首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prolonged exposure of many types of receptors to their cognate agonists can lead to a progressive lack of responsiveness. When this occurs after stimulation by the primary agonist for a given receptor it is termed homologous desensitization, and heterologous desensitization when to an agonist binding to a different type of receptor. Pertussis toxin (PTx) is a potent mitogen for human T lymphocytes. We have previously identified the human T cell PTx receptor (PTx-R) as a 43-kDa plasma membrane protein that, when stimulated, leads to the production of the intracellular second messengers, inositol-1,4,5-triphosphate, 1,2-sn-diacylglycerol, and elevated cytosolic calcium. The PTx-R appears to require the co-expression of the CD3/TCR complex because mutant cells that lack the AgR, but express the PTx-R, fail to respond to PTx. In this report, we have investigated the relationship between these two receptor systems. Activation of the PTx-R with submaximal concentrations of PTx did not affect the ability of an anti-CD3 antibody combined with rabbit anti-mIg to stimulate increases in intracellular free calcium concentration [Ca2+]i or diacylglycerol in human peripheral blood T cells. However, treatment with soluble anti-CD3 mAb, which lead to only a modest increase in [Ca2+]i, completely inhibited the effect of PTx. The cells were not refractory to further stimulation of the AgR because cross-linking with rabbit anti-mIg resulted in the standard maximal stimulation. This effect could be observed within 1 min of treatment with anti-CD3 mAb, and persisted for at least 1 h. The effect was not caused by production of either diacylglycerol (leading to activation of PK-C) or an increase in [Ca2+]i by anti-CD3 mAb because the effect could not be mimicked by either phorbol esters or a calcium ionophore. Pretreatment of either resting T lymphoblasts or PBL with anti-CD3 mAb also prevented enhanced [3H]TdR incorporation stimulated by PTx. These observations suggest a model in which T cells can regulate amplification of a non-AgR stimulatory pathway by heterologous desensitization.  相似文献   

2.
Antigen-induced Ca2+ signaling and desensitization in B cells   总被引:2,自引:0,他引:2  
Cross-linking of B cell surface Ig (sIg) by anti-Ig results in transmembrane signaling. However, the capacity of a thymus-dependent (TD) Ag to mediate B cell signal transduction has been less well documented. Therefore, we examined Ag-induced intracellular free calcium concentration [( Ca2+]) in B cells by using TD Ag that would be expected to either cross-link or not cross-link sIgM and/or induce the coupling of sIgM to FcR. Stimulation of mouse TA3 hybridoma B cell transfectants that express the SP6 anti-TNP specific sIgM with either TNP-OVA or anti-IgM antibodies resulted in a maximal fourfold increase in [Ca2+]i. The net increase in [Ca2+]i in response to TNP-OVA was dependent upon both the Ag dose and the TNP:OVA molar ratio. Because occupancy of several cell-surface receptor types leads to a loss of response to subsequent stimulation by ligand (homologous desensitization), we examined the ability of Ag to induce homologous desensitization of sIgM in these B cells. TNP1-OVA at all concentrations tested (up to 500 micrograms/ml) did not lead to any change in [Ca2+]i or desensitization. Cross-linking of TNP1-OVA (10 micrograms/ml) with F(ab')2 of anti-OVA antibody induced both a rise in [Ca2+]i and homologous desensitization of sIg, suggesting that cross-linking of sIgM by Ag is sufficient to induce both these processes. TNP6-OVA at a concentration of 10 micrograms/ml induced changes in [Ca2+]i and partially desensitized TNP-specific B cells to stimulation by anti-IgM. Interestingly, a high dose (180 micrograms/ml) of TNP6-OVA stimulated minimal changes in [Ca2+]i yet did not lead to desensitization. However, cross-linking of TNP6-OVA at this high dose with F(ab')2 of rabbit anti-OVA elevated [Ca2+]i and elicited partial desensitization. Complete desensitization of sIgM by Ag was achieved when intact (Fc-containing) anti-OVA antibody was used, suggesting that the FcR can play a role in desensitization. Ag- and antibody-mediated desensitization was not caused by steric hindrance of sIg. Thus, we have observed two forms of Ag-induced desensitization of sIgM, both of which involve sIg cross-linking and one of which is mediated by the physiologic coupling of sIg to FcR.  相似文献   

3.
We report the cytosolic free calcium, [Ca2+]i, responses of single murine B lymphocytes to whole and F(ab')2 fragments of anti-Ig measured in the flow cytometer with indo-1, a new fluorescent chelator of calcium. The principle advantages of this recording system are these: Indo-1 is highly fluorescent; hence, loading concentrations that introduce artifacts in the reported [Ca2+]i signal may be avoided. The measurement of [Ca2+]i by fluorescence ratio corrects for nonuniform dye uptake, making possible quantitative estimates of [Ca2+]i in single cells and an assessment of the variability of population responses. Baseline recordings of unstimulated lymphocytes indicated a narrow, stable range of [Ca2+]i (75 to 125 nM). The [Ca2+]i rise induced by various anti-Ig preparations exhibited considerable heterogeneity. The initial mean value for F(ab')2 anti-Ig-stimulated cells peaked above 1 microM and was due only to the release of Ca2+ from intracellular stores. A steady state elevation of [Ca2+]i was reached by 5 min and persisted for hours. Cells stimulated with intact anti-Ig reached similar initial peak [Ca2+]i values, but then declined toward baseline. This difference was due to membrane Ig-IgG Fc receptor (mIg-Fc gamma R) cross-linkage, because blocking the Fc gamma R with a monoclonal antibody made the [Ca2+]i responses to F(ab')2 and intact anti-Ig identical. The attenuation of the [Ca2+]i signal by mIg-Fc gamma R cross-linkage is proceeded by a corresponding Fc gamma-mediated reduction in anti-Ig-induced inositol trisphosphate elevation. These findings outline a biochemical basis for mIg- and Fc gamma R-mediated activation and regulation intrinsic to the B cell, and demonstrate the advantages of indo-1 over quin2 for fluorescent measurement of [Ca2+]i in small cells.  相似文献   

4.
The effects of the cytokine IL-4 on resting and activated human B cells were compared with the effects of known "competence" signals able to drive resting B cells into the cell cycle, including anti-Ig, PMA, anti-CD20, and a recently described competence signal, anti-Bgp95. In proliferation assays, IL-4 was costimulatory with anti-Ig and anti-Bgp95 but not with anti-CD20 or PMA. IL-4 alone triggered increases in expression of class II DR/DQ and CD40, but it did not trigger increases in intracellular free calcium [Ca2+]i in resting B cells or induce resting B cells to leave G0 and enter the G1 phase of the cell cycle. Although IL-4 has some characteristics of competence signals, it was most effective if added to B cells up to 12 h after anti-Ig or anti-Bgp95 rather than before, and thus, in this respect, works more like a progression signal. Like IL-4, all four competence signals for B cells triggered increases in class II and CD40, but only IL-4 consistently induced increases in CD23 surface levels. IL-4 was costimulatory only with anti-Ig and anti-Bgp95, each of which can trigger increases in [Ca2+]i and new protein synthesis of the proto-oncogene c-myc, and can increase attachment of protein kinase C to the plasma membrane. IL-4 was not costimulatory with signals that 1) did not affect [Ca2+]i yet induced c-myc protein synthesis (anti-CD20), 2) only stimulated the translocation of protein kinase C (PMA), or 3) only stimulated increases in [Ca2+]i (calcium ionophore). These results suggest that resting human B cells require at least two intracytoplasmic signals before IL-4 can effectively promote B cell proliferation.  相似文献   

5.
Effect of anti-Ig on cytosolic Ca2+ in Daudi lymphoblastoid cells   总被引:2,自引:0,他引:2  
We examined the response in the free intracellular calcium concentration ([Ca2+]i) of Daudi (human lymphoblastoid) cells to antibodies against human immunoglobulins (anti-Ig), and the relationship of [Ca2+]i to anti-Ig-induced capping. At 80 microM intracellular quin-2 (a fluorescent probe for [Ca2+]i), anti-Ig (10 micrograms/ml) caused a rapid increase in [Ca2+]i from 100 to 600 nM; the signal returned to baseline with approximately 1 min. At 450 microM intracellular quin-2, [Ca2+]i rose to only approximately 250 microM, and the signal declined gradually, returning to base line after greater than 7 min. In subsequent experiments, the lower concentrations of quin-2 were employed. Plots of the amplitude of the [Ca2+]i transients and of the binding of 125I-anti-Ig to Daudi cells versus the concentrations of anti-Ig showed similar saturation kinetics, with half-saturation occurring at 2-3 micrograms/ml. Part of the calcium in the transient is derived from the extracellular medium, and part from the nonmitochondrial intracellular stores. Caffeine (4 mM) and 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate HCl (0.5 mM) suppressed the release of calcium from internal stores and the entry of calcium from outside the cells, but permitted capping in more than half of the cells. Phorbol esters (1-2 nM) inhibited both capping and the anti-Ig-induced decrease in [Ca2+]i. None of these agents blocked the binding of anti-Ig to the cells. It appears that receptor capping is not dependent on the anti-Ig-induced transient increase in calcium concentration.  相似文献   

6.
As B cells mature during ontogeny the CD22 human differentiation Ag is exported from the cytoplasm onto the membrane. Surface expression is lost in terminal differentiation and after activation. In tonsils, CD22 is expressed on the surface of 60 to 80% of the dense B cells. Some IgM+ dense cells, however, and buoyant in vivo activated B cells are CD22-. This differential expression of CD22 and the finding that an anti-CD22 mAb augmented anti-Ig induced B cell proliferation suggested that CD22 may play a role in B cell activation. In this study we have found that CD22+ but not CD22- B cells could be triggered by anti-IgM or anti-IgD to have increased free intracellular calcium ([Ca2+]i). The presence of CD22 rather than of IgD seems to determine the ability of B cells to respond to anti-Ig with a [Ca2+]i flux. Also the proliferative response to anti-Ig or anti-Ig + B cell growth factor was restricted to the CD22+ population. Anti-CD22 mAb, although not inducing [Ca2+]i on their own after binding to B cells, did augment [Ca2+]i fluxes by anti-Ig when cross-linked. Together these results suggest that CD22 may regulate triggering of B cells through surface Ig perhaps by acting as a "bridge" to transmit an early signal into the cytoplasm.  相似文献   

7.
By cross-linking membrane immunoglobulins (mIg), the antigenic stimulation of B lymphocytes induces an increase in intracellular free calcium levels ([Ca2+]i) because of a combination of release from intracellular stores and transmembrane influx. It has been suggested that both events are linked, as in a number of other cases of receptor- induced increase in [Ca2+]i. Conversely, in B lymphocytes, type II receptors for the Fc fragment of IgG (Fc gamma RII) inhibit mIg- mediated signaling. Thus, we have investigated at the level of single cells if these receptors could act on specific phases of mIg Ca2+ signaling. Lipopolysaccharide-activated murine B splenocytes and B lymphoma cells transfected with intact or truncated Fc gamma RII-cDNA were used to determine the domains of Fc gamma RII implicated in the inhibition of the Ca2+ signal. [Ca2+]i was measured in single fura-2- loaded cells by microfluorometry. The phases of release from intracellular stores and of transmembrane influx were discriminated by using manganese, which quenches fura-2, in the external medium as a tracer for bivalent cation entry. The role of membrane potential was studied by recording [Ca2+]i in cells voltage-clamped using the perforated patch-clamp method. Cross-linking of mIgM or mIgG with F(ab')2 fragments of anti-Ig antibodies induced a sustained rise in [Ca2+]i due to an extremely fast and transitory release of Ca2+ from intracellular stores and a long lasting transmembrane Ca2+ influx. The phase of influx, but not that of release, was inhibited by membrane depolarization. The increase in [Ca2+]i occurred after a delay inversely related to the dose of ligand. Co-cross-linking mIgs and Fc gamma RII with intact anti-Ig antibodies only triggered transitory release of Ca2+ from intracellular stores but no Ca2+ influx, even when the cell was voltage-clamped at negative membrane potentials. These transitory Ca2+ rises had similar amplitudes and delays to those induced by cross-linking mIgs alone. Thus, our data show that Fc gamma RII does not mediate an overall inhibition of mIg signaling but specifically affects transmembrane Ca2+ influx without affecting the release of Ca2+ from intracellular stores. Furthermore, this inhibition is not mediated by cell depolarization. Thus, Fc gamma RII represents a tool to dissociate physiologically the phases of release and transmembrane influx of Ca2+ triggered through antigen receptors.  相似文献   

8.
This paper examines, in mouse spleen lymphocytes, the effect of anti-immunoglobulin (anti-Ig) on the cytoplasmic free calcium concentration, [Ca2+]i, measured with the fluorescent indicator quin2, and the relationship of [Ca2+]i to the capping of surface Ig. Anti-Ig causes a rapid rise of [Ca2+], which precedes capping. Assuming that only those 40-50% of the cells which can bind anti-Ig (the B cells) undergo a [Ca2+]i response, [Ca2+]i in those cells approaches 500 nM. It declines to resting levels over many minutes, roughly paralleling the formation of caps. Part of the [Ca2+]i signal is due to stimulated influx across the plasma membrane, since in Ca2+-free medium, anti-Ig gives a smaller and shorter [Ca2+]i rise. The amplitude of this reduced transient now varies inversely with quin2 content, as if some 0.25 mmol Ca per liter of cells was released into the cytoplasm from internal stores. These stores are probably sequestered in organelles since A23187 in Ca2+-free medium also causes a transient [Ca2+]i rise after which anti-Ig has no effect. These organelles seem not to be mitochondria because uncouplers have hardly any effect on [Ca2+]i. Though anti-Ig normally raises [Ca2+]i before causing capping, there seems to be no causal link between the two events. Cells in Ca2+-free medium whose stores have been emptied by A23187, still cap with anti-Ig even though there is no [Ca2+]i rise. Cells loaded with quin2 in the absence of external Ca2+ still cap anti-Ig normally even though their [Ca2+]i remains steady at below 30 nM, four times lower than normal resting [Ca2+]i.  相似文献   

9.
The protease-activated receptor-2 (PAR-2), a G protein-coupled receptor activated by trypsin, contributes to the pathogenesis of inflammatory disease including asthma. Here, we examined the mechanisms by which stimulation of PAR-2 induces an increase in intracellular Ca2+ concentration ([Ca2+]i) in guinea pig tracheal epithelial cells. Trypsin (0.01-3 units/ml) dose-dependently induced a transient increase in [Ca2+]i, the increase being blocked by soybean trypsin inhibitor (SBTI 1 microM). An increase in [Ca2+]i was also induced by an agonist peptide for PAR-2 (SLIGRL-NH2, 0.001-10 microM) but not by thrombin (3 units/ml, an activator for PAR-1, PAR-3 or PAR-4). Repeated or cross stimulation of trypsin or SLIGRL-NH2 caused marked desensitization of the [Ca2+]i response. These responses of [Ca2+]i to trypsin and SLIGRL-NH2 were attenuated by a phospholipase C inhibitor, U-73122, and a Ca2+-ATPase inhibitor, thapsigargin (100 nM), while removal of Ca2+ and a L-type Ca2+-channel blocker, verapamil, were without significant effects. Further, trypsin was without effect on the rate of fura 2 quenching by Mn2+ entry as an indicator of Ca2+ influx. Thus, stimulation of PAR-2 appears to increase [Ca2+]i through the mobilization of Ca2+ from intracellular stores probably via phospholipase Cbeta-linked generation of a second messenger.  相似文献   

10.
The 95 Kd CD19 antigen is the broadest lineage specific surface marker for B cells: it is present on the surface of virtually all B lymphocytes, including early B progenitor cells. In this study we have evaluated the function of the CD19 antigen by using the CD19 mAb HD37. Binding of HD37 mAb to B cells at low doses (0.5 microgram/ml) induced a strong inhibition of the proliferative response to anti-Ig. This inhibition was not mediated by the Fc portion of the antibody, since F(ab')2 fragments were as effective as the whole antibody. Both dose-response curve analysis and experiments in which a cross-linking second step anti-mouse antibody was added suggested that cross-linking of CD19 antigens was necessary for optimal inhibition. Early phases in B cell activation were affected by the HD37 mAb: it significantly reduced the number of cells that left G0 and entered the G1 phase of the cell cycle upon triggering with anti-mu. The increase in free intracellular ionized calcium [Ca2+]i that is induced by anti-mu was also consistently reduced by CD19 mAb. Cross-linking was also crucial for this effect, suggesting that a causal relationship may exist between the inhibition of anti-Ig-mediated [Ca2+]i fluxes and inhibition of proliferation. A variable but clear increase in [Ca2+]i levels followed cross-linking of CD19 antigens by specific mAb. This evidence suggests that CD19 molecules may function in the downregulation of B cell growth and proliferation.  相似文献   

11.
These findings characterize a 95-kDa glycoprotein on the surface of B lymphocytes recognized by the mAb G28-8. This protein (designated Bgp95), previously classified as a CD39 molecule, is unique based on functional, cell distribution, and immunochemical criteria. Biochemical analyses revealed that Bgp95 is a 95-kDa glycoprotein with N-linked carbohydrate and is reduced to about 70-kDa after treatment with endoglycopeptidase F. In functional studies, stimulation by G28-8 mAb or its F(ab')2 fragments induced a G0 to G1 cell cycle transition and was synergistic with PMA, anti-mu, or anti-CDw40 in stimulating proliferation of resting B cells. G28-8 mAb also could induce increases of cytoplasmic free calcium concentration [Ca2+]i in a subpopulation of tonsillar or peripheral blood B cells. The G28-8 mAb alone induced a steady increase in [Ca2+]i detectable even 1 h after stimulation. Cross-linking the G28-8 mAb with a second mAb specific for murine kappa light chains induced a more rapid increase of [Ca2+]i which peaked at 10 to 20 min and then declined. At 1 h after stimulation, [Ca2+]i was higher in B cells stimulated with G28-8 alone than in B cells stimulated with G28-8 plus anti-kappa. The same conditions of cross-linking with the anti-kappa which increased the kinetics of the [Ca2+]i response decreased the proliferative response which otherwise followed co-incubation of the mAb with B cell growth factor or PMA. Thus, conditions leading to rapid but transient [Ca2+]i increase via Bgp95 may not be as effective at stimulating B cell proliferation as conditions favoring a slower prolonged [Ca2+]i response. Although the Bgp95 molecule is present on activated buoyant tonsillar B cells, mAb to Bgp95 did not trigger [Ca2+]i increases in these cells. These results suggest that the Bgp95 protein may function in early B cell activation and that its signal mechanisms are altered by the activation state of the cell.  相似文献   

12.
Despite a high Ca2+ -permeability of the P2Z receptor in human B lymphocytes, extracellular ATP4- has only a minor effect on global [Ca2+]i. The aim of this study was to reveal the mechanisms responsible for this discrepancy. We investigated the relationship between ATP4- -application, Cai 2+ -response, membrane current and membrane potential in two human B cell lines and in human tonsillar B cells. This was achieved by a combination of FACS- and voltage clamp measurements and the usage of appropriate voltage- and Ca2 -sensitive fluorescent dyes. ATP4 -induced changes in whole-cell current and [Ca2]i were blocked by extracellular as well as intracellular Na+. Under current clamp conditions, ATP4- -induced Na+ -entry diminished the Ca2+ entry via reduction of the driving force. A substantial increase in [Ca2+]iinduced by ATP4- was only observed in Na+ -free solutions.The pathway of signal transduction activated by ATP4via P2Z receptor of human B lymphocytes under physiological conditions seems not to operate by an increase in the global intracellular Ca2+ -concentration, but rather by the depolarization of the cell membrane as a result of the Na+-influx.  相似文献   

13.
Isopeptides of the newly discovered peptide family, endothelins (ET), caused a concentration-dependent increase in intracellular free [Ca2+] ([Ca2+]i) in human glomerular mesangial cells. ET isopeptides and sarafotoxin S6b caused transient and sustained [Ca2+]i waveforms which resulted from mobilization of intracellular Ca2+ stores and from Ca2+ influx through a dihydropyridine-insensitive Ca2+ channel. Ca2+ signaling evoked by ET isopeptides underwent a marked adaptive, desensitization response. Although activation of protein kinase C attenuated ET-induced Ca2+ signaling, desensitization by ET isopeptides was independent of protein kinase C. High concentrations of ET-1 and ET-2 also caused oscillations of [Ca2+]i that partially depended on extracellular Ca2+. These results suggest that an increase in [Ca2+]i constitutes a common pathway of signal transduction for the ET peptide family.  相似文献   

14.
Cross-linking of surface Ig has been shown to stimulate phosphatidylinositol hydrolysis in murine B cells, leading to increases in [Ca2+]i and activation of protein kinase C (PKC). Preliminary evidence suggests that a similar activation mechanism occurs in human B cells. We wished to examine whether anti-Ig antibody-stimulated human B cell proliferation is as dependent upon the presence of PKC as is anti-Ig-mediated murine B cell proliferation. Using highly purified, small, dense peripheral-blood B lymphocytes from healthy adult donors, we confirmed that PMA, a direct activator of PKC, is a potent mitogen for human B cells that synergizes with anti-mu antibody. Furthermore, we demonstrated that PMA treatment abolishes detectable cellular stores of immunoreactive PKC. However, after such depletion of cellular PKC, anti-mu antibody is still capable of delivering a proliferative signal to human B cells. It is unlikely that this signal occurs solely on the basis of increases in [Ca2+]i, because the calcium ionophore A23187 does not induce a proliferative response in PMA-treated B cells similar in magnitude to that seen with anti-mu. Additionally, the finding that pretreatment of B cells with PMA ablates the ability of anti-Ig antibody to mobilize intracellular and extracellular calcium also suggests that the ability of PMA to enhance anti-Ig mediated stimulation does not depend on elevations of [Ca2+]i induced by anti-Ig. Together, these observations suggest that anti-Ig signaling of human B cells may occur via other pathways in addition to the phosphatidylinositol system of calcium influx and PKC activation.  相似文献   

15.
A prolonged increase in the intracellular calcium concentration ([Ca2+]i) is essential for lymphocyte activation that includes cell proliferation and differentiation. This increase in [Ca2+]i results from Ca2+ release from the intracellular store and the subsequent Ca2+ influx from the extracellular environment via calcium channels located on the plasma membrane. Although transient receptor potential (TRP) channels have been reported to play important roles in the [Ca2+]i increase in lymphocytes, the function of these channels in lymphocyte activation remains unknown. Here, we report the comprehensive expression profile of TRP channel gene families including TRPC, TRPV, and TRPM in the murine immune system. RT-PCR analysis revealed different expression patterns of the TRP channel genes in B and T lymphocytes isolated from the spleen. Therefore, our results provide an appropriate reference of TRP gene expression in murine lymphocytes.  相似文献   

16.
The biochemical basis of Ca2+ mobilization after anti-Ig binding to B cell Ag-R has been further characterized by flow cytometric analysis of indo-1-loaded B cells. The ability to distinguish intracellular Ca2+ release from extracellular Ca2+ influx by using an extracellular calcium depletion-repletion approach has allowed us to study the relationship between the mobilization of Ca2+ from these sources. Studies involving manipulation of the Ca2+ gradient across the plasma membrane indicate that a significant portion of the Ca2+ mobilization response is preserved even when the normal inwardly directed Ca2+ gradient is reversed. In the presence of an extracellular calcium concentration ([Ca2+]o) of 10 microM, the response to anti-Ig is not blocked by the organic Ca2+ channel blockers. This response is not reduced by further depletion of [Ca2+]o by EGTA Ca2+-binding buffers. Thus, the Ca2+ response that occurs when [Ca2+]o less than or equal to 10 microM represents intracellular calcium release. Analysis of B cells stimulated with anti-Ig in low Ca2+ medium ([Ca2+]o = less than 10 microM) followed by repletion of [Ca2+]o to 1 to 5 mM reveals that a significant increase in permeability of the plasma membrane to Ca2+ develops in the stimulated cells. The resultant Ca2+ influx is nimodipine (20 microM) sensitive. Both intracellular Ca2+ release and Ca2+ influx are reduced in parallel as the concentration of anti-Ig stimulus is decreased, suggesting that Ca2+ influx may be coupled to the release of intracellular stores. Neomycin blocks anti-Ig-stimulated formation of inositol trisphosphate, which mediates release of Ca2+ from the endoplasmic reticulum. It also blocks the anti-Ig-induced release of intracellular Ca2+ stores as well as Ca2+ influx, indicating that both responses may be dependent upon phosphatidylinositol 4,5-bisphosphate hydrolysis.  相似文献   

17.
Anti-delta antibody conjugated to 2 x 10(6) m.w. dextran (dex) stimulates B lymphocyte proliferation at 10,000-fold lower concentrations than that required by the unconjugated antibody. Dex conjugated antibody also stimulates a greater and more sustained increase in intracellular ionized calcium [( Ca2+]i) than does the unconjugated anti-Ig antibody. Inasmuch as inositol phosphate metabolites have been linked to rises in [Ca2+]i, we analyzed by FPLC the relative amounts of the inositol polyphosphates (IP) in these cells. Anti-Ig-dextran induced a threefold greater increase in total IP than did the unconjugated anti-Ig. Furthermore, in cells stimulated by unconjugated anti-Ig there was a transient induction of I(1,4,5)P3 followed by a rapid accumulation of the I(1,3,4)P3 isomer with little accumulation of I(1,4)P2, whereas in anti-Ig-dex-stimulated cells there was prolonged elevation of I(1,4,5)P3 with more accumulation of I(1,4)P2. In addition, levels of I(1,3,4,5)P4 were maintained over a longer period of time in B cells stimulated by anti-Ig-dex than in those stimulated by unconjugated anti-Ig. The enhanced ratio of I(1,4,5)P3/I(1,3,4)P3 was also seen when suboptimal concentrations of anti-Ig-dex were used which stimulated a level of total inositol phosphate that was similar to that stimulated by the unconjugated anti-Ig. The possibility that the greater stimulation of increased [Ca2+] by anti-Ig-dex than by unconjugated anti-Ig was a predominant factor in influencing the metabolic pathway of I(1,4,5)P3 was excluded. These results show that 1) stimulation of increases in the various IP isomers occurs in anti-Ig stimulated normal B cells as has been shown in B cell lines and 2) that signal transduction and consequent PIP2 hydrolysis that is stimulated by Ag-mediated cross-linking of sIg is strongly influenced by the extent and type of cross-linking that is induced.  相似文献   

18.
Cytochalasins are routinely used to stimulate a variety of functions in eukaryotic cells even though their precise mode of action remains to be elucidated. In the present work we used the fluorescent Ca2+ indicator quin2 to study the effect of various cytochalasins, cytochalasins A, B, C, D, E (CA, CB, CC, CD, CE) and dihydrocytochalasin B (dhCB) on the intracellular Ca2+ concentration ([Ca2+]i) in various types of leukocytes, viz, neutrophils and lymphocytes. In human neutrophils, cytochalasins increase [Ca2+]i mainly by releasing Ca2+ from membrane-bound, intracellular stores. Thus, in order to readily appreciate the effect of cytochalasins on [Ca2+ )i, these cells must be loaded with low intracellular quin2 concentrations. On the other hand, in peripheral blood lymphocytes, splenocytes and thymocytes, the increase in [Ca2+]i is predominantly due to an increased Ca2+ influx from the extracellular medium. In addition, we found that in neutrophils these drugs prolong the increase in [Ca2+]i induced by chemotactic peptides, probably by increasing the cell permeability to Ca2+. Finally, in thymocytes, cytochalasins potentiate the production of inositol phosphates induced by the polyclonal mitogen concanavalin A (conA).  相似文献   

19.
Platelet-activating factor (PAF) has recently been demonstrated to be metabolized by B lymphocytes and to cause enhancement of Ig synthesis by Ig-secreting B lymphoblastoid cell lines. We have now examined some of the early activation events triggered by PAF binding to three Ig-secreting B cell lines, LA350 (IgM secreting), HSCE- (IgG secreting), and U266 (IgE secreting). After addition of 10(-7) to 10(-11) M PAF, but not equimolar concentrations of the inactive metabolite lyso-PAF, all three cell lines demonstrated rapid dose-dependent increases in free cytosolic Ca2+ concentrations ([Ca2+]i). The increases in [Ca2+]i resulted from both the release of Ca2+ from internal stores as well as transmembrane Ca2+ uptake. Addition of PAF triggered the rapid hydrolysis of phosphatidylinositol bisphosphate and accumulation of inositol phosphates. PAF also increased expression of the cell cycle-active genes c-fos and EGR2 in a dose-dependent fashion. The stimulated increases in [Ca2+]i and phosphatidylinositol bisphosphate hydrolysis and the increases in gene expression were all inhibited by the specific PAF receptor antagonist Web 2086. The LA350 cell line (which expresses surface IgM) was also shown to increase [Ca2+]i after addition of anti-IgM antibodies. Sequential addition of PAF or anti-IgM antibody in either order failed to reveal any evidence for heterologous desensitization. Furthermore, the PAF receptor antagonist did not affect anti-IgM induced changes in [Ca2+]i. These data provide evidence for the presence of functional PAF receptors on B lymphoblastoid cells and indicate a potential role for PAF in the regulation of B cell activation.  相似文献   

20.
We report that sustained increase of intracellular calcium ion concentration and protein kinase C (PKC) activation maintained throughout the G1 phase of cell cycle do not provide sufficient signals to cause S-phase entry in rabbit B cells, and that additional signals transduced by IL-2 and IL-2 receptor interaction are essential for G1 to S transition. We have shown earlier that rabbit B cells can be activated to produce IL-2 and express functional IL-2 receptors after treatment with ionomycin and PMA. Herein we have compared the response of rabbit PBLs, which contain about 50% T cells, with those of purified B cells. After activation with ionomycin or PMA, comparable numbers of PBLs and B cells entered the cell cycle; but DNA synthesis by the PBL cultures was three to four times higher than that of cultures of purified B cells. Interestingly, IL-2 production by the PBL cultures was also three to four times higher than in B cell cultures, suggesting an involvement of IL-2 in inducing DNA synthesis in these cells. The hypothesis that IL-2, which is produced in early G1, acts in late G1 and is required for G1 to S transition in B cells was supported by the following observations: (i) IL-2 production by B cells was detected as early as 6 hr after activation and preceded DNA synthesis by at least 24 hr. (ii) B cell blasts in G1 (produced by treatment of resting B cells with ionomycin and PMA) showed DNA synthesis in response to IL-2, but showed very little DNA synthesis in response to restimulation with ionomycin and PMA. (iii) A polyclonal rabbit anti-human IL-2 antibody caused nearly complete inhibition of DNA synthesis by B cells activated by ionomycin and PMA. (iv) A PKC inhibitor, K252b, inhibited DNA synthesis in ionomycin and PMA-stimulated cells if added at the beginning of culture but was not inhibitory if added 16 hr later. We conclude that increased [Ca2+]i and PKC activation are not sufficient signals for G1 to S transition in B cells; entry into S is signaled by IL-2, and IL-2-mediated signal transduction probably does not involve increased [Ca2+]i or PKC activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号