate precursor to lanosterol in the cholesterol biosynthesis pathway. Unlike other flavoprotein monooxygenases that obtain electrons directly from NAD(P)H, squalene monooxygenase requires a redox partner, and for many years it has been assumed that NADPH-cytochrome P450 reductase is this requisite redox partner. However, our studies with hepatic cytochrome P450-reductase-null mice have revealed a second microsomal reductase for squalene monooxygenase. Inhibition studies with antibody to P450 reductase indicate that this second reductase supports up to 40% of the monooxygenase activity that is obtained with microsomes from normal mice. Studies carried out with hepatocytes from CPR-null mice demonstrate that this second reductase is active in whole cells and leads to the accumulation of 24-dihydrolanosterol; this lanosterol metabolite also accumulates in the livers of CPR-null mice, indicating that cholesterol synthesis is blocked at lanosterol demethylase, a cytochrome P450.  相似文献   

4.
Biosynthesis of squalene and sterols by rat aorta   总被引:1,自引:0,他引:1  
The synthesis of nonsaponifiable compounds from radioactive mevalonate by segments of adult rat aorta was studied in vitro. The labeled products consisted largely of substances with the chromatographic and chemical behavior of squalene, lanosterol, lathosterol, and cholesterol. Even after 3 or 4 hr of incubation, the incorporation of mevalonate into squalene was higher than its incorporation into C(27) sterols; cholesterol contained less than 20% of the radioactivity in the total sterols. Lanosterol was the most highly labeled sterol. The level of radioactivity in lathosterol was comparable to the level in cholesterol. Small amounts of radioactivity were found in other sterols. Material with the same mobility on TLC as 7-dehydrocholesterol had less radioactivity than cholesterol, but more than sterols with the mobility of desmosterol. The results of measurements made after short periods of incubation showed that squalene and lanosterol became labeled before the other nonsaponifiable compounds.  相似文献   

5.
Cholesterol is an important molecular component of the plasma membranes of mammalian cells. Its precursor in the sterol biosynthetic pathway, lanosterol, has been argued by Konrad Bloch (Bloch, K. 1965. Science. 150:19-28; 1983. CRC Crit. Rev. Biochem. 14:47-92; 1994. Blonds in Venetian Paintings, the Nine-Banded Armadillo, and Other Essays in Biochemistry. Yale University Press, New Haven, CT.) to also be a precursor in the molecular evolution of cholesterol. We present a comparative study of the effects of cholesterol and lanosterol on molecular conformational order and phase equilibria of lipid-bilayer membranes. By using deuterium NMR spectroscopy on multilamellar lipid-sterol systems in combination with Monte Carlo simulations of microscopic models of lipid-sterol interactions, we demonstrate that the evolution in the molecular chemistry from lanosterol to cholesterol is manifested in the model lipid-sterol membranes by an increase in the ability of the sterols to promote and stabilize a particular membrane phase, the liquid-ordered phase, and to induce collective order in the acyl-chain conformations of lipid molecules. We also discuss the biological relevance of our results, in particular in the context of membrane domains and rafts.  相似文献   

6.
The capacity of liver soluble fraction to stimulate hepatic microsomal conversion of squalene to cholesterol is lost on treatment with trypsin. Heat treatment of the soluble fraction results in a selective loss of its capacity to stimulate conversion of squalene to cholesterol; the ability to stimulate conversion of lanosterol and desmosterol to cholesterol is however retained. It is proposed that the liver soluble fraction contains at least two noncatalytic proteins, one heat-labile and the other heat-stable, which participate in microsomal cholesterol synthesis. The heat-labile protein mediates the conversion of squalene to lanosterol while the heat-stable protein is needed for the conversion of lanosterol and other sterol precursors to cholesterol.  相似文献   

7.
Supernatant protein factor (SPF), a cytosolic protein (Mr = 47,000) stimulates microsomal squalene epoxidase activity 4- to 10-fold in the presence of anionic phospholipid such as phosphatidylglycerol (PG) (Saat, Y., and Bloch, K. (1976) J. Biol. Chem. 251, 5155-5160). This effect has been ascribed to substrate translocation from inactive to active pools within the membrane of the endoplasmic reticulum (Friedlander, E. J., Caras, I. W., Lin, L. F. H., and Bloch, K. (1980) J. Biol. Chem. 255, 8042-8045). Here we show that SPF and PG also stimulate squalene uptake per se by microsomes as well as stimulate squalene epoxidase. Microsomes preloaded with substrate in the presence of SPF and PG show full epoxidase activity. They do not require further addition of these factors during enzyme assay. Addition of SPF and PG to assay mixtures containing microsomes preloaded with substrate in the presence of SPF and PG did not further increase epoxidase activity. We also show that PG tightly binds to microsomes. This binding of PG is essential for the response of microsomal epoxidase to SPF. Solubilized microsomal enzymes have been reconstituted and show high epoxidase activity. In this system, SPF and PG do not stimulate the conversion of squalene into products.  相似文献   

8.
We have examined the membrane topography of cholesterol biosynthesis in cultured human fibroblasts. We fed the cells with radioacetate and then interrupted the biosynthetic pathway so as to trap labeled intermediates in their subcellular locations. We analyzed homogenates of human fibroblasts labeled biosynthetically from radioacetate by centrifugation to equilibrium on sucrose gradients. The following two methods were used to interrupt cholesterol biosynthesis: incubation at 10 degrees C and treatment with 4,4,10 beta-trimethyl-trans-decal-3 beta-ol, a specific inhibitor of oxidosqualene cyclase. Incubation at 10 degrees C caused the accumulation of radiolanosterol at the expense of cholesterol. The lanosterol appeared predominantly at an unusually buoyant density (20% (w/w) sucrose; d = 1.08 g/cm3) as well as at the density normally labeled at 37 degrees C (30% sucrose; d = 1.13 g/cm3). 4,4,10 beta-Trimethyl-trans-decal-3 beta-ol treatment caused the accumulation of labeled squalene and squalene 2,3-oxide. Reversal of the block permitted the label to progress rapidly as a wave into lanosterol and ultimately into cholesterol. The profiles of the three precursors did not coincide, suggesting that they were mostly in different membranes. Squalene was uniquely confined to a density of 1.18 g/cm3 (40% sucrose) while squalene 2,3-oxide appeared in peaks of density 1.08 g/cm3 and 1.13 g/cm3 (20% and 30% sucrose). Lanosterol was in a peak of density 1.13 g/cm3. Pulse-chase experiments showed that lanosterol synthesized in the membranes at 20% sucrose moved rapidly to the membranes at 30% sucrose where it was converted to cholesterol. The density gradient profiles of the following organelle markers also were monitored: plasma membrane, cholesterol mass; Golgi apparatus, galactosyltransferase; endoplasmic reticulum, RNA, 3-hydroxy-3-methylglutaryl-coenzyme A reductase and cytochrome c reductase; peroxisomes, catalase. None of these markers appeared at the buoyant density of 1.08 g/cm3. We conclude that 1) cholesterol biosynthesis may be topographically heterogeneous and 2) newly synthesized squalene 2,3-oxide resides in a buoyant membrane fraction distinct from markers for the major organelles.  相似文献   

9.
The conversion of the 30-carbon atom sterol, lanosterol, to cholesterol by a series of membrane-bound rat liver enzymes requires one major soluble protein called squalene and sterol carrier protein (SCP). This homogenous low-molecular-weight liver protein was previously known to function with membrane-bound enzymes catalyzing cholesterol synthesis from 27-carbon atom precursor sterols. To define characteristics of the multienzyme system catalyzing lanosterol metabolism and the role of SCP in this process, a rapid spectroscopic assay was developed, i.e., formation of Δ5,7-cholestadienol from lanosterol. In addition to SCP, the cofactor requirements for synthesis of cholesterol from lanosterol are NAD, NADPH, and oxygen. Metal ions, reducing agents, heme, or heme-containing proteins are not required. Another homogeneous, low-molecular-weight protein, which accompanies SCP during purification steps, does not support sterol metabolism by membrane-bound enzymes. The broad functions of SCP in cholesterol synthesis and metabolism coupled with its remarkable abundance (~8% of the liver-soluble proteins), ubiquitous occurrence, and recently discovered functions in fatty acid metabolism suggest SCP plays an important regulatory role in lipid metabolism.  相似文献   

10.
11.
Mevalonate metabolism by renal tissue in vitro   总被引:4,自引:0,他引:4  
Previous studies from this laboratory have demonstrated that the kidneys rather than the liver play the major role in the in vivo metabolism of circulating mevalonic acid. Kidneys, however, convert mevalonic acid primarily to the precursors of cholesterol, squalene and lanosterol, rather than to cholesterol. This study was designed to define the specific tissue site within the kidney responsible for mevalonic acid metabolism. Tissue slices from rat and dog renal cortex and medulla and glomeruli and tubules were isolated, and the incorporation of (14)C-labeled mevalonic acid into the nonsaponifiable lipids squalene, lanosterol, and cholesterol was determined in these tissues. The results demonstrate that the renal cortex is the primary site of mevalonic acid metabolism within the kidney and that the glomerulus is responsible for 95% of the mevalonic acid metabolized by the renal cortex. As was the case for the whole kidney, the major metabolites of mevalonate in the glomeruli are squalene and lanosterol.  相似文献   

12.
The in vivo mevalonate incorporation into total nonsaponifiable lipids by chick liver was minimal after hatching and drastically increased between 1-5 days. The hepatic synthesis of different cholesterol precursors emerged sequentially after hatching. Between 1-5 days increased strongly the conversion of mevalonate into squalene and also the formation of oxygenated lanosterol derivatives from squalene. The conversion of squalene became completely active at day 8. Cholesterol formation from lanosterol derivatives was completely activated between 8-11 days. Results in this paper demonstrate for the first time the accumulation of a fraction of nonsaponifiable lipids identified as lanosterol derivatives and cholesterol precursors formed from [5-14C]mevalonate in experiments carried out in vivo. Postnatal evolution of these oxysterols may explain the great increase of 3-hydroxy-3-methylglutaryl-CoA reductase activity found in chick liver between 5-11 days, simultaneous or posterior to the diminution of the oxygenated cholesterol precursors.  相似文献   

13.
The effects of Triton WR 1339, starvation and cholesterol diet on the activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and acetyl-CoA carboxylase and on the rates of mevalonic acid (MVA) biosynthesis from acetyl-CoA and malonyl-CoA in the soluble (140 000 g) and microsomal fractions of rat liver, on the rate of incorporation of these substrates into squalene, cholesterol and lanosterol in the rat liver postmitochondrial fraction and on the rate of fatty acid biosynthesis was studied. The administration of Triton WR 1339 (200 mg per 100 g of body weight twice) stimulated the activity of HMG-CoA reductase and MVA biosynthesis from acetyl-CoA and malonyl-CoA in the intact and solubilized microsomal fractions and had no effect on these parameters in the soluble fraction. Starvation for 36 hrs did not cause inhibition of the reductase activity or MVA biosynthesis from both substrates in the soluble fraction. Alimentary cholesterol significantly increased the activity of HMG-CoA reductase, had no effect on the rate of MVA biosynthesis from acetyl-CoA and stimulated the malonyl-CoA incorporation in to MVA in the soluble fraction. Starvation an alimentary cholesterol inhibited the HMG-CoA reductase activity and MVA biosynthesis from both substrates in the solubilized microsomal fraction. Triton WR 1339 stimulated 4--19-fold the lipid formation in the total unsaponified fraction and its components i.e. squalene, lanosterol, cholesterol, from acetyl-CoA and only insignificantly (1,2--1,7-fold) increased malonyl-CoA incorporation into these compounds. Starvation and alimentary cholesterol repressed lanosterol and cholesterol biosynthesis from acetyl-CoA, decreased malonyl-CoA incorporation into these sterols and had no influence on squalene biosynthesis from the two substrates. Triton WR 1339 and starvation inhibited the acetyl-CoA carboxylase activity, unaffected by alimentary cholesterol. No significant changes in the rate of fatty acid biosynthesis from the substrates were observed. The data obtained provide evidence for the existence of autonomic pathways of MVA biosynthesis localized in the soluble and microsomal fractions of rat liver. The pathway of MVA biosynthesis in the soluble fraction is less sensitive to regulatory factors. Sterol biosynthesis from malonyl-CoA is also more resistant to regulatory effects than sterol biosynthesis from acetyl-CoA. This suggests that HMG-CoA reductase localized in the soluble fraction takes part in MVA and sterol biosynthesis from malonyl-CoA.  相似文献   

14.
1. The subcutaneous and omental adipose tissue of man, the epididymal fat pads of the rat and the fat tail of the Syrian sheep incorporate mevalonic acid into non-saponifiable lipids. 2. Time studies showed that the rates of decarboxylation of mevalonic acid and synthesis of non-saponifiable lipids slightly decline after 20min. but subsequently remain linear for 6hr. 3. About one-half of the incorporated radioactivity in the non-saponifiable lipids was in squalene, 20% in lanosterol and cholesterol, and the remainder in unidentified substances.  相似文献   

15.
Supernatant protein factor (SPF), a protein that stimulates squalene epoxidation, mediates the transfer of squalene between two separable microsomal populations (Kojima, Y., E. J. Friedlander, and K. Bloch, 1981. J. Biol Chem. 256: 7235-7239). We now show that SPF also promotes the transfer of squalene associated with mitochondria or with plasma membranes to total microsomes or rough or smooth microsomal subfractions. Both rough and smooth microsomes have squalene epoxidase activity that is stimulated by SPF.  相似文献   

16.
Genetic disorders of cholesterol biosynthesis result in accumulation of cholesterol precursors and cause severe disease. We examined whether cholesterol precursors alter the stability and properties of ordered lipid domains (rafts). Tempo quenching of a raft-binding fluorophore was used to measure raft stability in vesicles containing sterol, dioleoylphosphatidylcholine, and one of the following ordered domain-forming lipids/lipid mixtures: dipalmitoylphosphatidylcholine (DPPC), sphingomyelin (SM), a SM/cerebroside mixture or a SM/ceramide (cer) mixture. Relative to cholesterol, early cholesterol precursors containing an 8-9 double bond (lanosterol, dihydrolanosterol, zymosterol, and zymostenol) only weakly stabilized raft formation by SM or DPPC. Desmosterol, a late precursor containing the same 5-6 double bond as cholesterol, but with an additional 24-25 double bond, also stabilized domain formation weakly. In contrast, two late precursors containing 7-8 double bonds (lathosterol and 7-dehydrocholesterol) were better raft stabilizers than cholesterol. For vesicles containing SM/cerebroside and SM/cer mixtures the effect of precursor upon raft stability was small, although the relative effects of different precursors were the same. Using both detergent resistance and a novel assay involving fluorescence quenching induced by certain sterols we found cholesterol precursors were displaced from cer-rich rafts, and could displace cer from rafts. Precursor displacement by cer was inversely correlated to precursor raft-stabilizing abilities, whereas precursor displacement of cer was greatest for the most highly raft-stabilizing precursors. These observations support the hypothesis that sterols and cer compete for raft-association (Megha, and London, E. (2004) J. Biol. Chem. 279, 9997-10004). The results of this study have important implications for how precursors might alter raft structure and function in cells, and for the Bloch hypothesis, which postulates that sterol properties are gradually optimized for function along the biosynthetic pathway.  相似文献   

17.
The mevalonate incorporation in vivo into total nonsaponifiable lipids by chick kidneys drastically increased after hatching, reaching similar levels to those previously observed in liver. Cholesterol was the major sterol formed from mevalonate from 11 days onward, while a fraction of polar nonsaponifiable lipid(s) was observed as the major compound(s) synthesized at 5-8 days. Relative percentages of squalene, squalene oxide(s) and lanosterol synthesized from mevalonate also increased between 11-18 days after hatching. Results in this paper demonstrate for the first time the accumulation of a fraction of nonsaponifiable lipid(s) identified as lanosterol derivatives and cholesterol precursors formed by kidneys from [5-14C]mevalonate in experiments carried out in vivo, as well as their evolution during postnatal period.  相似文献   

18.
The role of neonatal chick liver and kidneys in the incorporation of mevalonic acid into squalene, lanosterol and cholesterol was studied. Differences between the synthesizing ability of these and other tissues and the influence of the in vivo or in vitro conditions were also examined. In the in vivo experiments, distribution of radioactivity among the nonsaponifiable lipids was not dependent of the doses of mevalonic acid injected. About 80-95% of radioactivity was recovered as cholesterol in liver and brain, whereas in kidneys this percentage was only about 35%. Squalene and lanosterol were formed by kidneys in a high percentage, higher than in liver and other tissues. 12 hr after mevalonate injection, the percentage of cholesterol formed by kidneys increased until more than 50%. In the in vitro experiments carried out in the presence of 0.045-4.0 mM mevalonate, cholesterol was also the main nonsaponifiable identified, but in a lesser percentage than in vivo. In the same conditions, the incorporation of mevalonic acid by kidneys was maximal into squalene. After in vitro incubations for 2 hr, the percentage of cholesterol in kidneys also increased.  相似文献   

19.
The evolution throughout embryonic development of the rate at which acetate was converted into sterols was studied in chick brain and liver. Acetate incorporation (nmol/h/g tissue) was clearly higher in brain than in liver and sharply decreased with the age of embryo. Cholesterol and desmosterol were the major sterols formed from acetate by chick embryo brain, followed by lanosterol and squalene. No desmosterol was found in chick embryo liver, organ where cholesterol was the major sterol synthesized. In brain, the relative percentage of cholesterol increased throughout embryonic development reaching more than 50% at hatching, while the percentage of desmosterol decreased during the same period and represented at hatching only about 10–15% of the total nonsaponifiable fraction. The relative percentages of lanosterol and squalene did not change significantly throughout the period assayed. In liver, the percentage of cholesterol increased until 19 days but sharply decreased at hatching.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号