首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The product of the CIT2 gene has the tripeptide SKL at its carboxyl terminus. This amino acid sequence has been shown to act as a peroxisomal targeting signal in mammalian cells. We examined the subcellular site of this extramitochondrial citrate synthase. Cells of Saccharomyces cerevisiae were grown on oleate medium to induce peroxisome proliferation. A fraction containing membrane-enclosed vesicles and organelles was analyzed by sedimentation on density gradients. In wild-type cells, the major peak of citrate synthase activity was recovered in the mitochondrial fraction, but a second peak of activity cosedimented with peroxisomes. The peroxisomal activity, but not the mitochondrial activity, was inhibited by incubation at pH 8.1, a characteristic of the extramitochondrial citrate synthase encoded by the CIT2 gene. In a strain in which the CIT1 gene encoding mitochondrial citrate synthase had been disrupted, the major peak of citrate synthase activity was peroxisomal, and all of the activity was sensitive to incubation at pH 8.1. Yeast cells bearing a cit2 disruption were unable to mobilize stored lipids and did not form stable peroxisomes in oleate. We conclude that citrate synthase encoded by CIT2 is peroxisomal and participates in the glyoxylate cycle.  相似文献   

2.
In contrast to many other peroxisomal proteins catalase A contains at least two peroxisomal targeting signals each sufficient to direct reporter proteins to peroxisomes. One of them resides at the extreme carboxy terminus constituting a new variant of this signal, -SSNSKF, not active in monkey kidney cells (Gould, S. J., G. A. Keller, N. Hosken, J. Wilkinson, and S. Subramani 1989. J. Cell Biol. 108:1657- 1664). However, this signal is completely dispensable for import of catalase A itself. In its amino-terminal third this protein contains another peroxisomal targeting signal sufficient to direct reporter proteins into microbodies. This internal signal depends on the context. The nature of this targeting signal might be a short defined sequence or a structural feature recognized by import factors. In addition, we have demonstrated that the carboxy-terminal seven amino acids of citrate synthase of Saccharomyces cerevisiae encoded by CIT2 and containing the canonical -SKL represents a targeting signal sufficient to direct reporter proteins to peroxisomes.  相似文献   

3.
Non-mitochondrial citrate synthase catalyses citrate synthesis in the glyoxylate cycle in gluconeogenesis. Screening Dictyostelium discoideum mutants generated by insertional mutagenesis isolated a poor-growing mutant that displayed aberrant developmental morphology on bacterial lawns. Axenically grown mutants developed normally and formed mature fruiting bodies on buffered agar. The affected locus encoded a novel protein (CshA) that was homologous to glyoxysomal citrate synthase. cshA was expressed maximally during vegetative growth and gradually decreased through subsequent developmental stages. An in vitro citrate synthase assay revealed that cshA disruption resulted in a 50% reduction in enzyme activity, implicating CshA as an active citrate synthase. The amino-terminus of CshA was found to have an atypical mitochondrial targeting signal, instead containing a unique nonapeptide sequence (RINILANHL) that was homologous to the conserved peroxisomal targeting signal 2 (PTS2). CshA protein was shown to be localized in the peroxisomes, and the RINILANHL sequence only efficiently targeted the peroxisomal green fluorescent protein. The growth defect of cshA(-) cells was associated with the impairment of phagocytosis and fluid-phase endocytosis, independent from cytokinesis. Disrupted multicellular development on bacterial lawns resulted from the abnormal susceptibility to the environmental conditions, perhaps because of citrate insufficiency. Taken together, these results provide new insights into the function of peroxisomal citrate synthase in cell growth and multicellular development.  相似文献   

4.
Serine: pyruvate/alanine:glyoxylate aminotransferase (SPT or SPT/AGT) of rat liver is a unique enzyme of dual subcellular localization, and exists in both mitochondria and peroxisomes. To characterize a peroxisomal targeting signal of rat liver SPT, a number of C-terminal mutants were constructed and their subcellular localization in transfected COS-1 cells was examined. Deletion of C-terminal NKL, and point mutation of K2 (the second Lys from the C-terminus), K4 and E15 caused accumulation of translated products in the cytoplasm. This suggests that the PTS of SPT is not identical to PTS1 (the C-terminal SKL motif) in that it is not restricted to the C-terminal tripeptide. In vitro synthesized precursor for mitochondrial SPT was highly sensitive to the proteinase K digestion, whereas peroxisomal SPT (SPTp) was fairly resistant to the protease. In in vitro import experiment with purified peroxisomes, however, STPp recovered in the peroxisomal fraction was very sensitive to the protease. These results suggest that the mitochondrial precursor is synthesized as an unfolded form and is translocated into the mitochondrial matrix, whereas SPTp is synthesized as a folded form and its conformation changes to an unfolded form just before translocation into peroxisomes.  相似文献   

5.
Malate synthase is a glyoxysome-specific enzyme. The carboxy-terminal tripeptide of the enzyme is Ser—Arg—Leu (SRL), which is known to function as a peroxisomal targeting signal in mammalian cells. To analyze the function of the carboxy-terminal amino acids of pumpkin malate synthase in plant cells, a chimeric gene was constructed that encoded a fusion protein which consisted of β-glucuronidase and the carboxyl terminus of the enzyme. The fusion protein was expressed and accumulated in transgenic Arabidopsis that had been transformed with the chimeric gene. Immunocytochemical analysis of the transgenic plants revealed that the carboxy-terminal five amino acids of pumpkin malate synthase were sufficient for transport of the fusion protein into glyoxysomes in etiolated cotyledons, into leaf peroxisomes in green cotyledons and in mature leaves, and into unspecialized microbodies in roots, although the fusion protein was no longer transported into microbodies when SRL at the carboxyl terminus was deleted. Transport of proteins into glyoxysomes and leaf peroxisomes was also observed when the carboxy-terminal amino acids of the fusion protein were changed from SRL to SKL, SRM, ARL or PRL. The results suggest that tripeprides with S, A or P at the −3 position, K or R at the −2 position, and L or M at the carboxyl terminal position can function as a targeting signal for three kinds of plant microbody.  相似文献   

6.
Import of stably folded proteins into peroxisomes.   总被引:21,自引:1,他引:20       下载免费PDF全文
By virtue of their synthesis in the cytoplasm, proteins destined for import into peroxisomes are obliged to traverse the single membrane of this organelle. Because the targeting signal for most peroxisomal matrix proteins is a carboxy-terminal tripeptide sequence (SKL or its variants), these proteins must remain import competent until their translation is complete. We sought to determine whether stably folded proteins were substrates for peroxisomal import. Prefolded proteins stabilized with disulfide bonds and chemical cross-linkers were shown to be substrates for peroxisomal import, as were mature folded and disulfide-bonded IgG molecules containing the peroxisomal targeting signal. In addition, colloidal gold particles conjugated to proteins bearing the peroxisomal targeting signal were translocated into the peroxisomal matrix. These results support the concept that proteins may fold in the mammalian cytosol, before their import into the peroxisome, and that protein unfolding is not a prerequisite for peroxisomal import.  相似文献   

7.
Saccharomyces cerevisiae has three distinct citrate synthases, two located in mitochondria (mature Cit1p and Cit3p) and one in peroxisomes (mature Cit2p). While the precursor of the major mitochondrial enzyme, Cit1p, has a signal for mitochondrial targeting at its N-terminus (MTS), Cit2p has one for peroxisomal targeting (PTS1) at its C-terminus. We have previously shown that the N-terminal segment of Cit2p is removed during import into peroxisomes [Lee, H.S. et al. (1994) Kor. J. Microbiol. 32, 558-564], which implied the presence of an additional N-terminal sorting signal. To analyze the function of the N-terminal region of Cit2p in protein trafficking, we constructed the N-terminal domain-swapped versions of Cit1p and Cit2p. Both fusions, Cit1::Cit2 and Cit2::Cit1, complemented the glutamate auxotrophy caused by the double-disruption of the CIT1 and CIT2 genes. In addition, part of the Cit2::Cit1 fusion protein, as well as Cit1::Cit2, was shown to be transported into both mitochondria and peroxisomes. The subcellular localization of the recombinant fusion proteins containing various N-terminal segments of Cit2p fused to a mutant version of green fluorescent protein (GFP2) was also examined. As a result, we found that the 20-amino acid N-terminal segment of Cit2p contains a cryptic cleavable targeting signal for both peroxisomes and mitochondria. In addition, we show that the peroxisomal import process mediated by the N-terminal segment of Cit2p was not affected by the disruption of either PEX5 (encoding PTS1 receptor) or PEX7 (encoding PTS2 receptor).  相似文献   

8.
A polypeptide containing the carboxyl-terminal fragment of human peroxisomal enoyl-CoA hydratase:3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme was synthesized in vitro from its cDNA clone. This expression polypeptide was transported into purified rat liver peroxisomes. When the expression polypeptide was incubated with postnuclear supernatant fractions of human hepatoma cells and analyzed by Nycodenz gradient SDS-PAGE and fluorography, it was imported specifically into peroxisomes as indicated by its resistance to proteinase K degradation. A deletion of the last nine amino acid residues at the carboxyl-terminus of this polypeptide prevents its peroxisomal import. A tripeptide sequence, SKL, located at the carboxyl-terminus of human bifunctional enzyme appears to be the targeting signal for the peroxisomal importation of bifunctional enzyme in human cells.  相似文献   

9.
At least three different subcellular compartments, including peroxisomes, are involved in cholesterol synthesis. The peroxisomal targeting signals for phosphomevalonate kinase and isopentenyl diphosphate isomerase have been identified. In the current study we identify the peroxisomal targeting signals required for four other enzymes of the cholesterol biosynthetic pathway: acetoacetyl-CoA (AA-CoA) thiolase, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase, mevalonate diphosphate decarboxylase (MPPD), and farnesyl diphosphate (FPP) synthase. Data are presented that demonstrate that mitochondrial AA-CoA thiolase contains both a mitochondrial targeting signal at the amino terminus and a peroxisomal targeting signal (PTS-1) at the carboxy terminus. We also analyze a new variation of PTS-2 sequences required to target HMG-CoA synthase and MPPD to peroxisomes. In addition, we show that FPP synthase import into peroxisomes is dependent on the PTS-2 receptor and identify at the amino terminus of the protein a 20-amino acid region that is required for the peroxisomal localization of the enzyme.These data provide further support for the conclusion that peroxisomes play a critical role in cholesterol biosynthesis.  相似文献   

10.
The gene encoding Candida tropicalis peroxisomal trifunctional enzyme, hydratase-dehydrogenase-epimerase (HDE), was expressed in both Candida albicans and Saccharomyces cerevisiae. The cellular location of HDE was determined by subcellular fractionation followed by Western blot analysis of peroxisomal and cytosolic fractions using antiserum specific for HDE. HDE was found to be exclusively targeted to and imported into peroxisomes in both heterologous expression systems. Deletion and mutational analyses were used to determine the regions within HDE which are essential for its targeting to peroxisomes. Deletion of a carboxyl-terminal tripeptide Ala-Lys-Ile completely abolished targeting of HDE to peroxisomes, whereas large internal deletions of HDE (amino acids 38-353 or 395-731) had no effect on HDE targeting to peroxisomes in either yeast. This tripeptide is similar to, but distinct from, other tripeptide peroxisomal targeting sequences (PTSs) as identified in peroxisomal firefly luciferase and four mammalian peroxisomal proteins. Substitutions within the carboxyl-terminal tripeptide (Ala----Gly and Lys----Gln) supported targeting of HDE to peroxisomes of C. albicans but not of S. cerevisiae. This is the first detailed analysis of the peroxisomal targeting signal in a yeast peroxisomal protein.  相似文献   

11.
The purposes of this study are to develop an in vivo cell system that is suitable for the immunofluorescent detection of transiently expressed proteins targeted to plant peroxisomes and to determine whether a C-terminal serine-lysine-leucine (SKL) tripeptide, a consensus-targeting signal for mammalian peroxisomes, also targets proteins to plant peroxisomes. Protoplasts from mesophyll cells and from suspension-cultured cells initially were examined for their potential as an in vivo import system. Several were found suitable, but based on a combination of criteria, suspension-cultured tobacco (Nicotiana tabacum L. cv Bright Yellow 2) cells (TBY-2) were chosen. The tobacco cell extracts had catalase activity, and two polypeptides of approximately 55 and 57 kD specifically were detected on immunoblots with anti-cottonseed catalase immunoglobulins G as the probe. Indirect immunofluorescence microscopy with these immunoglobulins G revealed a punctate labeling pattern indicative of endogenous catalase localization within putative TBY-2 peroxisomes. The cells did not have to be completely converted to protoplasts for optimal microscopy; treatment with 0.1% (w/v) pectolyase for 2 h was sufficient. Microprojectile bombardment proved superior for transient transformation of the TBY-2 cells with plasmids encoding beta-glucuronidase, or chloramphenicol acetyltransferase (CAT), or CAT with an added C-terminal tripeptide (CAT-SKL). C-terminal SKL is a consensus, type 1, peroxisome targeting signal. Double indirect immunofluorescent labeling showed that CAT-SKL co-localized with endogenous catalase. Non-punctate, diffuse localization of CAT without SKL provided direct evidence that the C-terminal SKL tripeptide was necessary and sufficient for targeting of CAT to plant peroxisomes. These data demonstrate the effectiveness of this peroxisome targeting signal for plant cells.  相似文献   

12.
As part of an effort to understand how proteins are imported into the peroxisome, we have sought to identify the peroxisomal targeting signals in four unrelated peroxisomal proteins: human catalase, rat hydratase:dehydrogenase, pig D-amino acid oxidase, and rat acyl-CoA oxidase. Using gene fusion experiments, we have identified a region of each protein that can direct heterologous proteins to peroxisomes. In each case, the peroxisomal targeting signal is contained at or near the carboxy terminus of the protein. For catalase, the peroxisomal targeting signal is located within the COOH-terminal 27 amino acids of the protein. For hydratase:dehydrogenase, D-amino acid oxidase, and acyl-CoA oxidase, the targeting signals are located within the carboxy-terminal 15, 14, and 15 amino acids, respectively. A tripeptide of the sequence Ser-Lys/His-Leu is present in each of these targeting signals as well as in the peroxisomal targeting signal identified in firefly luciferase (Gould, S.J., G.-A. Keller, and S. Subramani. 1987. J. Cell Biol. 105:2923-2931). When the peroxisomal targeting signal of the hydratase:dehydrogenase is mutated so that the Ser-Lys-Leu tripeptide is converted to Ser-Asn-Leu, it can no longer direct proteins to peroxisomes. We suggest that this tripeptide is an essential element of at least one class of peroxisomal targeting signals.  相似文献   

13.
We previously found that the peroxisomal citrate synthase of Saccharomyces cerevisiae, Cit2p, contains a cryptic targeting signal for both peroxisomes (PTS) and mitochondria (MTS) within its 20-amino acid N-terminal segment [Lee et al. (2000) J. Biochem. 128, 1059-1072]. In the present study, the fine structure of the cryptic signal was scrutinized using green fluorescent protein fusions led by variants of the N-terminal segment. The minimum ranges of the cryptic signals for mitochondrial and peroxisomal targeting were shown to consist of the first 15- and 10-amino acid N-terminal segments, respectively. Substitution of the 3rd Val, 6th Leu, 7th Asn, or 8th Ser with Ala abolished the cryptic MTS function, however, no single substitution causing an obvious defect in PTS function was found. Neither the 15-amino acid N-terminal segment nor the C-terminal SKL sequence (PTS1) was necessary for Cit2p to restore the glutamate auxotrophy caused by the double Deltacit1 Deltacit2 mutation. The Cit2p variant lacking PTS1 [Cit2(DeltaSKL)p] partially restored the growth of both the Deltacit1 Deltacit2 and Deltacit1 mutants on acetate, while that carrying intact PTS1 or lacking the N-terminal segment [Cit2p, Cit2((DeltaNDeltaSKL))p, and Cit2((DeltaN))p] did not. It is thus suggested that the potential of the N-terminal segment as an ambidextrous targeting signal can be unmasked by deletion of PTS1.  相似文献   

14.
This report describes the microinjection of a purified peroxisomal protein, alcohol oxidase, from Pichia pastoris into mammalian tissue culture cells and the subsequent transport of this protein into vesicular structures. Transport was into membrane-enclosed vesicles as judged by digitonin-permeabilization experiments. The transport was time and temperature dependent. Vesicles containing alcohol oxidase could be detected as long as 6 d after injection. Coinjection of synthetic peptides containing a consensus carboxyterminal tripeptide peroxisomal targeting signal resulted in abolition of alcohol oxidase transport into vesicles in all cell lines examined. Double-label experiments indicated that, although some of the alcohol oxidase was transported into vesicles that contained other peroxisomal proteins, the bulk of the alcohol oxidase did not appear to be transported to preexisting peroxisomes. While the inhibition of transport of alcohol oxidase by peptides containing the peroxisomal targeting signal suggests a competition for some limiting component of the machinery involved in the sorting of proteins into peroxisomes, the organelles into which the majority of the protein is targeted appear to be unusual and distinct from endogenous peroxisomes by several criteria. Microinjected alcohol oxidase was transported into vesicles in normal fibroblasts and also in cell lines derived from patients with Zellweger syndrome, which are unable to transport proteins containing the ser-lys-leu-COOH peroxisomal targeting signal into peroxisomes (Walton et al., 1992). The implications of this result for the mechanism of peroxisomal protein transport are discussed.  相似文献   

15.
SK32 mutant cells, which were isolated as peroxisome-deficient Chinese hamster ovary (CHO) cells by an advantage of a visible peroxisome form of green fluorescent protein (GFP), were found to suffer from a functional loss of PEX5 gene encoding for PTS1R. The sequence analysis of cDNA indicated that PEX5 gene encoded for the two isoforms composed of 603 amino acids (PTS1RS) and 640 amino acids (PTS1RL). The mutation changed glycine to arginine at amino acid position 343 of PTS1RL (corresponding to the position 306 of PTS1RS) in SK32 cells. The mutant cells exhibited a temperature-sensitive (TS) phenotype on the peroxisomal localizations of the recombinant GFP and urate oxidase appending a genuine peroxisome targeting signal 1 (PTS1), a tripeptide of Ser-Lys-Leu (SKL) at the C-terminus, but did not on that of catalase harboring a divergent PTS1, Lys-Ala-Asn-Leu (KANL) sequence. 3-ketoacyl-CoA thiolase (hereafter referred to as thiolase), which harbors an extension sequence (PTS2) at the N-terminus, never appeared to be affected on the peroxisomal localization in the mutant cells. When thiolase was examined on the molecular size in the mutant cells, the enzyme existed as the larger precursor form in the peroxisomes at 37 degrees C and a considerable part (almost half) was converted to the mature size at 30 degrees C. These results indicate that the amino acid substitution, Gly306Arg in PTS1RS and/or Gly343Arg in PTSRL, gives rise to TS phenotype on the peroxisomal translocation of PTS1 proteins and the maturation of PTS2 protein.  相似文献   

16.
Peroxisomes are unimembrane, respiratory organelles of the cell. Transport of cellular proteins to the peroxisomal matrix requires a type 1 peroxisomal targeting signal (PTS1) which essentially constitutes a tripeptide from the consensus sequence S/T/A/G/C/N-K/R/H-L/I/V/M/A/F/Y. Although PTS-containing proteins have been identified in eukaryotes, prokaryotes, and parasites, viral proteins with such signals have not been identified so far. We report here the first instance of a virus, the rotavirus, which causes infantile diarrhea worldwide, containing a functional C-terminal PTS1 in one of its proteins (VP4). Analysis of 153 rotavirus VP4-deduced amino acid sequences identified five groups of conserved C-terminal PTS1 tripeptide sequences (SKL, CKL, GKL, CRL, and CRI), of which CRL is represented in approximately 62% of the sequences. Infection of cells by a CRL-containing representative rotavirus (SA11 strain) and confocal immunofluorescence analysis revealed colocalization of VP4 with peroxisomal markers and morphological changes of peroxisomes. Further, transient cellular expression of green fluorescent protein (GFP)-fused VP4CRL resulted in transport of VP4 to peroxisomes, whereas the chimera lacking the PTS1 signal, GFP-VP4DeltaCRL, resulted in diffuse cytoplasmic staining, suggesting a CRL-dependent targeting of the protein. The present study therefore demonstrates hitherto unreported organelle involvement, specifically of the peroxisomes, in rotaviral infections as demonstrated by using the SA11 strain of rotavirus and opens a new line of investigation toward understanding viral pathogenesis and disease mechanisms.  相似文献   

17.
Many peroxisomal proteins are imported into peroxisomes via recognition of the peroxisomal targeting signal (PTS1) present at the C-termini by the PTS1 receptor (Pex5p). Catalase, a peroxisomal protein, has PTS1-like motifs around or at the C-terminus. However, it remains unclear whether catalase is imported into peroxisome via the PTS1 system. In this work, we analyzed the PTS of pumpkin catalase (Cat1). A full or truncated pumpkin Cat1 cDNA fused at the 3' end of the green fluorescent protein (GFP) coding sequence was introduced and stably expressed in tobacco BY-2 (Nicotiana tabacum cv. Bright Yellow 2) cells or Arabidopsis thaliana by Agrobacterium-mediated transformation. The cellular localization of GFP was analyzed by fluorescence microscopy. The results showed that the C-terminal 10-amino acid region containing an SKL motif-like tripeptide (SHL) was not required for the import into peroxisomes. Surprisingly, the C-terminal 3-amino acid region was required for the import when the fusion proteins were transiently expressed by using particle gun bombardment, suggesting that the transient expression system is inadequate to analyze the targeting signal. We proposed that the C-terminal amino acid region from 13 to 11 (QKL), which corresponds with the PTS1 consensus sequence, may function as an internal PTS1. Analysis of the binding of Cat1 to PTS1 receptor (Pex5p) by the yeast two-hybrid system revealed that Cat1 can bind with the PTS1 receptor (Pex5p), indicating that Cat1 is imported into peroxisomes by the PTS1 system.  相似文献   

18.
Recent studies have indicated that two peroxisomal enzymes involved in ether lipid synthesis, i.e., dihydroxyacetonephosphate acyltransferase and alkyl-dihydroxyacetonephosphate synthase, are directed to peroxisomes by different targeting signals, i.e., peroxisomal targeting signal type 1 and type 2, respectively. In this study, we describe a new human fibroblast cell line in which alkyl-dihydroxyacetonephosphate synthase was found to be deficient both at the level of enzyme activity and enzyme protein. At the cDNA level, a 128 base pair deletion was found leading to a premature stop. Remarkably, dihydroxyacetonephosphate acyltransferase activity was strongly reduced to a level comparable to the activities measured in fibroblasts from patients affected by the classical form of rhizomelic chondrodysplasia punctata (caused by a defect in peroxisomal targeting signal type 2 import). Dihydroxyacetonephosphate acyltransferase activity was completely normal in another alkyl-dihydroxyacetonephosphate synthase activity-deficient patient. Fibroblasts from this patient showed normal levels of the synthase protein and inactivity results from a point mutation leading to an amino acid substitution.These results strongly suggest that the activity of dihydroxyacetonephosphate acyltransferase is dependent on the presence of alkyl-dihydroxyacetonephosphate synthase protein. This interpretation implies that the deficiency of dihydroxyacetonephosphate acyltransferase (targeted by a peroxisomal targeting signal type 1) in the classic form of rhizomelic chondrodysplasia punctata is a consequence of the absence of the alkyl-dihydroxyacetonephosphate synthase protein (targeted by a peroxisomal targeting signal type 2).  相似文献   

19.
20.
Alanine/glyoxylate aminotransferase 1 (AGT) is peroxisomal in most normal humans, but in some patients with the hereditary disease primary hyperoxaluria type 1 (PH1), AGT is mislocalized to the mitochondria. In an attempt to identify the sequences in AGT that mediate its targeting to peroxisomes, and to determine the mechanism by which AGT is mistargeted in PH1, we have studied the intracellular compartmentalization of various normal and mutant AGT polypeptides in normal human fibroblasts and cell lines with selective deficiencies of peroxisomal protein import, using immunofluorescence microscopy after intranuclear microinjection of AGT expression plasmids. The results show that AGT is imported into peroxisomes via the peroxisomal targeting sequence type 1 (PTS1) translocation pathway. Although the COOH-terminal KKL of human AGT was shown to be necessary for its peroxisomal import, this tripeptide was unable to direct the peroxisomal import of the bona fide peroxisomal protein firefly luciferase or the reporter protein bacterial chloramphenicol acetyltransferase. An ill-defined region immediately upstream of the COOH-terminal KKL was also found to be necessary for the peroxisomal import of AGT, but again this region was found to be insufficient to direct the peroxisomal import of chloramphenicol acetyltransferase. Substitution of the COOH-terminal KKL of human AGT by the COOH-terminal tripeptides found in the AGTs of other mammalian species (SQL, NKL), the prototypical PTS1 (SKL), or the glycosomal PTS1 (SSL) also allowed peroxisomal targeting, showing that the allowable PTS1 motif in AGT is considerably more degenerate than, or at least very different from, that acceptable in luciferase. AGT possessing the two amino acid substitutions responsible for its mistargeting in PH1 (i.e., Pro11-- >Leu and Gly170-->Arg) was targeted mainly to the mitochondria. However, AGTs possessing each amino acid substitution on its own were targeted normally to the peroxisomes. This suggests that Gly170-->Arg- mediated increased functional efficiency of the otherwise weak mitochondrial targeting sequence (generated by the Pro11-->Leu polymorphism) is not due to interference with the peroxisomal targeting or import of AGT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号