首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Cytochrome P-450-dependent steroid hormone metabolism was studied in isolated human liver microsomal fractions. 6 beta hydroxylation was shown to be the major route of NADPH-dependent oxidative metabolism (greater than or equal to 75% of total hydroxylated metabolites) with each of three steroid substrates, testosterone, androstenedione, and progesterone. With testosterone, 2 beta and 15 beta hydroxylation also occurred, proceeding at approximately 10% and 3-4% the rate of microsomal 6 beta hydroxylation, respectively, in each of the liver samples examined. Rates for the three steroid 6 beta-hydroxylase activities were highly correlated with each other (r = 0.95-0.97 for 25 individual microsomal preparations), suggesting that a single human liver P-450 enzyme is the principal microsomal 6 beta-hydroxylase catalyst with all three steroid substrates. Steroid 6 beta-hydroxylase rates correlated well with the specific content of human P-450NF (r = 0.69-0.83) and with its associated nifedipine oxidase activity (r = 0.80), but not with the rates for debrisoquine 4-hydroxylase, phenacetin O-deethylase, or S-mephenytoin 4-hydroxylase activities or the specific contents of their respective associated P-450 forms in these same liver microsomes (r less than 0.2). These correlative observations were supported by the selective inhibition of human liver microsomal 6 beta hydroxylation by antibody raised to either human P-450NF or a rat homolog, P-450 PB-2a. Anti-P-450NF also inhibited human microsomal testosterone 2 beta and 15 beta hydroxylation in parallel to the 6 beta-hydroxylation reaction. This antibody also inhibited rat P-450 2a-dependent steroid hormone 6 beta hydroxylation in uninduced adult male rat liver microsomes but not the steroid 2 alpha, 16 alpha, or 7 alpha hydroxylation reactions catalyzed by other rat P-450 forms. Finally, steroid 6 beta hydroxylation catalyzed by either human or rat liver microsomes was selectively inhibited by NADPH-dependent complexation of the macrolide antibiotic triacetyloleandomycin, a reaction that is characteristic of members of the P-450NF gene subfamily (P-450 IIIA subfamily). These observations establish that P-450NF or a closely related enzyme is the major catalyst of steroid hormone 6 beta hydroxylation in human liver microsomes, and furthermore suggest that steroid 6 beta hydroxylation may provide a useful, noninvasive monitor for the monooxygenase activity of this hepatic P-450 form.  相似文献   

2.
3.
Complementary DNA clones encoding the male-specific rat liver cytochrome P-450 g have been isolated by cross-hybridization with sequences from the female-specific rat liver cytochrome P-450 15 beta. Tissue distribution analysis indicates the liver as the organ with major expression of this cytochrome P-450 gene. Minimal P-450 g expression was also detected in prostate, kidney, heart, and brain. A developmental analysis reveals liver expression in the 8-week-old male and to a lesser extent in the 4-week-old male, but no detectable expression is seen in females of these ages or in 1- and 2-week-old rats from both sexes. Hypophysectomy of female rats dramatically increases hepatic expression of P-450 g, whereas continuous GH administration represses hepatic expression in male or female hypophysectomized rats. In similarity to P-450 15 beta and P-450 16 alpha, therefore, the cytochrome P-450 g gene in liver is GH regulated.  相似文献   

4.
5.
Rat hepatic cytochrome P-450 form RLM2 is a testosterone 15 alpha-hydroxylase reported to be male-specific on the basis of purification studies (Jansson, I., Mole, J., and Schenkman, J. B. (1985) J. Biol. Chem. 260, 7084-7093). The sex dependence, developmental regulation, xenobiotic induction, and hormonal control of P-450 RLM2 expression were studied using P-450 form-specific immunochemical and catalytic assays. Polyclonal antibodies raised to rat hepatic P-450 3 (P-450 gene IIA1) were found to cross-react strongly with P-450 RLM2, but not with 10 other rat P-450 forms, suggesting that P-450 3 and P-450 RLM2 are highly conserved in primary structure. Western blotting of liver microsomes under conditions where P-450s 3 and RLM2 are resolved electrophoretically revealed that P-450 RLM2 is markedly induced at puberty in male rats, with no protein detected (less than or equal to 5% of adult male levels) in adult females or immature animals of either sex. A similar developmental dependence was observed for hepatic microsomal testosterone 15 alpha-hydroxylase activity, which was found to be catalyzed primarily by P-450 RLM2. P-450 RLM2 was resistant to induction by several xenobiotics and in the case of phenobarbital and beta-naphthoflavone, was suppressed by 50-60%. Studies on the steroid hormonal regulation of P-450 RLM2 revealed that its adult male-specific expression is imprinted (programmed) in response to neonatal testosterone exposure. Ovariectomy studies demonstrated that suppression by estrogen does not contribute significantly to the absence of P-450 RLM2 in adult female rats. Although the male-specific developmental induction of P-450 RLM2 in response to neonatal testosterone is strikingly similar to that of P-450 2c (testosterone 2 alpha/16 alpha-hydroxylase; gene IIC11), P-450 RLM2 expression is not dependent on the pulsatile pituitary growth hormone secretion required for P-450 2c synthesis. Rather, hypophysectomy of adult male rats increased P-450 RLM2 and its associated testosterone 15 alpha-hydroxylase activity by 50-100%.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
7.
8.
The role of growth hormone in the expression of two forms of hepatic cytochrome P-450(P-450), P-450(6)beta-1(6 beta-3), and P-450(6)beta-4, was investigated using RNA blots. The level of P-450(6)beta-1(6 beta-3) mRNA was twenty times higher than that of P-450(6) beta-4 mRNAs in untreated male rat livers. The levels of P-450(6)beta-1(6 beta-3) and P-450(6)beta-4 mRNAs were increased two fold and three fold, respectively, by hypophysectomy of adult male rats. By intermittent injection of human growth hormone (hGH) into hypophysectomized male rats, both mRNAs were decreased to the level of normal rats, and almost disappeared after continuous infusion of hGH. In female rats, these two mRNAs were not detected, but were increased remarkably by hypophysectomy. The increases in these mRNAs were almost abolished after continuous infusion of hGH in hypophysectomized female rats. The effect of hGH on PB-mediated induction of P-450(6)beta-1(6 beta-3) and P-450(6)beta-4 mRNAs was also examined. The PB-mediated increases in P-450(6)beta-1(6 beta-3) and P-450(6)beta-4 mRNAs were higher in hypophysectomized male rats (2.5-fold and 10.9-fold, respectively) than in normal male rats (1.5-fold and 5.2-fold, respectively). Thus, the levels of P-450(6)beta-1(6-beta-3) and P-450(6)beta-4 mRNAs were 4.1-fold and 7.3-fold, respectively, higher in PB-induced hypophysectomized rats than in normal male rats. Concerning the postnatal developmental profiles, P-450(6)beta-1(6 beta-3) mRNA was detectable at neonate and reached a maximal level at around 17 days of age.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Immunoblotting analysis of human liver microsome preparations revealed that human cytochrome P-450 PCN1 (hPCN1, Mr approximately 52,000) was expressed in each of 40 individual specimens examined. In about 10-20% of the livers, an immunologically related protein having a lower electrophoretic mobility (Mr approximately 52,500) was also detected. A single liver was found that expressed only the lower mobility protein, designated hPCN3, and RNA isolated from this liver was used to construct a lambda gt11 library. The library was screened with an hPCN1 cDNA probe resulting in the isolation of a unique full-length cDNA that was sequenced and shown to encode hPCN3. The deduced amino acid sequence of this cDNA contained 502 residues, a calculated molecular mass of 57,115 daltons, and displayed 84% similarity with hPCN1. The deduced amino-terminal sequence of hPCN3 was identical to that of HFLa, a major cytochrome P-450 expressed in human fetal liver that is immunologically cross-reactive with several family III cytochrome P-450s. hPCN1 and hPCN3 cDNAs were expressed in Hep G2 cells using a vaccinia virus expression system and shown to encode active enzymes, both characterized by reduced CO-binding spectra with lambda max at 450 nm. Enzymatic analysis revealed that both cytochrome P-450s were similarly active in catalyzing oxidation of the calcium channel blocking drug nifedipine. Both enzymes also catalyzed 6 beta-hydroxylation of the steroid hormones testosterone, progesterone, and androstenedione, although hPCN1 exhibited several-fold higher expressed activity than hPCN3. Several minor oxidation products of these steroids (e.g. 15 beta-hydroxytestosterone), comprising up to approximately 20% of the total metabolites, were formed by hPCN1 but not hPCN3, indicating that hPCN3 is a more highly regiospecific monooxygenase catalyst with steroid substrates. Clear differences were also detected in their catalytic activities toward the immunosuppressive drug cyclosporine, with two hydroxylated metabolites (M1 and M17) and one demethylated metabolite (M21) formed by hPCN1 but only one metabolite (M1) formed by hPCN3. These studies establish that hPCN3 is a newly described cytochrome P-450 that is differentially expressed in the adult human population and that has overlapping substrate specificity compared to hPCN1 for metabolism of steroid and drug substrates.  相似文献   

10.
The effects of thyroid hormone and growth hormone on microsomal testosterone 7 alpha-hydroxylase, P-450a, were studied to understand the interaction of these hormone-mediated regulations in rats. In Western blots using anti-P-450a IgG, 1.7-fold higher content of P-450a was observed in livers of female than male adult rats, while no appreciable sex-related difference was detected in prepubertal rats and rats of 24 months of age. Treatment with n-propyl-2-thiouracil or thyroidectomy of male rats increased by 2-fold the hepatic content of P-450a, but neither regimen had a significant effect on the content in female rats. Levels of P-450a in both sexes of thyroidectomized rats were decreased by the supplementation of triiodothyronine (T3, 50 micrograms per kg, i.p. for 7 days) to levels similar to that observed in normal male rats. Hypophysectomy also caused an increase in microsomal P-450a content in male rats. Continuous infusion of human growth hormone, which mimicked the female secretion, further significantly increased the content in hypophysectomized rats to a level similar to that observed in normal female rats. In contrast, hepatic level of P-450a in hypophysectomized male and female rats was reduced by intermittent injection, which mimicked the male secretion. Clear suppression on the level of hepatic P-450a was also observed by the treatment of hypophysectomized rats with 5 or 50 micrograms/kg of T3 and of hGH-infused hypophysectomized rat with 50 micrograms/kg of T3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Adult male rodents have a pulsatile profile of growth hormone (GH) release, whereas female rodents have a relatively steady-state pattern with uniform, albeit lower levels of GH. The expression of a number of sexually differentiated hepatic proteins is primarily determined by these plasma GH profiles and only secondarily regulated by gonadal hormones. An important subset of these sexually dimorphic proteins is cytochrome P450s. CYP3A10/6 beta-hydroxylase is a cytochrome P450 that catalyzes the 6 beta-hydroxylation of lithocholic acid. CYP3A10/6 beta-hydroxylase is expressed only in male hamsters; however, mimicking the male GH secretion pattern in females induces expression of the gene to male levels. Using chimeric CYP3A10/6 beta-hydroxylase promoter/luciferase reporter genes transfected into hamster primary hepatocytes, we have shown a GH-mediated induction of promoter activity. A combination of 5'-deletion constructs, heterologous promoter constructs, and specific mutagenesis was used to localize the DNA element involved in the GH-mediated regulation of CYP3A10/6 beta-hydroxylase promoter activity, which resembles a STAT binding site. Footprint and gel shift analyses confirmed that the expression of the protein binding to this site is regulated by GH and that the DNA-protein complex can be partially supershifted by anti-STAT-5 antibodies. This protein is 50% more abundant in male than in female hamster livers, is absent in hypophysectomized female livers, and is restored when hypophysectomized females are injected with GH in a manner that masculinizes female hamsters in terms of CYP3A10/6 beta-hydroxylase expression. The system characterized and described here is ideally suited for dissecting the molecular details governing the sexually dimorphic expression of liver-specific genes.  相似文献   

12.
Previous studies on regulation of the rat hepatic P-450 IIA1 cDNA have provided evidence for a second gene closely related to but regulated in a manner quite distinct from P-450 IIA1. Experiments were carried out to isolate the cDNA for this second P-450 gene, designated IIA2, in order to study more directly its regulation and relationship to IIA1. A full length cDNA to IIA2 was isolated from an adult male rat liver lambda gt11 library and sequenced completely. The IIA2 cDNA shared 93% nucleotide and 88% deduced amino acid similarities with the previously characterized IIA1 cDNA (Nagata, K., Matsunaga, T., Gillette, J., Gelboin, H. V., and Gonzalez, F. J. (1987) J. Biol. Chem. 262, 2787-2793). The protein, deduced from the cDNA, contained 492 amino acids and a calculated Mr of 56,352. Comparison of the IIA1 and IIA2 cDNAs revealed areas of low nucleotide similarity interspersed with areas of absolute identity, suggesting that gene conversions have played a role in the evolution of the IIA subfamily. Expression of IIA1 and IIA2 mRNAs in rat liver during development was studied with use of specific oligonucleotide probes. IIA1 mRNA was increased within 1 week after birth in both male and female rats; however, its postpubertal expression was decreased in males yet remained elevated in females. In contrast, IIA2 mRNA was markedly induced in male rat liver at puberty but was not detectable in females at any age examined. Furthermore, only IIA1 mRNA was induced by treatment of rats with 3-methylcholanthrene. Although IIA1 and IIA2 mRNAs were actively expressed in hepatic tissue, no evidence for their expression was found in lung, kidney, or intestine, suggesting that the IIA genes have tissue-specific promoters. Reconstituted enzyme assays on the purified protein products P-450 IIA1 and P-450 IIA2 showed that, although both enzymes share considerable sequence similarity, their positional specificities toward the prototype substrate testosterone are strikingly different.  相似文献   

13.
Four microsomal cytochrome P-450s (P-450), all of which are active testosterone 6 beta-hydroxylases, were purified to electrophoretic homogeneity from livers of phenobarbital-treated (P-4506 beta-1 and P-4506 beta-3) or dexamethasone-treated adult male rats (P-4506 beta-2 and P-4506 beta-4). Purified P-4506 beta-1, P-4506 beta-2, P-4506 beta-3, and P-4506 beta-4 had apparent molecular weights of 52,000, 51,000, 52,000, and 52,500 as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Absolute spectra revealed that all four P-450 forms had characteristic low-spin spectral patterns in their fully oxidized states. P-4506 beta-1 and P-4506 beta-3 displayed spectra of the reduced carbonyl complex with lambda max at 447 nm. P-4506 beta-2 and P-4506 beta-4 showed lambda max at 446 and 448 nm, respectively. Antibodies raised against each P-450 recognized all forms, although differences were observed with respect to the extents of cross-reactivities on Western blots. Form-specific peptide fragments were also detected among the four P-450 proteins after partial protease-digestion. P-4506 beta-1 was identical to P-4506 beta-3 in the first 26 residues of the NH2-terminal amino acid sequence, but differed by 13 residues from P-4506 beta-2. The amino-terminal sequence of P-4506 beta-2 was unique and was not identical with those of any rat P-450 previously reported. This P-450 form was detected in the livers of untreated male rats and was induced by treatment with dexamethasone, but not with phenobarbital.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号