首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed an intermediate frequency (IF) magnetic field exposure system for in vitro studies. Since there are no previous studies on exposure to heating-frequency magnetic fields generated from an induction heating (IH) cook top, there is a strong need for such an exposure system and for biological studies of IF magnetic fields. This system mainly consists of a magnetic-field-generating coil housed inside an incubator, inside which cultured cells can be exposed to magnetic field. Two systems were prepared to allow the experiment to be conducted in a double-blind manner. The level of the generated magnetic field was set to 532 microT rms in the exposure space, 23 kHz, 80 times the value in the International Commission on Non-ionizing Radiation Protection (ICNIRP) guidelines, with a spatial field uniformity better than 3.8%. The waveforms were nearly sinusoidal. It was also confirmed that the parasitic electric field was 157 V/m rms and the induced electric field was 1.9 V/m rms. The temperature was maintained at 36.5 +/- 0.5 degrees C for 2 h. Furthermore, leaked magnetic flux density was 0.7 microT rms or lower at extremely low frequency (ELF) and IF in the stopped system when the other system was being operated, and the environmental magnetic flux density was 0.1 microT rms or lower at the center of the coils. As a result, it was confirmed that this system could be successfully used to evaluate the biological effects of exposure to IF magnetic fields.  相似文献   

2.
The use of induction heater (IH) cook tops in homes has become widespread, especially in Japan, but there are concerns about the safety of intermediate frequency (IF) electromagnetic fields associated with these cooking appliances. Since the cellular genotoxicity of IF magnetic fields has not been examined in cultured cells, we examined the effects of these fields at a magnetic flux density of 532 +/- 20 microT at 23 kHz, using an exposure unit with a built-in CO2 incubator. Exposure to the IF magnetic field at 532 microT for 2 h did not affect the growth of CHO-K1 cells and caused no mutagenic effects in bacterial mutation assays. Exposure to the IF magnetic field for 2 h induced neither single nor double DNA strand breaks in comet assays, and caused no significant change in the mutation frequency at the HPRT locus compared to sham exposure. The magnetic field used in this study is more than 80 times higher than the level recommended as safe in the International Commission on Non-ionizing Radiation Protection (ICNIRP) guidelines. From these results, we suggest that exposure to an IF magnetic field for 2 h does not cause cellular genotoxicity in bacteria and in Chinese hamster cells. However, the possibility of effects on other cellular functions remains, and further studies on the cellular effects of IF magnetic fields are required.  相似文献   

3.
To maximize the availability and usefulness of a small magnetic field exposure laboratory, we designed a magnetic field exposure system that has been used to test human subjects, caged or confined animals, and cell cultures. The magnetic field exposure system consists of three orthogonal pairs of coils 2 m square x 1 m separation, 1.751 m x 0.875 m separation, and 1.5 m x 0.75 m separation. Each coil consisted of ten turns of insulated 8 gauge stranded copper conductor. Each of the pairs were driven by a constant-current amplifier via digital to analog (D/A) converter. A 9 pole zero-gain active Bessel low-pass filter (1 kHz corner frequency) before the amplifier input attenuated the expected high frequencies generated by the D/A conversion. The magnetic field was monitored with a 3D fluxgate magnetometer (0-3 kHz, +/- 1 mT) through an analog to digital converter. Behavioral monitoring utilized two monochrome video cameras (viewing the coil center vertically and horizontally), both of which could be video recorded and real-time digitally Moving Picture Experts Group (MPEG) encoded to CD-ROM. Human postural sway (standing balance) was monitored with a 3D forceplate mounted on the floor, connected to an analog to digital converter. Lighting was provided by 12 offset overhead dimmable fluorescent track lights and monitored using a digitally connected spectroradiometer. The dc resistance, inductance of each coil pair connected in series were 1.5 m coil (0.27 Omega, 1.2 mH), 1.75 m coil (0.32 Omega, 1.4 mH), and 2 m coil (0.38 Omega, 1.6 mH). The frequency response of the 1.5 m coil set was 500 Hz at +/- 463 microT, 1 kHz at +/- 232 microT, 150 micros rise time from -200 microT(pk) to + 200 microT(pk) (square wave) and is limited by the maximum voltage ( +/- 146 V) of the amplifier (Bessel filter bypassed).  相似文献   

4.
In order to study the possible association between epileptic seizures and natural electromagnetic fields, 32 female audiogenic seizure (AGS)-susceptible rats were exposed to simulated 10 kHz and 28 kHz atmospherics and to a sinusoidally oscillating magnetic field with a frequency of 100 Hz and field strength of 1 A/m. After the electromagnetic exposure, seizures were induced in the rats with a sound stimulus. The severity of the seizure was determined on an ordinal scale, the audiogenic response score (ARS). The time from the beginning of the sound stimulus to the onset of the seizure (seizure latency) and the duration of the convulsion was measured. No differences from the control experiments were found in the experiments with simulated atmospherics, but the 100 Hz magnetic field increased the seizure latency by about 13% (P<0.02). The results do not support the hypothesis that natural atmospheric electromagnetic signals could affect the onset of epileptic seizures, but they suggest that AGS-susceptible rats may be a useful model for studying the biological effects of electromagnetic fields.  相似文献   

5.
As a continuation of our previous study, we performed a teratological evaluation of the importance of gestational age with regards to the exposure of 20 kHz intermediate frequency magnetic field (IF) on pregnant ICR mice. The pregnant mice were exposed to a 20 kHz IF magnetic field for 8 h/day in a carousel irradiator at 30 µT which is the limit standard for occupational population in Korea. The animals were sacrificed on the 18th day of gestation and the fetuses were examined for mortality, growth retardation, changes in head size and other morphological abnormalities. We concluded that exposure to 30 µT with 20 kHz IF did not cause any observable adverse effects on mouse fetuses. Bioelectromagnetics 30:330–333. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
7.
Several animal studies have been carried out at the Institut Armand Frappier (IAF) to determine whether chronic exposure to 60 Hz linearly polarized sinusoidal magnetic fields might increase the risk of cancer development of female Fisher rats. The magnetic field exposure facility was developed to meet the requirements of the study protocol for chronic exposure of large number of animals to field intensities of sham < 0.2 microT, 2 microT, 20 microT, 200 microT, and 2000 microT. At each exposure level, including sham, the animals are distributed in a group of four exposure units. Each exposure unit contains two exposure volumes having uniform distribution of magnetic fields for the animals, while the magnetic field external to the unit falls off rapidly due to the "figure-eight" coil topography used. A program of "shake down" tests, followed by verification and calibration of the exposure facility, was carried out prior to starting the animal experiments. Continuous monitoring of the magnetic field and other environmental parameters was an important part in the overall quality assurance program adopted.  相似文献   

8.
The increased use of induction heating (IH) cooktops in Japan and Europe has raised public concern on potential health effects of the magnetic fields generated by IH cooktops. In this study, we evaluated the effects of intermediate frequency (IF) magnetic fields generated by IH cooktops on gene expression profiles. Human fetus‐derived astroglia cells were exposed to magnetic fields at 23 kHz and 100 µTrms for 2, 4, and 6 h and gene expression profiles in cells were assessed using cDNA microarray. There were no detectable effects of the IF magnetic fields at 23 kHz on the gene expression profile, whereas the heat treatment at 43 °C for 2 h, as a positive control, affected gene expression including inducing heat shock proteins. Principal component analysis and hierarchical analysis showed that the gene profiles of IF‐exposed groups were similar to the sham‐exposed group and were different than the heat treatment group. These results demonstrated that exposure of human fetus‐derived astroglia cells to an IF magnetic field at 23 kHz and 100 µTrms for up to 6 h did not induce detectable changes in gene expression profile. Bioelectromagnetics 33:662–669, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Magnetic field systems were added to existing electric field exposure apparatuses for exposing cell suspensions in vitro and small animals in vivo. Two horizontally oriented, rectangular coils, stacked one directly above the other, have opposite electric currents. This configuration minimizes leakage fields and allows sham- and field-exposure systems to be placed in the same room or incubator. For the in vitro system, copper plates formed the loop-pair, with up to 900 A supplied by a 180:1 transformer. Electric fields were supplied via electrodes at the ends of cell-culture tubes, eight of which can be accommodated by each exposure system. Two complete systems are situated in an incubator to allow simultaneous sham and field exposure up to 1 mT. For the in vivo system, four pairs of 0.8 x 2.7-m coils made of copper bus bar are employed. This arrangement is energized from the power grid via a 30:1 transformer; horizontal magnetic flux densities up to 1 mT can be generated. Pairs of electrode plates spaced 30.5 cm apart provide electric field exposure of up to 130 kV/m. Four systems with a capacity of 48 rats each are located in one room. For both the in vitro and in vivo systems, magnetic exposure fields are uniform to within +/- 2.5%, and sham levels are at least 2,500-fold lower than exposure levels. Potential confounding factors, such as heating and vibration, were examined and found to be minimal.  相似文献   

10.
Fertilized Medaka fish eggs were used to determine if electromagnetic fields, designed to simulate those beneath a high voltage power line, have biological effects on vertebrate embryo development. The newly fertilized eggs were exposed to a 60 Hz electrical field of 300 mA/m2 current density, a 60 Hz magnetic field of 1.0 gauss RMS, or to the combined electric plus magnetic fields for 48 hours. No gross abnormalities were observed in any of the embryos as they developed, but significant development delays were seen in those embryos exposed to either the magnetic or to the combined electromagnetic fields; delays were not seen in the embryos exposed to the electrical field. Thus, a 60 Hz magnetic field like that encountered in a man made powerline environment was shown to retard development of fish embryos.  相似文献   

11.
A magnetic field exposure laboratory has been constructed to support National Toxicology Program studies for the evaluation of the toxicity and carcinogenicity of pure, linearly polarized, 60 Hz magnetic fields in rodents. This dual corridor, controlled access facility can support the simultaneous exposure of 1200 rats and 1200 mice. The facility contains fully redundant electrical and environmental control systems and was constructed using non‐metallic materials to maintain low levels of background (ambient), stray, and cross‐talk magnetic fields. The exposure module design provides for large uniform exposure volumes with good control of stray and cross‐talk fields, while allowing the use of roll‐around cage racks for simplified animal husbandry. Stray fields and cross‐talk have been further reduced by the inclusion of “steering coils” in each exposure module. Ambient 60 Hz fields (less cross‐talk) in all exposure rooms are <0.1 μT (1 mG), and static magnetic fields have been mapped extensively. Magnetic field strength, waveform, temperature, relative humidity, light intensity, noise level, vibration, and air flow in all animal holding areas are tightly regulated, and are monitored continuously during all studies. Field uniformity in the animal exposure volumes is better than ±10%; a systematic program of cage, rack, and room rotation controls for possible positional effects within the exposure system. Magnetic fields are turned on and off over multiple cycles to prevent the induction of transients associated with abrupt field level changes. Total harmonic distortion is <3% at all field strengths. The facility has been used to study magnetic field bioeffects in rodent model systems in experiments ranging in duration from 8 weeks to 2 years. Bioelectromagnetics 20:13–23, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
In order to evaluate the importance of gestational age in possible effects due to exposure to a 20 kHz sawtooth magnetic field, pregnant ICR mice at gestational 2.5-15.5 days post-coitus, which is the most sensitive stage for the induction of major congenital malformations, were exposed in a carrousel irradiator. The mice were exposed to a 20 kHz intermediate frequency (IF) sawtooth magnetic field had a 6.5 microT peak intensity for 8 h/day. The animals were sacrificed on the 18th day of gestation; and the fetuses were examined for mortality, growth retardation, changes in head size, and other morphological abnormalities. From the above conditions, it is concluded that the exposure to a 20 kHz sawtooth magnetic field with 6.5 microT peak intensity does not inflict any adverse effect on fetuses of pregnant mice.  相似文献   

13.
In order to evaluate possible tumorigenic effects of a 20 kHz intermediate frequency triangular magnetic field (IF), a frequency emitted from TV and PC monitors at 6.25 microT rms, which is the regulated exposure limit of magnetic field for the public in Korea, mammary tumors were produced in female Sprague-Dawley rats by oral intubation of dimethylbenz(a)anthracene (DMBA), lung tumors in ICR mice by scapular region injection of benzo(a)pyrene (BP), and skin tumors in female ICR mice by topical application of DMBA and tetradecanoylphorbol ester (TPA). IF was applied 8 h/day for 14 weeks beginning the day after DMBA treatment for mammary tumor experiment, for 6 weeks after weaning for lung tumor, and for 20 weeks beginning 1 week after DMBA application for skin tumor experiment. For skin tumors, TPA was applied once a week for 19 weeks. Results showed no significant differences in tumor incidence, mean tumor number and volume, and histological patterns between IF magnetic-field exposed and sham control rats in the above three tumor models. Therefore, we conclude that within the limitation or number of animals and the experimental conditions, 20 kHz IF triangular magnetic field exposure of 6.25 microT does not appear to be a strong co-tumorigenic agent in the chosen murine mammary, lung and skin models.  相似文献   

14.
A laboratory facility specifically designed for controlled human exposure to 60-Hz electric (0 to 16 kV/m) and magnetic (0 to 32 A/m, B = 0 to 40 microT) fields has been constructed. The facility presents uniform fields under controlled temperature and humidity. Special control systems allow collection of physiological data during, as well as before and after, exposure to electric fields at strengths to 16 kV/m under verified double-blind control. Exposure to continuous or intermittent fields is possible in the facility. The capability of obtaining physiological data during actual exposure to constant or intermittent, 60-Hz fields, and of doing so without either the subject or the experimenter being aware of actual field conditions, is a critical factor in valid experimentation.  相似文献   

15.
16.
In a previous article we developed an in vitro 23 kHz magnetic field (MF) exposure system that generated an MF of 532 µTrms. Using this system, the biological effects of 23 kHz MFs on cell functions have been reported. To further clarify the biological effect of intermediate‐frequency (IF) MFs and investigate the dose–response relationship in cell lines, an exposure system that generates stronger MFs is required. To meet this requirement, we developed a 6.25 mTrms MF exposure system for in vitro study. This level is 1000 times the reference level for the general public in the ICNIRP guidelines. This system provides an MF of 6.25 mTrms at 23 kHz with a uniformity within ±5%. To verify that in vitro experimental conditions are maintained, we examined the temperature, environmental MF, and MF leakage for a sham exposure system. In addition, we examined the harmonics, coil shape, and heat generated in the medium by the high‐strength MF. As a result, it was confirmed that this system can be used to evaluate the biological effects of IF MFs. This article presents the design and successful construction of the in vitro exposure system. Bioelectromagnetics 31:156–163, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The effect of weak (up to 3.5 mT) low-frequency (up to 100 Hz) impulse magnetic field on the state of the vegetative nervous system of animals has been studied by analyzing the variability of the heart rate. The effect of the magnetic field was estimated by a specially designed complex for recording cardiac signals of animals. Several specially selected regimes of impulse magnetic fields were studied. It was shown that the impulse magnetic field possesses a high biological activity at all regimes used, and the indices of the vegetative nervous system after the exposure to the impulse magnetic field approach the values typical for normotonic animals. This makes it possible to use magnetic fields at these regimes in magnetotherapy.  相似文献   

18.
The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited.  相似文献   

19.

Objective

To characterize the exposure to electric fields and magnetic fields of non-ionizing radiation in the electromagnetic spectrum (15 Hz to 100 kHz) in the dwellings of children from the Spanish Environment and Childhood-“INMA” population-based birth cohort.

Methodology

The study sample was drawn from the INMA-Granada cohort. Out of 300 boys participating in the 9–10 year follow-up, 123 families agreed to the exposure assessment at home and completed a specific ad hoc questionnaire gathering information on sources of non-ionizing radiation electric and magnetic fields inside the homes and on patterns of use. Long-term indoor measurements were carried out in the living room and bedroom.

Results

Survey data showed a low exposure in the children''s homes according to reference levels of the International Commission on Non-Ionizing Radiation Protection but with large differences among homes in mean and maximum values. Daytime electrostatic and magnetic fields were below the quantification limit in 78.6% (92 dwellings) and 92.3% (108 dwellings) of houses, with an arithmetic mean value (± standard deviation) of 7.31±9.32 V/m and 162.30±91.16 nT, respectively. Mean magnetic field values were 1.6 lower during the night than the day. Nocturnal electrostatic values were not measured. Exposure levels were influenced by the area of residence (higher values in urban/semi-urban versus rural areas), type of dwelling, age of dwelling, floor of the dwelling, and season.

Conclusion

Given the greater sensitivity to extremely low-frequency electromagnetic fields of children and following the precautionary principle, preventive measures are warranted to reduce their exposure.  相似文献   

20.
An exposure chamber was designed to study the effects of electric and magnetic fields (EMF) on oestrous cycles, hormonal profile during gestation, pineal function, quantity and quality of milk production, feed intake, and central nervous system of dairy cattle. The chamber was 15 x 10 x 3 m; and the control system was fully computerized so that the field intensities can be varied and monitored continuously, on site or remotely. During exposure to EMF, milk production, feed consumption, and health were monitored closely and blood and cerebral spinal fluid were continuously sampled. The chamber characteristics allow use of a wide range of exposure such as electric fields (0-30 kV/m) and magnetic fields (0-100 microT) at frequencies ranging from 45 to 3000 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号