首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the growing literature on the underlying factors of geographical phenotypic variation, little is known about how and to what extent biogeographic barriers in South‐East Asia have shaped morphological variation in primates. We aimed to investigate the geographical variations in skull morphology in dusky leaf monkeys by decomposing them into clinal (latitudinal), non‐clinal spatial (discrete difference between regions north and south of the Isthmus of Kra), and environment‐related components. We applied geometric morphometrics to measure 53 adult male specimens from 36 localities, covering the regions both north and south of the Isthmus of Kra. A linear model was used to test the effects of region (north vs. south of the Isthmus of Kra), latitude, and environmental factors (temperature and rainfall) on the size and shape of skulls. A part of variation in skull shape differed moderately between the regions in the north and south of the Isthmus of Kra, and this difference cannot be explained by latitudinal and environmental factors. However, for size and the majority of variations in shape, we detected limited contributions of region and the two environmental factors. Shape differentiation that was unexplained by latitudinal and environmental factors suggests that dusky leaf monkeys may have experienced a population division due to habitat constriction around the Isthmus of Kra. However, this divergence probably has been obscured by subsequent gene flow between populations after habitat recovery.  相似文献   

2.
Halichoeres is a widely distributed coral reef fish genus with high levels of biodiversity in both the Indo-Pacific and New World tropics. This study employed molecular phylogenetic techniques and biogeographic analyses on 1700-1800 bp of mitochondrial CO1, 16s, and 12s to test competing hypotheses regarding the origins of biodiversity in this genus in these two biodiversity hotspots. Analyses indicate that Halichoeres is polyphyletic with distinct New World and Indo-Pacific Ocean components. The Halichoeres in the New World tropics formed a strongly supported clade (99% MP, 100% ML bootstrap values) that diverged 21.2-18.1 mya, suggesting that this lineage may represent a relictual fauna of the ancient Tethys Sea. The closure of the Isthmus of Panama contributed to the creation of Halichoeres biodiversity, but diversification across the Isthmus prior to its closure and within the W. Atlantic after the closure 3.1 mya were also important processes creating biodiversity in the New World tropics. Within the Indonesian Australian Archipelago (IAA) analysis of age vs. geographic distribution supported neither Center of Origin, Center of Accumulation or Center of Overlap hypotheses, and molecular clock estimates indicated that the role of Pleistocene sea level changes in the origins of IAA marine biodiversity may be less important than previously thought. Ancestral distribution reconstructions within the Indo-West Pacific (IWP) clade (99% ML bootstrap value) also failed to support these hypotheses as the reconstructions were highly sensitive to the inclusion of missing taxa. Results suggest plueralistic origins of biodiversity, but that vast amounts of habitat may favor the survival of biodiversity in the IAA biodiversity hotspot.  相似文献   

3.
Barriers to dispersal and resulting biogeographic boundaries are responsible for much of life's diversity. Distinguishing the contribution of ecological, historical, and stochastic processes to the origin and maintenance of biogeographic boundaries, however, is a longstanding challenge. Taking advantage of newly available data and methods--including environmental niche models and associated comparative metrics--we develop a framework to test two possible ecological explanations for biogeographic boundaries: (1) sharp environmental gradients and (2) ribbons of unsuitable habitat dividing two highly suitable regions. We test each of these hypotheses against the null expectation that environmental variation across a given boundary is no greater than expected by chance. We apply this framework to a pair of Hispaniolan Anolis lizards (A. chlorocyanus and A. coelestinus) distributed on the either side of this island's most important biogeographic boundary. Integrating our results with historical biogeographic analysis, we find that a ribbon of particularly unsuitable habitat is acting to maintain a boundary between species that initially diverged on distinct paleo-islands, which merged to form present-day Hispaniola in the Miocene.  相似文献   

4.
We assess variation in morphological and molecular characters among three species of Myosorex (the mouse shrew) –Myosorex geata, Myosorex kihaulei, and Myosorex zinki– as a means to test previously proposed biogeographic hypotheses for Tanzanian ‘sky islands’ and systematic hypotheses for Tanzanian mouse shrews. We analyse 17 cranial and dental variables using multivariate statistics and perform phylogenetic and phylogeographic analyses on sequences of mitochondrial and nuclear DNA; samples are drawn from every known Tanzanian population of Myosorex. Morphometric and phylogenetic analyses reveal that M. zinki is distinct, but that currently isolated populations of M. geata and M. kihaulei are relatively similar to one another, and may not have been isolated over geological time scales. Analyses of molecular variance identify statistically significant, but limited, genetic variation within and between isolated populations of M. geata and M. kihaulei. Between two putative regional biogeographic boundaries, greater genetic variation is explained by grouping populations on either side of the Ruaha River than by grouping populations on either side of the Makambako Gap. Our results are in agreement with recent studies illustrating the close relationship between faunas of the Southern Highlands and southern Eastern Arc Mountains, diminishing the apparent importance of the Makambako Gap as a historical biogeographic barrier. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 669–680.  相似文献   

5.
Many single‐species freshwater phylogeographic studies have been carried out in south‐east Queensland; however comparative phylogeography requires multiple lines of evidence to infer deep, significant relationships between landscape and biota. The present study aimed to test conclusions resulting from single taxon studies in a multispecies comparative framework: (1) how influential are river basins in the genetic structure of freshwater species; (2) are there biogeographic frontiers between groups of basins; and (3) could deep intraspecific lineages be explained by a single event? New and existing data from 33 freshwater species (23 fishes and 10 crustaceans) were combined, and both standard single‐species analyses (haplotype networks, genetic distances, ΦST) and multispecies methods (hierarchical ABC) were carried out for 1814 sequences from eight basins. More than half of the species displayed a high phylogeographic structure and contained at least two distinct lineages. Almost all of the lineage divergences displayed an element of north/south geographic breaks, with the most influential boundary being between the Mary and Brisbane rivers. Of the 11 basin‐pair multispecies coalescent analyses, four implied a single divergence as being most likely. A regional analysis of deep lineages within 16 taxon‐pairs resulted in a strongly supported inference of a single divergence, probably dating to the Pleistocene. Basin boundaries are a key determinant of phylogeographic patterns for most of these freshwater species, although the specific biogeographic relationship between basins often varies depending on the species. There are a number of influential biogeographic frontiers, with the Brisbane‐Mary being the most important. The finding that a single event may be responsible for multiple deep lineages across the region implies that a highly influential climate change event may have been detected. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 554–569.  相似文献   

6.
Mitochondrial DNA (mtDNA) was used to characterize patterns of geographic variation among white-tailed deer (Odocoileus virginianus) populations in the southeastern United States. Fifteen restriction enzymes were employed to survey and map 99 restriction sites in 142 deer from 18 localities in five southeastern states. Phylogenetic analysis revealed three primary groups of haplotypes: (1) southern Florida and the Florida Keys, (2) the remainder of peninsular Florida northward to South Carolina, and (3) the Florida panhandle westward to Mississippi. Geographical heterogeneity in haplotype frequencies suggests that stochastic lineage sorting or isolation by distance are not important determinates of mtDNA differentiation among deer populations. The pattern of mtDNA variation in white-tailed deer is concordant spatially with those observed in unrelated taxa suggesting the common influence of historical biogeographic events. The data (1) support previous hypotheses that relate contemporary patterns of intraspecific phylogeography in northern Florida to the physiogeographic history of the region; and (2) suggest that genetic differentiation in southern Florida may be attributable to episodes of Pleistocene dispersal. Despite potentially high vagility and human intervention, ecological and demographic characteristics of deer have effectively preserved the historical pattern of intraspecific mtDNA differentiation.  相似文献   

7.
The phylogeographic structure of the widely distributed arid and semi-arid Australian splendid fairy-wren Malurus splendens was investigated by using variation in plumage characters and mitochondrial DNA (mtDNA). We examined sequences of the mtDNA ND2 gene and used spectrophotometry to quantify chromatic variation in plumage in order to test the current morphology-based intraspecific taxonomy of M. splendens and to discriminate between hypotheses invoking allopatric and parapatric processes in the origin of diversity in the complex. Genetic diversity of M. splendens fell into three divergent geographically structured clades. One represents populations ascribed to the western subspecies M. s. splendens , the other populations of central M. s. musgravi and the third all eastern populations currently ascribed to M. s. emmottorum and M. s. melanotus . Plumage patterns clearly differentiate M. s. splendens and M. s. musgravi, and spectrophotometry identified a step-wise transition in spectra between M. s. melanotus and M. s. emmottorum . Congruence of patterns of phenotypic and genetic variation among western, central and eastern populations of M. splendens strongly suggests that these populations have diverged in allopatry on either side of historical biogeographic barriers in this region. Decoupled patterns of phenotypic and genetic diversity suggest that the divergence of M. s. melanotus and M. s. emmottorum may have occurred without periods of isolation perhaps in response to differences in local environmental conditions, or alternatively, mtDNA and plumage may have different rates of evolution. Critically, we encountered issues with the placement of the root of the M. splendens complex. The root was placed within the subspecies M. s. splendens separating its northern and southern populations and rendering the subspecies paraphyletic.  相似文献   

8.
The “Great American Biotic Interchange” (GABI) is regarded as a defining event in the biogeography of the Americas. It is hypothesized to have occurred when the Isthmus of Panama closed ca three million years ago (Ma), ending the isolation of South America and permitting the mixing of its biota with that of North America. This view of the GABI is based largely upon the animal fossil record, but recent molecular biogeographic studies of plants that show repeated instances of long‐distance dispersal over major oceanic barriers suggest that perhaps the land bridge provided by the isthmus may have been less necessary for plant migration. Here we show that plants have significantly earlier divergence time estimates than animals for historical migration events across the Isthmus of Panama region. This difference in timing indicates that plants had a greater propensity for dispersal over the isthmus before its closure compared with animals. The GABI was therefore asynchronous for plants and animals, which has fundamental implications for the historical assembly of tropical biomes in the most species‐rich forests on the planet.  相似文献   

9.
Copepods of the genus Acartia dominate zooplankton assemblages in northwestern Atlantic estuaries, many of which originated after the last glacial maximum 10,000–18,000 years ago. Acartia hudsonica occurs, at least seasonally, in estuaries from Chesapeake Bay to Labrador/Newfoundland. We sequenced the mitochondrial gene Cytochrome B (CytB) of 75 individuals of A. hudsonica from 26 estuaries from New Jersey to Maine, covering four biogeographic regions, and 11 individuals of Acartia tonsa from four of these estuaries in the southern part of the sampling range. A. hudsonica exhibited exceptionally high intraspecific DNA sequence variation. Uncorrected p-distances between sequences ranged from 0.3 to 31%. Five highly divergent sequence groups differed in frequencies across populations and biogeographic regions. One sequence group dominated northern localities, and two sequence groups were found at intermediate to high frequencies in two southern biogeographic regions. Ages of the sequence groups were estimated to be 11, 13, 30, and 37 million years, by applying a molecular clock calibrated by divergence in Alpheus snapping shrimps across the Isthmus of Panama. These ages were compared with independent biogeographic paleoceanographic data, and may have coincided with periods of global climate change over the past 40 MY.  相似文献   

10.
Molecular phylogenetic studies have become a major area of interest in plant systematics, and their impacts on historical biogeographic hypotheses are not to be disregarded. In Brazil, most historical biogeographic studies have relied on animal phylogenies, whereas plant biogeographic studies have largely lacked a phylogenetic component, having a limited utility for historical biogeography. That country, however, is of great importance for most biogeographic studies of lowland tropical South America, and it includes areas from a number of biogeographic regions of the continent. Important biogeographic reports have been published as part of phylogenetic studies, taxonomic monographs, and regional accounts for small areas or phytogeographic domains, but the available information is subsequently scattered and sometimes hard to find. In this paper we review some relevant angiosperm biogeographic studies in Brazil. Initially we briefly discuss the importance of other continents as source areas for the South American flora. Then we present a subdivision of Brazil into phytogeographic domains, and we cite studies that have explored the detection of biogeographic units (areas of endemism) and how they are historically related among those domains. Examples of plant taxa that could be used to test some biogeographic hypotheses are provided throughout, as well as taxa that exemplify several patterns of endemism and disjunction in the Brazilian angiosperm flora.  相似文献   

11.
Spatial patterns of intraspecific variation are shaped by geographical distance among populations, historical changes in gene flow and interactions with local environments. Although these factors are not mutually exclusive and operate on both genomic and phenotypic variation, it is unclear how they affect these two axes of variation. We address this question by exploring the predictors of genomic and phenotypic divergence in Icterus gularis, a broadly distributed Middle American bird that exhibits marked geographical variation in body size across its range. We combined a comprehensive single nucleotide polymorphism and phenotypic data set to test whether genome‐wide genetic and phenotypic differentiation are best explained by (i) isolation by distance, (ii) isolation by history or (iii) isolation by environment. We find that the pronounced genetic and phenotypic variation in I. gularis are only partially correlated and differ regarding spatial predictors. Whereas genomic variation is largely explained by historical barriers to gene flow, phenotypic diversity can be best predicted by contemporary environmental heterogeneity. Our genomic analyses reveal strong phylogeographical structure coinciding with the Chivela Pass at the Isthmus of Tehuantepec that was formed during the Pleistocene, when populations were isolated in north–south refugia. In contrast, we found a strong association between body size and environmental variables, such as temperature and precipitation. The relationship between body size and local climate is consistent with a pattern produced by either natural selection or environmental plasticity. Overall, these results provide empirical evidence for why phenotypic and genomic data are often in conflict in taxonomic and phylogeographical studies.  相似文献   

12.

Aim

Whether intraspecific spatial patterns in body size are generalizable across species remains contentious, as well as the mechanisms underlying these patterns. Here we test several hypotheses explaining within-species body size variation in terrestrial vertebrates including the heat balance, seasonality, resource availability and water conservation hypotheses for ectotherms, and the heat conservation, heat dissipation, starvation resistance and resource availability hypotheses for endotherms.

Location

Global.

Time period

1970–2016.

Major taxa studied

Amphibians, reptiles, birds and mammals.

Methods

We collected 235,905 body size records for 2,229 species (amphibians = 36; reptiles = 81; birds = 1,545; mammals = 567) and performed a phylogenetic meta-analysis of intraspecific correlations between body size and environmental variables. We further tested whether correlations differ between migratory and non-migratory bird and mammal species, and between thermoregulating and thermoconforming ectotherms.

Results

For bird species, smaller intraspecific body size was associated with higher mean and maximum temperatures and lower resource seasonality. Size–environment relationships followed a similar pattern in resident and migratory birds, but the effect of resource availability on body size was slightly positive only for non-migratory birds. For mammals, we found that intraspecific body size was smaller with lower resource availability and seasonality, with this pattern being more evident in sedentary than migratory species. No clear size–environment relationships were found for reptiles and amphibians.

Main conclusions

Within-species body size variation across endotherms is explained by disparate underlying mechanisms for birds and mammals. Heat conservation (Bergmann's rule) and heat dissipation are the dominant processes explaining biogeographic intraspecific body size variation in birds, whereas in mammals, body size clines are mostly explained by the starvation resistance and resource availability hypotheses. Our findings contribute to a better understanding of the mechanisms behind species adaptations to the environment across their geographic distributions.  相似文献   

13.
Aims To test the magnitude and direction of the effects of large‐scale environmental factors (latitude and habitat type: lotic or lentic) on the intraspecific variations in multiple life‐history traits, across multiple European freshwater fish species. To test the relevance of defining species traits by quantifying the magnitude of interspecific vs. intraspecific variability in traits. Location Europe. Methods We obtained estimates of 11 fish traits from published sources for 1089 populations of 25 European freshwater fish species. Traits were: longevity, maximal length, growth rate, asymptotic length, mortality rate, age and length at maturation, fecundity, egg size, gonadosomatic index, and length of breeding season. We described population habitats by latitude and habitat type (lotic or lentic), when available. For each species we tested the combined effect of latitude and habitat type on the intraspecific variation of each trait using analysis of covariance (ancova ). We compared the intraspecific variation in traits with the variation between species using an analysis of variance (anova ) for each trait, all species pooled. Results We found a consistent effect in direction of latitude on six traits, but we showed that this effect is not always significant across species. Higher‐latitude populations often grew more slowly, matured later, had a longer life span and a higher maximal and asymptotic length, and allocated more energy to reproduction than populations at lower latitudes. By contrast, we noted only a slight effect of habitat type on the intraspecific variation in traits, except for Salmo trutta. All traits varied significantly between species. However, traits such as growth rate, mortality rate and length of breeding season varied more between populations than between species, whereas fecundity and traits associated with body length varied more between species. Main conclusions Latitude, in contrast to habitat type, is an important factor influencing several traits of geographically widely dispersed populations of multiple European freshwater fish species. Species traits that vary more between species than between populations are attractive variables for understanding and predicting the responses of stream fish communities to their environment.  相似文献   

14.
Comparative studies of codistributed taxa test the degree to which historical processes have shaped contemporary population structure. Discordant patterns of lineage divergence among taxa indicate that species differ in their response to common historical processes. The complex geologic landscape of the Isthmus of Central America provides an ideal setting to test the effects of vicariance and other biogeographic factors on population history. We compared divergence patterns between two codistributed Neotropical frogs ( Dendropsophus ebraccatus and Agalychnis callidryas ) that exhibit colour pattern polymorphisms among populations, and found significant differences between them in phenotypic and genetic divergence among populations. Colour pattern in D. ebraccatus did not vary with genetic or geographic distance, while colour pattern co-varied with patterns of gene flow in A. callidryas . In addition, we detected significant species differences in the phylogenetic history of populations, gene flow among them, and the extent to which historical diversification and recent gene flow have been restricted by five biogeographic barriers in Costa Rica and Panama. We inferred that alternate microevolutionary processes explain the unique patterns of diversification in each taxon. Our study underscores how differences in selective regimes and species-typical ecological and life-history traits maintain spatial patterns of diversification.  相似文献   

15.
Parallel patterns of distribution in different lineages suggest a common cause. Explanations in terms of a single biogeographic event often imply contemporaneous diversifications. Phylogenies with absolute time scales provide the most obvious means of testing temporal components of biogeographic hypotheses but, in their absence, the sequence of diversification events and whether any could have been contemporaneous can be tested with relative date estimates. Tests using relative time scales have been largely overlooked, but because they do not require the calibration upon which absolute time scales depend, they make a large amount of existing molecular data of use to historical biogeography and may also be helpful when calibration is possible but uncertain. We illustrate the use of relative dating by testing the hypothesis that parallel, disjunct east/west distributions in three independent lineages of African caecilians have a common cause. We demonstrate that at least two biogeographic events are implied by molecular data. Relative dating analysis reveals the potential complexity of causes of parallel distributions and cautions against inferring common cause from common spatial patterns without considering the temporal dimension.  相似文献   

16.
An intraspecific phylogenetic study was undertaken to resolve the evolutionary relationship of isolates of the green alga Phyllodictyon anastomosans (Harv.) Kraft et Wynne that occur on Atlantic and Pacific coasts of the Central American Isthmus. Patterns of vicariance related to the emergence of the Central American Isthmus were evident, but numerous examples of recent trans‐oceanic and trans‐isthmian dispersal obscured the underlying pattern. This study, one of the first studies to assess the impact of the emergence of the Central American Isthmus in seaweed phylogeography, provided an ideal opportunity to estimate the rate of sequence evolution using a single time point. Using this newly calibrated molecular clock the timing of an historical introduction across the isthmus is shown to be concordant with a shallow water breach of the isthmus dated at approximately 2.3–2.0 million years ago. This work contributes to a growing body of literature that suggests marine algae are fairly successful at dispersing over long distances in recent times.  相似文献   

17.
Phylogeographic studies often infer historical demographic processes underlying species distributions based on patterns of neutral genetic variation, but spatial variation in functionally important genes can provide additional insights about biogeographic history allowing for inferences about the potential role of adaptation in geographic range evolution. Integrating data from neutral markers and genes involved in oxygen (O2)‐transport physiology, we test historical hypotheses about colonization and gene flow across low‐ and high‐altitude regions in the Ruddy Duck (Oxyura jamaicensis), a widely distributed species in the New World. Using multilocus analyses that for the first time include populations from the Colombian Andes, we also examined the hypothesis that Ruddy Duck populations from northern South America are of hybrid origin. We found that neutral and functional genes appear to have moved into the Colombian Andes from both North America and southern South America, and that high‐altitude Colombian populations do not exhibit evidence of adaptation to hypoxia in hemoglobin genes. Therefore, the biogeographic history of Ruddy Ducks is likely more complex than previously inferred. Our new data raise questions about the hypothesis that adaptation via natural selection to high‐altitude conditions through amino acid replacements in the hemoglobin protein allowed Ruddy Ducks to disperse south along the high Andes into southern South America. The existence of shared genetic variation with populations from both North America and southern South America as well as private alleles suggests that the Colombian population of Ruddy Ducks may be of old hybrid origin. This study illustrates the breadth of inferences one can make by combining data from nuclear and functionally important loci in phylogeography, and underscores the importance of complete range‐wide sampling to study species history in complex landscapes.  相似文献   

18.
Classification, phylogeography and the testing of evolutionary hypotheses rely on correct estimation of species phylogeny. Early molecular phylogenies often relied on mtDNA alone, which acts as a single linkage group with one history. Over the last decade, the use of multiple nuclear sequences has often revealed conflict among gene trees. This observation can be attributed to hybridization, lineage sorting, paralogy or selection. Here, we use 54 groups of fishes from 48 studies to estimate the degree of concordance between mitochondrial and nuclear gene trees in two ecological grades of fishes: marine and freshwater. We test the hypothesis that freshwater fish phylogenies should, on average, show more discordance because of their higher propensity for hybridization in the past. In keeping with this idea, concordance between mitochondrial and nuclear gene trees (as measured by proportion of components shared) is on average 50% higher in marine fishes. We discuss why this difference almost certainly results from introgression caused by greater historical hybridization among lineages in freshwater groups, and further emphasize the need to use multiple nuclear genes, and identify conflict among them, in estimation of species phylogeny.  相似文献   

19.
Aim To understand the ecological and historical/evolutionary processes underlying an inverse latitudinal gradient of richness (LGR) using crustacean peracarid species as a model group. Location The Pacific coast of South America, along the Chilean coast between 18° S and 56° S. Methods The LGR was evaluated using a dataset including 320 marine peracarid species reported for the coasts of Chile. Five ecological hypotheses invoking a relationship between species richness and present‐day conditions were tested: species–energy, species–area, Rapoport rescue effect, mid‐domain geometric constraint and niche breadth. Historical/evolutionary hypotheses (i.e. biogeographic conservatism, and diversification rates) were indirectly tested by analysing the latitudinal variation in the taxonomic distinctness, the taxonomic conservatism of the midpoint of the latitudinal range and the degree of nestedness at different taxonomic levels. Results Richness increased poleward, varying approximately eightfold, following an inverse LGR coupled with an increase in bathymetric distribution. Overall this inverse LGR seems robust to uncertainties in the completeness of the species inventory. We found support for only two of the five ecological hypotheses tested: species–area and Rapoport rescue effect. Historical/evolutionary hypotheses seemed important in structuring the richness pattern, as indicated by the higher taxonomic distinctness in the southern region, the strong taxonomic inertia in the mean range size and the high degree of nestedness of assemblages at different taxonomic levels. Conclusions When combined, these results underscore the importance of long‐term processes and historical/evolutionary explanations for the inverse LGR, conceptualized in what we term the ‘out of the deep south’ hypothesis that involves the effects of both biogeographic niche conservatism and evolutionary rates. We propose that the southern region may be a source of evolutionary novelties and/or exhibit higher diversification rates (i.e. higher speciation/lower extinction rates). Furthermore, phylogenetic conservatism of latitudinal range may limit the geographic expansion of these new taxa towards the depauperated northern region.  相似文献   

20.
Dawkins  Kathryn L.  Furse  James M.  Hughes  Jane M. 《Hydrobiologia》2021,848(2):403-420

Biogeographic investigations of Gondwanan mesic Australian fauna are scarce. The burrowing clade of Australian freshwater crayfish represent an ideal group to provide biogeographic inferences, due to their extensive distribution across the continent and their presumed ancient origin. This study tested the competing hypotheses of a ‘early’ versus ‘late’ origin of this clade, coinciding with the early or late fragmentation of Gondwana, respectively. The biogeographic history of this group was investigated through: (a) examination of the phylogenetic relationships between the seven extant taxon groups; (b) reconstruction of four species trees, each using a different calibration method; and (c) reconstruction of ancestral ranges and correlation of estimated dispersal and vicariance events with historical geological data to propose plausible mechanisms responsible for driving diversification. The phylogenetic relationships between the taxon groups were generally well supported (although some uncertainty exists for the oldest genera), and all calibration methods produced concordant results. The hypothesis that the clade arose during the early fragmentation of Gondwana in southern Australia is supported. Divergence between the extant taxa likely resulted from a combination of both short- and long-distance dispersal events (often followed by later vicariance), coincident with phases of sea level oscillation and changing climate continuing into the Eocene.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号