首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
Gymnodinium catenatum Graham is a paralytic shellfish poison (PSP) producer that was described for the first time from the Gulf of California in 1943. During the last decade, its distribution along the Mexican Pacific coastline has increased. In Bahía Concepción, a coastal lagoon on the western side of the Gulf of California, G. catenatum has been linked to significant PSP concentrations found in mollusks. In this study, we describe the saxitoxin profile of 16 strains of G. catenatum, and catarina scallops (Argopecten ventricosus) from Bahía Concepción. Toxins were analyzed by HPLC with post-column oxidation and fluorescence detection. The average toxicity of the G. catenatum strains was 26.0±6.0 pg and 28.0±18.0 pg STX eq/cell after 17 and 22 days of growth, respectively. Ten toxins were recorded, but only dcSTX, dcGTX2, dcGTX3, C1, and C2 were always present in all strains at both growth stages. Since toxin profiles in scallops were similar to the cultures, biotransformations are not significant in catarina scallop. NeoSTX, GTX2, GTX3, and B2 were present in some G. catenatum strains and their presence varied with the age of the culture. In scallop samples, dcSTX, dcGTX2, and dcGTX3 were the most abundant toxins, and from the C-toxin group, only C2 was found. This unique toxin profile can be used as a biomarker for this population, when compared with strains of G. catenatum from other geographic regions.  相似文献   

2.
Gymnodinium catenatum is a bloom forming dinoflagellate that has been known to cause paralytic shellfish poisoning (PSP) in humans. It is being reported with increased frequency around the world, with ballast water transport implicated as a primary vector that may have contributed to its global spread. Major limitations to monitoring and management of its spread are the inability for early, rapid, and accurate detection of G. catenatum in plankton samples. This study explored the feasibility of developing a PCR-based method for specific detection of G. catenatumin cultures and heterogeneous ballast water and environmental samples. Sequence comparison of the large sub unit (LSU) ribosomal DNA locus of several strains and species of dinoflagellates allowed the design of G. catenatum specific PCR primers that are flanked by conserved regions. Assay specificity was validated through screening a range of dinoflagellate cultures, including the morphologically similar and taxonomically closely related species G. nolleri. Amplification of the diagnostic PCR product from all the strains of G. catenatum but not from other species of dinoflagellates tested imply the species specificity of the assay. Sensitivity of the assay to detect cysts in ballast water samples was established by simulated spiked experiments. The assay could detect G. catenatum in all ‘blank’ plankton samples that were spiked with five or more cysts. The assay was used to test environmental samples collected from the Derwent river estuary, Tasmania. Based on the results we conclude that the assay may be utilized in large scale screening of environmental and ballast water samples.  相似文献   

3.
Between May 2000 and February 2001, a major bloom of the toxic dinoflagellate Gymnodinium catenatum (a causative organism of Paralytic Shellfish Poisoning, PSP) affected over 1500 km of coastline of New Zealand’s North Island. As this was the first record of this species in New Zealand, we aimed to resolve whether this represented a recent introduction/spreading event or perhaps an indigenous cryptic species stimulated by environmental/climatic change. To answer this question, we analysed for G. catenatum resting cysts in 210Pb dated sediment cores (18–34 cm long; sedimentation rates 0.34–0.69 cm per year) collected by SCUBA divers from Manukau Harbour, where the species was first detected, and from Hokianga Harbour, where the highest shellfish toxicity was recorded, while using Wellington Harbour as a well-monitored control site. The results of this study conclusively demonstrate that abundant G. catenatum has been in northern New Zealand at least since the early 1980s, increasing up to 1200 cysts/g around the year 2000, but with low cyst concentrations possibly present since at least 1937. In contrast, Wellington Harbour cores contained only very sparse G. catenatum cysts (8 cysts/g), present only to a depth of 7 cm (surface mixed layer depth), reflecting an apparent recent range expansion of this dinoflagellate in New Zealand, possibly stimulated by unusual climatic conditions associated with the 2000 La Nina event. The significant increases since the early 1980s also of Protoperidinium cysts at Hokianga Harbour and of Gonyaulax, Protoperidinium and Protoceratium cysts at Manukau Harbour suggest a broad scale environmental change has occurred in Northland, New Zealand.  相似文献   

4.
In August and September 2001, Kuwait Bay, a semi-enclosed embayment of the Arabian Gulf, experienced a massive fish kill involving over >2500 metric tons of wild mullet (Liza klunzingeri), due to the bacterium Streptococcus agalactiae. In the Bay, this event was preceded by a small fish kill (100–1000 dead fish per day) of gilthead sea bream (Sparus auratus) in aquaculture net pens associated with a bloom of the dinoflagellate Ceratium furca. Sea bream were found to be culture positive for S. agalactiae, but did not show any visible signs of disease. Unusually warm temperatures (up to 35 °C) and calm conditions prevailed during this period. As the wild fish kill progressed, various harmful algae were observed, including Gymnodinium catenatum, Gyrodinium impudicum, and Pyrodinium bahamense var. compressum. Cell numbers of G. catenatum and G. impudicum exceeded 106 l−1 in some locations. All fish tested below the limits of detection for paralytic shellfish poisoning (PSP) and brevetoxins. Clams (Circe callipyga) were positive for PSP but at levels below regulatory limits. Nutrient concentrations, both inorganic and organic, were highly variable with time and from site to site, reflecting inputs from sewage outfalls, the aquaculture operations, a high biomass of decomposing fish, and other sources. It is hypothesized that many factors contributed to the initial outbreak of the bacterial disease, including unusual warm and calm conditions. The same factors, as well as enriched nutrient conditions, also apparently were conducive to the subsequent HAB outbreaks. The detection of PSP, while below regulatory limits, warrants further monitoring to protect human health.  相似文献   

5.
The morphology of an unarmored chain-forming harmful dinoflagellate Cochlodinium polykrikoides and its similar species such as Cochlodinium catenatum, Cochlodinium fulvescens, and Cochlodinium convolutum was carefully observed, emphasizing the single cell stage for clarifying taxonomically important morphological features. To differentiate C. polykrikoides from C. convolutum, the shape and the position of the nucleus are useful characters. C. polykrikoides also differs from C. fulvescens in being smaller in size, possessing many rod-shaped chloroplasts and having the sulcus running just below the cingulum on the dorsal surface. Careful observation of the ichnotype of C. catenatum suggests that C. catenatum sensu Kofoid and Swezy collected from off La Jolla, CA, USA, is not identical to C. catenatum sensu Okamura and is probably a different species, in having no chloroplasts and a nucleus positioned at the center of the cell. In addition, C. polykrikoides has many morphological features in common with C. catenatum sensu Okamura except for slightly elongate cells and is probably a junior synonym of this species.  相似文献   

6.
Floral remains are generally rare in the fossil record of Pakistan. We present here new discoveries of mid-Cenozoic wood and pollen of Oligocene deposits from central Pakistan. The palynological sample derives from claystone stratigraphically positioned above the wood fossils, but pollen and spores as well as the wood are all of Oligocene age. The three fossil wood samples derive from the top of the lower unit of the Chitarwata Formation, and the palynological sample comes from claystone situated in the middle unit of the formation. The wood samples are described and found to represent two species of the morphotaxon Terminalioxylon (Combretaceae): T. burmense Mädel-Angeliewa and Müller-Stoll [Madel-Angeliewa, E., Müller-Stoll, W.R., 1973. Kritische Studien über fossile Combretaceen-Hölzer: über Hölzer von Typus Terminalioxylon G. Schönfeld mit einer Revision der bisher zu Evodioxylon Chiarugi gestellten Arten. Palaeontographica 142B, 117–136.] and T. sulaimanense sp. nov. These fossils are close to modern species of Terminalia, which occur in moist deciduous or semi-evergreen tropical forests. The palynological assemblage is composed of a mixture of pollen and spore types from different origins. There is a dominance of hygrophilous ferns, pines, Amaranthaceae–Chenopodiaceae–Caryophylaceae, but also the occurrence of Palmae, which are typical of tropical rainforests. This assemblage suggests that the depositional system is set in a context of nearby mountains with a minimum altitude of 2000 to 2500 m and characterized by differentiated forest belts above the tropical lowland vegetation of lower elevations. Wood, pollen and spores support the view of a fluvial environment surrounded by a tropical forested habitat. The separate stratigraphic position of the pollen assemblage above the fossil wood could explain its slightly different, more varied, palaeoenvironmental signal.  相似文献   

7.
The occurrence and abundance of the toxic, chain-forming dinoflagellateGymnodinium catenatum in a Tyrrhenian coastal lagoon, the Fusaro,during an annual sampling cycle are reported. Peak abundanceswere observed from late spring until early autumn Although veryhigh cell numbers were recorded, up to 1 5 x 106 cells l–1,no monospecific bloom of this species occurred. The first observationof G.catenatum in the Mediterranean occurred in the Fusaro andthe appearance of this species in a traditional shellfish farmingarea, where no shellfish intoxication has been reported to date,is discussed in relation to human interventions in the basin.In particular, intensive dredging in recent years with resuspensionof bottom sediments may have seeded the water body with cysts.A Gymnodinium n d species, illustrated using scanning electronmicroscopy, caused a monospecific bloom in concomitance withmaximum abundances of G.catenatum, apparently outcompeting thislatter species  相似文献   

8.
The Kuroshio Current is the major western boundary current of the North Pacific Ocean and has had a large impact on surface water character and climate change in the northwestern Pacific region. The Kuroshio Current becomes a distinctive surface flow in the Ryukyu Arc region after diverging from the North Equatorial Current and passing through the Okinawa Trough. Therefore, the Ryukyu Arc area can be called the Kuroshio source region. We reconstructed post-21-ka time–space changes in surface water masses in the Ryukyu Arc region using 15 piston cores which were dated by planktonic δ18O stratigraphy and AMS 14C ages. Our analysis utilized spatial and temporal changes in planktonic foraminiferal assemblages which were classified into the Kuroshio, Subtropical, Coastal, and Cold water groups on the basis of modern faunal distributions in the study region. These results indicate that the Kuroshio Current and adjacent surface water masses experienced major changes during: (1) the Last Glacial Maximum (LGM), and (2) the so-called Pulleniatina minimum event (PME) from 4,500 to 3,000 yr BP. The Kuroshio LGM event corresponds to severe global cooling and is marked by decreases in planktonic δ18O values and estimated sea-surface temperature (SST) with the dominance of the Cold water group of planktonic foraminifera. Cooling within the Kuroshio source region was enhanced during the LGM event because the Kuroshio Current was forced eastward due to the formation of a land bridge between Taiwan and the southern Ryukyu Arc which prohibited its flow into the Okinawa Trough. Except for the severe reduction and disappearance of the Pulleniatina group, no clear cooling signal was identified during the PME based on δ18O values, estimated SST values and variations in the composition of planktonic foraminiferal faunas. The PME assemblages are marked by high abundances of Neogloboquadrina dutertrei, a distinctive Kuroshio type species, along with other species assigned to the Coastal and Central water groups. Subtle ecological differences exist between Pulleniatina obliquiloculata and N. dutertrei; i.e. P. obliquiloculata exhibits lower rates of reproduction under conditions of lower primary productivity in the central Equatorial Pacific Ocean. El Niño-like conditions in the Equatorial Pacific Ocean result in lower rates of surface transport in the Kuroshio Current. In turn, this response triggers lower rates of primary productivity in central equatorial surface waters as well as in the upstream Kuroshio source region, ultimately resulting in a lower abundance of P. obliquiloculata. Thus, we interpret the PME as a possible proxy signal of El Niño-like conditions and enhancement of the El Niño Southern Oscillation climate system after the PME in the tropical and sub-tropical Pacific Ocean.  相似文献   

9.
10.
Upper Maastrichtian to lower Paleocene, coarse‐grained deposits of the Lefipán Formation in Chubut Province, (Patagonia, Argentina) provide an opportunity to study environmental changes across the Cretaceous–Palaeogene (K–Pg) boundary in a shallow marine depositional environment. Marine palynological and organic geochemical analyses were performed on the K–Pg boundary interval of the Lefipán Formation at the San Ramón section. The palynological and organic geochemical records from the San Ramón K–Pg boundary section are characteristic of a highly dynamic, nearshore setting. High abundances of terrestrial palynomorphs, high BIT‐index values and the occasional presence of plant fossils are indicative of a large input of terrestrial organic material. The organic‐walled dinoflagellate cyst (dinocyst) assemblage is generally dominated by Senegalinium and other peridinioid dinocyst taxa, indicative of high‐nutrient conditions and decreased salinities, probably associated with a large fluvial input. The reconstructed sea surface temperatures range from 25°C to 27°C, in accordance with the tropical climate inferred by palynological and megafloral studies. As in the Bajada del Jagüel section, ~500 km north‐north‐east of San Ramón, peaks of Senegalinium spp. were recorded below and above the K–Pg boundary, possibly related to enhanced runoff resulting from more humid climatic conditions. The lithological, palynological and organic geochemical records suggest the occurrence of a sea‐level regression across the K–Pg boundary, resulting in a hiatus directly at the boundary in both sections, followed by a transgression in the Danian.  相似文献   

11.
Since the 1970s, Puget Sound, Washington State, USA, has experienced an increase in detections of paralytic shellfish toxins (PSTs) in shellfish due to blooms of the harmful dinoflagellate Alexandrium. Natural patterns of climate variability, such as the Pacific Decadal Oscillation (PDO), and changes in local environmental factors, such as sea surface temperature (SST) and air temperature, have been linked to the observed increase in PSTs. However, the lack of observations of PSTs in shellfish prior to the 1950s has inhibited statistical assessments of longer‐term trends in climate and environmental conditions on Alexandrium blooms. After a bloom, Alexandrium cells can enter a dormant cyst stage, which settles on the seafloor and then becomes entrained into the sedimentary record. In this study, we created a record of Alexandrium spp. cysts from a sediment core obtained from Sequim Bay, Puget Sound. Cyst abundances ranged from 0 to 400 cysts · cm?3 and were detected down‐core to a depth of 100 cm, indicating that Alexandrium has been present in Sequim Bay since at least the late 1800s. The cyst record allowed us to statistically examine relationships with available environmental parameters over the past century. Local air temperature and sea surface temperature were positively and significantly correlated with cyst abundances from the late 1800s to 2005; no significant relationship was found between PDO and cyst abundances. This finding suggests that local environmental variations more strongly influence Alexandrium population dynamics in Puget Sound when compared to large‐scale changes.  相似文献   

12.
The toxic dinoflagellate Gymnodinium catenatum Graham has formed recurrent toxic blooms in southeastern Tasmanian waters since its discovery in the area in 1986. Current evidence suggests that this species might have been introduced to Tasmania prior to 1973, possibly in cargo vessel ballast water carried from populations in Japan or Spain, followed by recent dispersal to mainland Australia. To examine this hypothesis, cultured strains from G. catenatum populations in Australia, Spain, Portugal, and Japan were examined using allozymes and randomly amplified polymorphic DNA (RAPD). Allozyme screening detected very limited polymorphism and was not useful for population comparisons; however, Australian, Spanish, Portuguese, and Japanese strains showed considerable RAPD diversity, and all strains examined represented unique genotypes. Multidimensional scaling analysis (MDS) of RAPD genetic distances between strains showed clear separation of strains into three nonoverlapping regional clusters: Australia, Japan, and Spain/Portugal. Analysis of genetic distances between strains from the three regional populations indicated that Australian strains were almost equally related to both the Spanish/Portuguese population and the Japanese population. Analysis of molecular variance (AMOVA) found that genetic variation was partitioned mainly within populations (87%) compared to the variation between the regions (8%) and between populations within regions (5%). The potential source population for Tasmania’s introduced G. catenatum remains equivocal; however, strains from the recently discovered mainland Australian population (Port Lincoln, South Australia, 1996) clustered with Tasmanian strains, supporting the notion of a secondary relocation of Tasmanian G. catenatum populations to the mainland via a shipping vector. Geographic and temporal clustering of strains was evident among the Tasmanian strains, indicating that genetic exchange between neighboring estuaries is limited and that Tasmanian G. catenatum blooms are composed of localized, estuary-bound subpopulations.  相似文献   

13.
The composition and the distribution patterns of phytoplankton were studied during the early stages of an upwelling event in Lisbon Bay, in September 1999. The distribution of chlorophyll a and phytoplankton assemblages was asymmetric about the upwelling centre, with the highest abundance of chlorophyll a observed at the inner (coastal) side of the plume. The diatom Cylindrotheca closterium dominated in the upwelling core and the chain forming diatom Proboscia alata dominated at the outer side of the feature within mature oceanic waters. Chain forming dinoflagellates such as Alexandrium affine and the toxin producer Gymnodinium catenatum were most numerous at the inshore side of the upwelling front. These patterns were compared with the distribution of G. catenatum observed in the same area in 1985 and 1994, under conditions of fully developed upwelling when chlorophyll a and G. catenatum maxima were observed extending southwards on the inshore side of an upwelling plume. Different hydrodynamic conditions at each side of upwelling plumes associated with pronounced Capes are evoked to explain the asymmetry on the phytoplankton patterns.  相似文献   

14.
The phytoplankton species Gymnodinium catenatum is responsible for major worldwide losses in aquaculture due to shellfish toxicity. On the West coast of the Iberian Peninsula, toxic blooms have been reported since the mid-1970s. While the recent geographical spread of this species into Australasia has been attributed to human-mediated introduction, its origin in the Northeast Atlantic is still under debate. Gymnodinium catenatum forms a highly resistant resting stage (cyst) that can be preserved in coastal sediments, building-up an historical record of the species. Similar cyst types (termed microreticulate) are produced by other non-toxic Gymnodinium species that often co-occur with G. catenatum. We analysed the cyst record of microreticulate species in dated sediment cores from the West Iberian shelf covering the past ca. 150 years. Three distinct morphotypes were identified on the basis of cyst diameter and paracingulum reticulation. These were attributed to G. catenatum (35.6–53.3 μm), G. nolleri (23.1–36.4 μm), and G. microreticulatum (20.5–34.3 μm). Our results indicate that G. catenatum is new to the NE Atlantic, where it appeared by 1,889 ± 10, expanding northwards along the West Iberian coast. The earliest record is from the southernmost sample, while in the central Portuguese shelf the species appears in sediments dated to 1,933 ± 3, and in the North, off Oporto, in 1,951 ± 4. On the basis of the cyst record and toxic bloom reports, we reconstruct the invasive pathway of G. catenatum in the NE Atlantic. Although human-mediated introduction cannot be discarded, the available evidence points towards natural range expansion, possibly from NW Africa.  相似文献   

15.
The chemical composition of shells of the planktonic foraminifer Globigerinoides ruber (white) is frequently used to determine past sea surface conditions. Recently, it has been shown that arbitrarily defined morphotypes within this species exhibit different chemical and isotopic signatures. Here, we investigate the occurrence through time and in space of morphological types of G. ruber (white) in late Quaternary and Holocene sediments of the central and the eastern Mediterranean Sea. In 115 samples representing two distinct time intervals (MIS 1–2 and MIS 9–12) at ODP Site 964 and the piston core GeoTü-SL96, we have defined three morphological types within this species and determined their relative abundances and stable isotopic composition. A quantitative analysis of morphological variation within G. ruber (white) in four samples revealed that the subjectively defined morphotypes occupy separate segments of a continuous and homogenous morphospace. We further show that the abundance of the morphotypes changes significantly between glacials and interglacials and that the three morphotypes of G. ruber show significant offsets in their stable isotopic composition. These offsets are consistent within glacial and interglacial stages but their sign is systematically reversed between the two Sites. Since the isotopic shifts among the three G. ruber morphotypes are systematic and often exceed 1‰, their understanding is essential for the interpretation of all G. ruber-based proxy records for the paleoceanographic development of the Mediterranean during the late Quaternary.  相似文献   

16.
The nucleotide sequence analysis of the PCR products corresponding to the variable large-subunit rRNA domains D1, D2, D9, and D10 from ten representative dinoflagellate species is reported. Species were selected among the main laboratory-grown dinoflagellate groups: Prorocentrales, Gymnodiniales, and Peridiniales which comprise a variety of morphological and ecological characteristics. The sequence alignments comprising up to 1,000 nucleotides from all ten species were employed to analyze the phylogenetic relationships among these dinoflagellates. Maximum parsimony and neighbor joining trees were inferred from the data generated and subsequently tested by bootstrapping. Both the D1/D2 and the D9/D10 regions led to coherent trees in which the main class of dinoflagellates, Dinophyceae, is divided in three groups: prorocentroid, gymnodinioid, and peridinioid. An interesting outcome from the molecular phylogeny obtained was the uncertain emergence of Prorocentrum lima. The molecular results reported agreed with morphological classifications within Peridiniales but not with those of Prorocentrales and Gymnodiniales. Additionally, the sequence comparison analysis provided strong evidence to suggest that Alexandrium minutum and Alexandrium lusitanicum were synonymous species given the identical sequence they shared. Moreover, clone Gg1V, which was determined Gymnodinium catenatum based on morphological criteria, would correspond to a new species of the genus Gymnodinium as its sequence clearly differed from that obtained in G. catenatum. The sequence of the amplified fragments was demonstrated to be a valuable tool for phylogenetic and taxonomical analysis among these highly diversified species. Correspondence to: J. M. Bautista  相似文献   

17.
We report the occurrence of the orange-striped green anemone Diadumene lineata (Verrill 1871) (=Haliplanella lineata) in salt marshes at the Bahía Blanca Estuary for the first time in August 2005. We also found this species attached to roots and stems of Spartina alterniflora, an association that has never been registered before. After their determination, sampling was performed during a year to evaluate seasonal abundance of this sea anemone. Results showed that D. lineata was present through the whole year, indicating the existence of a stable population. All individuals sampled were found attached to roots or stems of S. alterniflora, with the higher abundances detected in summer. Further studies are necessary to precise the potential effects of this exotic sea anemone on salt marsh communities.  相似文献   

18.
Laboratory studies were performed to determine the effect oftemperature, salinity, seawater sources and culture media onthe vegetative growth of clonal cultures of Gymnodinium catenatumisolated from Bahía Concepción, Mexico. Theseisolates were heterothallic and isogamous. Exponential growthrates of G. catenatum in f/2 with different selenium concentrationsand soil extract and GSe media were moderate. Maximum cell yieldswere obtained in GSe and f/2 media with selenium (10–8and 10–7 M), while in f/2 medium with soil extract cellyields were considerably lower. The highest percentage of longchains was found in f/2 media supplied with selenium (10–8M). The optimal temperature range for growth was 11.5–30°C,with the highest growth rates between 21 and 29°C. The rangeof salinity tolerated by G. catenatum changed with seawatersource. With seawater from Vineyard Sound (Massachusetts, USA),G. catenatum grew at salinities from 15 to 36, with an optimalgrowth rate obtained at salinities between 26 and 30. With seawaterfrom Bahía Concepción, this species toleratedsalinities from 25 to 40, with optimal growth at salinitiesbetween 28 and 38. Ecophysiological measurements reported hereare consistent with the environment of the bay, which has limitedinput of humic materials from runoff and high salinity and temperature.These data, when viewed with data from studies of globally distributedG. catenatum, demonstrate the ability of this species to livein a broad array of habitats.  相似文献   

19.
The re-emergence of Gymnodinum catenatum blooms after a 10 year hiatus of absence initiated the present investigation. This study aims to evaluate the exposure of small pelagic fishes to paralytic shellfish toxins (PST) during blooms of G. catenatum. Sardines (Sardina pilchardus) were selected as a representative fish species. In order to assess toxin availability to fish, both intracellular PSTs (toxin retained within the algal cells) and extracellular PSTs (toxin found in seawater outside algal cells) were quantified, as well as toxin levels within three fish tissue matrices (viscera, muscle and brain). During the study period, the highest cell densities of G. catenatum reached 2.5 × 104 cells l−1 and intracellular PST levels ranged from 3.4 to 398 ng STXeq l−1 as detected via an enzyme linked immunosorbent assay (ELISA). Measurable extracellular PSTs were also detected in seawater (0.2–1.1 μg STXeq l−1) for the first time in Atlantic waters. The PST profile in G. catenatum was determined via high performance liquid chromatography with fluorescence detection (HPLC-FLD) and consisted mostly of sulfocarbamoyl (C1+2, B1) and decarbamoyl (dcSTX, dcGTX2+3, dcNEO) toxins. The observed profile was similar to that reported previously in G. catenatum blooms in this region before the 10-year hiatus. Sardines, planktivorous fish that ingest a large number of phytoplankton cells, were found to contain PSTs in the viscera, reaching a maximum of 531 μg STXeq kg−1. PSTs were not detected in corresponding muscle or brain tissues. The PST profile characterized in sardine samples consisted of the same sulfocarbamoyl and decarbamoyl toxins found in the algal prey with minor differences in relative abundance of each toxin. Overall, the data suggest that significant biotransformation of PSTs does not occur in sardines. Therefore, planktivorous fish may be a good tracer for the occurrence of offshore G. catenatum blooms and the associated PSTs produced by these algae.  相似文献   

20.
The chain-forming dinoflagellate Gynmodinium catenatum Grahamcauses recurrent outbreaks of paralytic shellfish poisoning(PSP) in the Galician Rias Bajas (northwest Spain). A sedimentsurvey in Ria de Vigo in April 1986 indicated that the highestconcentrations of cysts of this species were located in themiddle sections of the ria, with maximum abundance of 310 cystscm–3. The effects of temperature, growth medium compositionand irradiance on the germination of laboratory-produced restingcysts were investigated. Newly formed cysts required very littletime for maturation, as excystment was possible within 2 weeksof encystment. Growth media did not affect germination success.In contrast, the excystment rate was retarded signifiantly indarkness. Germination was also strongly affected by temperature,with {small tilde}75% excystment success at 22–28°Cand little or no germination below 11°C after 1 month ofincubation. In culture, the optimum growth rate of vegetativecells was between 22 and 28°C, the highest rate being 0.53divisions day–1 at 24°C. Growth did not occur at temperatures< 11°C or >30°C. These results are important withrespect to the different hypotheses proposed to explain theinitiation of G.catenatum blooms in the Galician Rias Bajasand Northern Portugal. The pattern of G.catenatum bloom developmentalong this coast has been related to seasonal upwelling in thearea, with major blooms occurring during the autumn as warmeroffshore surface water is transported towards the coast whenupwelling relaxes. The landward transport of established offshorepopulations of G.catenatum with the warm surface layer remainsa viable explanation for the observed blooms within the rias,but alternatively, our data suggest that cysts within the riascan provide the inoculum population at times conducive to growthand bloom formation. Even though newly formed G.catenatum cystshave a very short maturation time and can germinate in darknessacross a wide temperature range, bloom development will be significantonly during the late summer and early autumn, since in othermonths light levels at the sediment surface and temperaturesthroughout the water column are too low for significant germinationor growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号