首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulation of ciliary cells through muscarinic receptors leads to a strong biphasic enhancement of ciliary beat frequency (CBF). The main goal of this work is to delineate the chain of molecular events that lead to the enhancement of CBF induced by acetylcholine (ACh). Here we show that the Ca(2+), cGMP, and cAMP signaling pathways are intimately interconnected in the process of cholinergic ciliary stimulation. ACh induces profound time-dependent increase in cGMP and cAMP concentrations mediated by the calcium-calmodulin complex. The initial strong CBF enhancement in response to ACh is mainly governed by PKG and elevated calcium. The second phase of CBF enhancement induced by ACh, a stable moderately elevated CBF, is mainly regulated by PKA in a Ca(2+)-independent manner. Inhibition of either guanylate cyclase or of PKG partially attenuates the response to ACh of [Ca(2+)](i), but completely abolishes the response of CBF. Inhibition of PKA moderately attenuates and significantly shortens the responses to ACh of both [Ca(2+)](i) and CBF. In addition, PKA facilitates the elevation in [Ca(2+)](i) and cGMP levels induced by ACh, whereas an unimpeded PKG activity is essential for CBF enhancement mediated by either Ca(2+) or PKA.  相似文献   

2.
The singular effects and interplay of cAMP- and cGMP-dependent protein kinase (PKA and PKG) on Ca(2+) mobilization were examined in dispersed smooth muscle cells. In permeabilized muscle cells, exogenous cAMP and cGMP inhibited inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release and muscle contraction via PKA and PKG, respectively. A combination of cAMP and cGMP caused synergistic inhibition that was exclusively mediated by PKG and attenuated by PKA. In intact muscle cells, low concentrations (10 nM) of isoproterenol and sodium nitroprusside (SNP) inhibited agonist-induced, IP(3)-dependent Ca(2+) release and muscle contraction via PKA and PKG, respectively. A combination of isoproterenol and SNP increased PKA and PKG activities: the increase in PKA activity reflected inhibition of phosphodiesterase 3 activity by cGMP, whereas the increase in PKG activity reflected activation of cGMP-primed PKG by cAMP. Inhibition of Ca(2+) release and muscle contraction by the combination of isoproterenol and SNP was preferentially mediated by PKG. In light of studies showing that PKG phosphorylates the IP(3) receptor in intact and permeabilized muscle cells, whereas PKA phosphorylates the receptor in permeabilized cells only, the results imply that inhibition of IP(3)-induced Ca(2+) release is mediated exclusively by PKG. The effect of PKA on agonist-induced Ca(2+) release probably reflects inhibition of IP(3) formation.  相似文献   

3.
We have investigated the potentiating action of cAMP on L-currents of rat chromaffin cells and the corresponding increase of Ca(2+)-evoked secretory responses with the aim of separating the action of cAMP on Ca(2+) entry through L-channels and the downstream effects of cAMP/protein kinase A (PKA) on exocytosis. In omega-toxin-treated rat chromaffin cells, exposure to the permeable cAMP analog 8-(4-chlorophenylthio)-adenosine 3',5'-monophosphate (pCPT-cAMP; 1 mM, 30 min) caused a moderate increase of Ca(2+) charge carried through L-channels (19% in 10 mM Ca(2+) at +10 mV) and a drastic potentiation of secretion ( approximately 100%), measured as membrane capacitance increments (deltaC). The apparent Ca(2+) dependency of exocytosis increased with pCPT-cAMP and was accompanied by 83% enhancement of the readily releasable pool of vesicles with no significant change of the probability of release, as evaluated with paired-pulse stimulation protocols. pCPT-cAMP effects could be mimicked by stimulation of beta(1)-adrenoreceptors and reversed by the PKA inhibitor H89, suggesting strict PKA dependence. For short pulses to +10 mV (100 ms), potentiation of exocytosis by pCPT-cAMP was proportional to the quantity of charge entering the cell and occurred independently of whether L, N, or P/Q channels were blocked, suggesting that cAMP acts as a constant amplification factor for secretion regardless of the channel type carrying Ca(2+). Analysis of statistical variations among depolarization-induced capacitance increments indicates that pCPT-cAMP acts downstream of Ca(2+) entry by almost doubling the mean size of unitary exocytic events, most likely as a consequence of an increased granule-to-granule rather than a granule-to-membrane fusion.  相似文献   

4.
The main pathways of regulation of cytoplasm Ca2+ level with hormones and growth factors, as well as mechanisms of regulation of G-proteins, phospholipase C, Ca-channels, adenylate cyclase, guanylate cyclase, and protein kinase C, are discussed. Regulation of cytoplasm Ca2+ in vascular and blood cells with inositol phosphates, cAMP and cGMP, is stressed. The review summarises data on membrane receptors, G-proteins, protein kinases and their targets involved in regulation of Ca2+ turnover in platelets, endothelial and smooth muscle cells.  相似文献   

5.
Increases in endothelial cGMP prevent oxidant-mediated endothelial barrier dysfunction, but the downstream mechanisms remain unclear. To determine the role of cGMP-dependent protein kinase (PKG)(I), human pulmonary artery endothelial cells (HPAEC) lacking PKG(I) expression were infected with a recombinant adenovirus encoding PKG(Ibeta) (Ad.PKG) and compared with uninfected and control-infected (Ad.betagal) HPAEC. Transendothelial electrical resistance (TER), an index of permeability, was measured after H(2)O(2) (250 microM) exposure with or without pretreatment with 8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphate (CPT-cGMP). HPAEC infected with Ad.PKG, but not Ad.betagal, expressed PKG(I) protein and demonstrated Ser(239) and Ser(157) phosphorylation of vasodilator-stimulated phosphoprotein after treatment with CPT-cGMP. Adenoviral infection decreased basal permeability equally in Ad.PKG- and Ad.betagal-infected HPAEC compared with uninfected cells. Treatment with CPT-cGMP (100 microM) caused a PKG(I)-independent decrease in permeability (8.2 +/- 0.6%). In all three groups, H(2)O(2) (250 microM) caused a similar approximately 35% increase in permeability associated with increased actin stress fiber formation, intercellular gaps, loss of membrane VE-cadherin, and increased intracellular Ca(2+) concentration ([Ca(2+)](i)). In uninfected and Ad.betagal-infected HPAEC, pretreatment with CPT-cGMP (100 microM) partially blocked the increased permeability induced by H(2)O(2). In Ad.PKG-infected HPAEC, CPT-cGMP (50 microM) prevented the H(2)O(2)-induced TER decrease, cytoskeletal rearrangement, and loss of junctional VE-cadherin. CPT-cGMP attenuated the peak [Ca(2+)](i) caused by H(2)O(2) similarly (23%) in Ad.betagal- and Ad.PKG-infected HPAEC, indicating a PKG(I)-independent effect. These data suggest that cGMP decreased HPAEC basal permeability by a PKG(I)-independent process, whereas the ability of cGMP to prevent H(2)O(2)-induced barrier dysfunction was predominantly mediated by PKG(I) through a Ca(2+)-independent mechanism.  相似文献   

6.
Lau KL  Kong SK  Ko WH  Kwan HY  Huang Y  Yao X 《Life sciences》2003,73(16):2019-2028
Calcium is a crucial regulator of many physiological processes such as cell growth, division, differentiation, cell death and apoptosis. In this study, we examined the effect of cGMP on agonist-induced [Ca(2+)](i) transient in isolated rat aortic endothelial cells. 100 microM ATP was applied to the cells bathed in a Ca(2+)-free physiological solution to induce a [Ca(2+)](i) transient that was caused by Ca(2+) release from intracellular stores. cGMP, which was applied after [Ca(2+)](i) reached its peak level, accelerated the falling phase of [Ca(2+)](i) transient. Pre-treatment of the cells with CPA abolished the accelerating effect of cGMP on the falling phase of [Ca(2+)](i) transient. The effect of cGMP was reversed by KT5823, a highly specific inhibitor of protein kinase G. Taken together, these data suggest that cGMP may reduce [Ca(2+)](i) level by promoting Ca(2+) uptake through sarcoplasmic/endoplasmic reticulum ATPase and that the effect of cGMP may be mediated by protein kinase G.  相似文献   

7.
Heat-stable enterotoxin (STa) stimulates intestinal Cl(-) secretion by activating guanylate cyclase C (GCC) to increase intracellular cyclic GMP (cGMP). In the colon, cGMP action could involve protein kinase (PK) G-II or PKA pathways, depending on the segment and species. In the human colon, both PKG and PKA pathways have been implicated, and, therefore, the present study examined the mechanism of cGMP-mediated Cl(-) transport in primary cultures of human distal colonocytes and in T84, the colonic cell line. Both cell preparations express mRNA for CFTR, Na(+)-K(+)-2Cl(-) cotransporter (NKCC1), GCC and PKG-II as detected by RT-PCR. The effects of STa and the PKG-specific cGMP analogues, 8Br-cGMP and 8pCPT-cGMP, on Cl(-) transport were measured using a halide-sensitive probe. In primary human colonocytes and T84 cells, STa, the cGMP analogues and the cAMP-dependent secretagogue, prostaglandin E(1) (PGE(1)), enhanced Cl(-) transport. The effects of 8Br-cGMP and 8pCPT-cGMP suggested the involvement of PKG, and this was explored further in T84 cells. The effects of 8pCPT-cGMP were dose-dependent and sensitive to the PKG inhibitor, H8 (70 microM), but H8 had no effect on PGE(1)-induced Cl(-) secretion. In contrast, a PKA inhibitor, H7 (50 microM), blocked PGE(1)-mediated but not 8pCPT-cGMP-induced Cl(-) transport. 8pCPT-cGMP enhanced phosphorylation of the PKG-specific substrate, 2A3, by T84 membranes in vitro. This phosphorylation was inhibited by H8. These results strongly suggest that cGMP activates Cl(-) transport through a PKG-II pathway in primary cells and in the T84 cell line of the human colon.  相似文献   

8.
Cross-talk between cAMP and [Ca(2+)](i) signaling pathways represents a general feature that defines the specificity of stimulus-response coupling in a variety of cell types including parotid acinar cells. We have reported recently that cAMP potentiates Ca(2+) release from intracellular stores, primarily because of a protein kinase A-mediated phosphorylation of type II inositol 1,4,5-trisphosphate receptors (Bruce, J. I. E., Shuttleworth, T. J. S., Giovannucci, D. R., and Yule, D. I. (2002) J. Biol. Chem. 277, 1340-1348). The aim of the present study was to evaluate the functional and molecular mechanism whereby cAMP regulates Ca(2+) clearance pathways in parotid acinar cells. Following an agonist-induced increase in [Ca(2+)](i) the rate of Ca(2+) clearance, after the removal of the stimulus, was potentiated substantially ( approximately 2-fold) by treatment with forskolin. This effect was prevented completely by inhibition of the plasma membrane Ca(2+)-ATPase (PMCA) with La(3+). PMCA activity, when isolated pharmacologically, was also potentiated ( approximately 2-fold) by forskolin. Ca(2+) uptake into the endoplasmic reticulum of streptolysin-O-permeabilized cells by sarco/endoplasmic reticulum Ca(2+)-ATPase was largely unaffected by treatment with dibutyryl cAMP. Finally, in situ phosphorylation assays demonstrated that PMCA was phosphorylated by treatment with forskolin but only in the presence of carbamylcholine (carbachol). This effect of forskolin was Ca(2+)-dependent, and protein kinase C-independent, as potentiation of PMCA activity and phosphorylation of PMCA by forskolin also occurred when [Ca(2+)](i) was elevated by the sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor cyclopiazonic acid and was attenuated by pre-incubation with the Ca(2+) chelator, 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA). The present study demonstrates that elevated cAMP enhances the rate of Ca(2+) clearance because of a complex modulation of PMCA activity that involves a Ca(2+)-dependent step. Tight regulation of both Ca(2+) release and Ca(2+) efflux may represent a general feature of the mechanism whereby cAMP improves the fidelity and specificity of Ca(2+) signaling.  相似文献   

9.
The release of dilator agents from vascular endothelial cells is modulated by changes in cytosolic Ca(2+) concentration ([Ca(2+)](i)). In this study, we demonstrate the presence of a Ca(2+)-permeable cation channel in inside-out membrane patches of endothelial cells isolated from small mesenteric arteries. The activity of the channel is increased by KT-5823, a highly selective inhibitor of protein kinase G (PKG), while it is decreased by direct application of active PKG. Application of KT-5823 induces Ca(2+) influx in the endothelial cells isolated from small mesenteric arteries, and it also causes endothelium-dependent relaxations in isolated small mesenteric arteries. KT-5823-induced relaxations in small mesenteric arteries are greatly reduced by 35 mM K(+) or 50 nM charybdotoxin + 50 nM apamin, suggesting that endothelium-derived hyperpolarizing factor (EDHF) is the participating dilator. The involvement of EDHF is further supported by experiments in which the relaxations of small mesenteric arteries are shown to be accompanied by membrane repolarization. These data strongly argue for a major role of a PKG-sensitive cation channel in modulating the release of EDHF from endothelial cells in rat small mesenteric arteries.  相似文献   

10.
Cholesterol-rich membrane microdomains, also termed lipid rafts, are implicated in the recruitment of essential proteins for intracellular signal transduction. In nonstimulated cells, phosphatidylserine, an anionic aminophospholipid essential for the hemostatic response, is mostly sequestered in the inner leaflet of the plasma membrane. Cell stimulation by Ca(2+)-mobilizing or apoptogenic agents induces the migration of phosphatidylserine to the exoplasmic leaflet, allowing the assembly and activation of several key enzyme complexes of the coagulation cascade and phagocyte recognition of stimulated or senescent cells. We have recently proposed that store-operated Ca(2+) entry regulates externalization of phosphatidylserine at the cell surface (Kunzelmann-Marche, C., Freyssinet, J.-M., and Martinez, M. C. (2001) J. Biol. Chem. 276, 5134-5139). Here, we show that store-operated Ca(2+) entry and phosphatidylserine exposure are dramatically reduced after raft disruption by methyl-beta-cyclodextrin. In addition, transient receptor potential channel 1-specific antibody was able to significantly decrease Ca(2+)-induced redistribution of phosphatidylserine. Furthermore, store-operated Ca(2+) entry and phosphatidylserine exposure were dependent in part on the extracellular signal-regulated kinase pathway associated with rafts. Hence, raft integrity and store-operated Ca(2+) entry involving transient receptor potential channel 1 channels are essential for completion of the phosphatidylserine transmembrane redistribution process.  相似文献   

11.
The cGMP-dependent protein kinase (PKG) is the main mediator of nitric oxide-induced relaxation of smooth muscle. Although this pathway is well established, the cellular action of PKG, nitric oxide, and cGMP is complex and not fully understood. A cross-talk between the cGMP-PKG and other pathways (e.g. cAMP-protein kinase A) seems to exist. We have explored cGMP- and cAMP-dependent relaxation of smooth muscle using PKG-deficient mice (cGKI-/-). In intact ileum strips of wild type mice (cGKI+/+), 8-Br-cGMP inhibited the sustained phase of carbachol contractions by approximately 80%. The initial peak was less inhibited (approximately 30%). This relaxation was associated with a reduction in intracellular [Ca2+] and decreased Ca2+ sensitivity. Contractions of cGKI-/- ileum were not influenced by 8-Br-cGMP. EC50 for 8-Br-cGMP for PKG was estimated to be 10 nm. PKG-independent relaxation by 8-Br-cGMP had an EC50 of 10 microm. Relaxation by cAMP (approximately 50% at 100 microm), Ca2+ sensitivity of force, and force potentiation by GTPgammaS were similar in cGKI+/+ and cGKI-/- tissues. The results show that PKG is the main target for cGMP-induced relaxation in intestinal smooth muscle. cGMP desensitize the contractile system to Ca2+ via PKG. PKG-independent pathways are activated at 1000-fold higher cGMP concentrations. Relaxation by cAMP can occur independently of PKG. Long term deficiency of PKG does not lead to an apparent up-regulation of the cAMP-dependent pathways or changes in Ca2+ sensitivity.  相似文献   

12.
Ca(2+) signaling plays an important role in B cell survival and activation and is dependent on Ca(2+) trapped in the endoplasmic reticulum (ER) and on extracellular Ca(2+). Epstein-Barr virus (EBV) can immortalize B cells and contributes to lymphomagenesis. Previously, we showed that the ER Ca(2+) content of Burkitt lymphoma cell lines was increased following infection with immortalization-competent virus expressing the full set of EBV latency genes (B95-8). In contrast, infection with an immortalization-deficient virus (P3HR-1) not expressing LMP-1 is without effect. LMP-1 protein expression was sufficient to increase the ER Ca(2+) content and to increase the cytosolic Ca(2+) concentration ([Ca(2+)](cyt)). In this follow-up study, we showed that the resting [Ca(2+)](cyt) of P3HR-1-infected cells was decreased, implying that EBV not only modified the ER homeostasis but also affected the cytosolic Ca(2+) homeostasis. Furthermore, even if the store-operated calcium entry (SOCE) of these cells was normal, the [Ca(2+)](cyt) increase after thapsigargin + CaCl(2) stimulation was blunted. In contrast, the resting [Ca(2+)](cyt) of B95-8 infected cells was not changed, even if their SOCE was increased significantly. When expressed alone, LMP-1 induced an increase of the SOCE amplitude and the expression of the protein allowing this influx, Orai1, showing the effect of EBV on SOCE of B cells are mediated by LMP-1. However, other hitherto unidentified EBV processes, unmasked in P3HR-1 infected cells, counteract this LMP-1-dependent increase of SOCE amplitude to impair a general and potentially toxic increase of [Ca(2+)](i). Thus, EBV infection modifies the cellular Ca(2+) homeostasis by acting on the ER and plasma membrane transporters.  相似文献   

13.
14.
Regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is a key factor in airway smooth muscle (ASM) tone. In vascular smooth muscle, specialized membrane microdomains (caveolae) expressing the scaffolding protein caveolin-1 are thought to facilitate cellular signal transduction. In human ASM cells, we tested the hypothesis that caveolae mediate Ca(2+) responses to agonist stimulation. Fluorescence immunocytochemistry with confocal microscopy, as well as Western blot analysis, was used to determine that agonist receptors (M(3) muscarinic, bradykinin, and histamine) and store-operated Ca(2+) entry (SOCE)-regulatory mechanisms colocalize with caveolin-1. Although caveolin-2 coexpressed with caveolin-1, caveolin-3 was absent. In fura 2-loaded ASM cells, [Ca(2+)](i) responses to 1 microM ACh, 10 microM histamine, and 10 nM bradykinin, as well as SOCE, were attenuated (each to a different extent) after disruption of caveolae by the cholesterol-chelating drug methyl-beta-cyclodextrin. Transfection of ASM cells with 50 nM caveolin-1 small interfering RNA significantly weakened caveolin-1 expression and blunted [Ca(2+)](i) responses to bradykinin and histamine, as well as SOCE, but the response to ACh was less intense. These results indicate that caveolae are present in ASM and that caveolin-1 contributes to regulation of [Ca(2+)](i) responses to agonist.  相似文献   

15.
The events leading to the activation of store-operated Ca(2+) entry (SOCE) involve Ca(2+) depletion of the endoplasmic reticulum (ER) resulting in translocation of the transmembrane Ca(2+) sensor protein, stromal interaction molecule 1 (STIM1), to the junctions between ER and the plasma membrane where it binds to the Ca(2+) channel protein Orai1 to activate Ca(2+) influx. Using confocal and total internal reflection fluorescence microscopy, we studied redistribution kinetics of fluorescence-tagged STIM1 and Orai1 as well as SOCE in insulin-releasing β-cells and glucagon-secreting α-cells within intact mouse and human pancreatic islets. ER Ca(2+) depletion triggered accumulation of STIM1 puncta in the subplasmalemmal ER where they co-clustered with Orai1 in the plasma membrane and activated SOCE. Glucose, which promotes Ca(2+) store filling and inhibits SOCE, stimulated retranslocation of STIM1 to the bulk ER. This effect was evident at much lower glucose concentrations in α- than in β-cells consistent with involvement of SOCE in the regulation of glucagon secretion. Epinephrine stimulated subplasmalemmal translocation of STIM1 in α-cells and retranslocation in β-cells involving raising and lowering of cAMP, respectively. The cAMP effect was mediated both by protein kinase A and exchange protein directly activated by cAMP. However, the cAMP-induced STIM1 puncta did not co-cluster with Orai1, and there was no activation of SOCE. STIM1 translocation can consequently occur independently of Orai1 clustering and SOCE.  相似文献   

16.
We have studied cyclopiazonic acid (CPA)-sensitive store-operated Ca(2+) entry (SOCE) in cultured neurons and astrocytes and examined the effect of 2-[2-[4-(4-nitrobenzyloxy)phenyl]]isothiourea (KB-R7943), which is often used as a selective inhibitor of the Na(+)-Ca(2+) exchanger (NCX), on the SOCE. CPA increased transiently intracellular Ca(2+) concentration ([Ca(2+)](i)) followed by a sustained increase in [Ca(2+)](i) in neurons and astrocytes. The sustained increase in [Ca(2+)](i) depended on the presence of extracellular Ca(2+) and inhibited by SOCE inhibitors, but not by a Ca(2+) channel inhibitor. CPA also caused quenching of fura-2 fluorescence when the cells were incubated in Mn(2+)-containing medium. KB-R7943 at 10 microM inhibited significantly CPA-induced sustained increase in [Ca(2+)](i) in neurons and astrocytes. KB-R7943 also inhibited CPA-induced quenching of fura-2 fluorescence in the presence of extracellular Mn(2+). These results indicate that cultured neurons and astrocytes possess SOCE and that KB-R7943 inhibits not only NCX but also SOCE.  相似文献   

17.
GT1 cells are immortalized hypothalamic neurons that show spontaneous bursts of action potentials and oscillations in intracellular calcium concentration [Ca(2+)](i), as well as pulsatile release of GNRH: We investigated the role of cyclic nucleotide gated (CNG) channels in the activity of GT1 neurons using patch clamp and calcium imaging techniques. Excised patches from GT1 cells revealed single channels and macroscopic currents that were activated by either cAMP or cGMP. CNG channels from GT1 cells showed rapid transitions from open to closed states typical of heteromeric CNG channels, were selective for cations, and had an estimated single channel conductance of 60 picosiemens (pS). Ca(2+) inhibited the conductance of macroscopic currents and caused rectification of currents at increasingly positive and negative potentials. The membrane permeant cAMP analog Sp-cAMP-monophosphorothioate (Sp-cAMPS) increased the frequency of spontaneous Ca(2+) oscillations in GT1 cells, whereas the Rp-cAMPS isomer had only a slight stimulatory effect on Ca(2+) signaling. Forskolin, norepinephrine, and dopamine, all of which stimulate cAMP production in GT1 cells, each increased the frequency of Ca(2+) oscillations. The effects of Sp-cAMPS or NE on Ca(2+) signaling did not appear to be mediated by protein kinase A, since treatment with either H9 or Rp-cAMPS did not inhibit the response. The CNG channel inhibitor L-cis-diltiazem inhibited cAMP-activated channels in GT1 cells. Both L-cis-diltiazem and elevated extracellular Ca(2+) reversibly inhibited the stimulatory effects of cAMP-generating ligands or Sp-cAMP on Ca(2+) oscillations. These results indicate that CNG channels play a primary role in mediating the effects of cAMP on excitability in GT1 cells, and thereby may be important in the modulation of GnRH release.  相似文献   

18.
19.
Activation of CD38 in lymphokine-activated killer (LAK) cells involves interleukin-8 (IL8)-mediated protein kinase G (PKG) activation and results in an increase in the sustained intracellular Ca(2+) concentration ([Ca(2+)](i)), cADP-ribose, and LAK cell migration. However, direct phosphorylation or activation of CD38 by PKG has not been observed in vitro. In this study, we examined the molecular mechanism of PKG-mediated activation of CD38. Nonmuscle myosin heavy chain IIA (MHCIIA) was identified as a CD38-associated protein upon IL8 stimulation. The IL8-induced association of MHCIIA with CD38 was dependent on PKG-mediated phosphorylation of MHCIIA. Supporting these observations, IL8- or cell-permeable cGMP analog-induced formation of cADP-ribose, increase in [Ca(2+)](i), and migration of LAK cells were inhibited by treatment with the MHCIIA inhibitor blebbistatin. Binding studies using purified proteins revealed that the association of MHCIIA with CD38 occurred through Lck, a tyrosine kinase. Moreover, these three molecules co-immunoprecipitated upon IL8 stimulation of LAK cells. IL8 treatment of LAK cells resulted in internalization of CD38, which co-localized with MHCIIA and Lck, and blebbistatin blocked internalization of CD38. These findings demonstrate that the association of phospho-MHCIIA with Lck and CD38 is a critical step in the internalization and activation of CD38.  相似文献   

20.
CD38 is an ADP-ribosyl cyclase, producing a potent Ca(2+) mobilizer cyclic ADP-ribose (cADPR). In this study, we have investigated a role of CD38 and its regulation through interleukin-8 (IL8) signaling in lymphokine-activated killer (LAK) cells. Incubation of LAK cells with IL8 resulted in an increase of cellular cADPR level and a rapid rise of intracellular Ca(2+) concentration ([Ca(2+)](i)), which was sustained for a long period of time (>10 min). Preincubation of an antagonistic cADPR analog, 8-Br-cADPR (8-bromo-cyclic adenosine diphosphate ribose), abolished the sustained Ca(2+) signal only but not the initial Ca(2+) rise. An inositol 1,4,5-trisphosphate (IP(3)) receptor antagonist blocked both Ca(2+) signals. Interestingly, the sustained Ca(2+) rise was not observed in the absence of extracellular Ca(2+). Functional CD38-null (CD38(-)) LAK cells showed the initial rapid increase of [Ca(2+)](i) but not the sustained Ca(2+) rise in response to IL8 treatment. An increase of cellular cADPR level by cGMP analog, 8-pCPT-cGMP (8-(4-chlorophenylthio)-guanosine-3',5'-cyclic monophosphate), but not cAMP analog or phorbol 12-myristate 13-acetate was observed. IL8 treatment resulted in the increase of cGMP level that was inhibited by the IP(3) receptor blocker but not a protein kinase C inhibitor. cGMP-mediated Ca(2+) rise was blocked by 8-Br-cADPR. In addition, IL8-mediated LAK cell migration was inhibited by 8-Br-cADPR and a protein kinase G inhibitor. Consistent with these observations, IL8-induced migration of CD38(-) LAK cells was not observed. However, direct application of cADPR or 8-pCPT-cGMP stimulated migration of CD38(-) cells. These results demonstrate that CD38 is stimulated by sequential activation of IL8 receptor, IP(3)-mediated Ca(2+) rise, and cGMP/protein kinase G and that CD38 plays an essential role in IL8-induced migration of LAK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号