首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of human platelet-derived growth factor (PDGF) to confluent, quiescent cultures of human diploid fibroblasts induced the rapid breakdown of cellular polyphosphoinositides. The levels of 32P-labeled phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), and phosphatidylinositol (PI) decreased by 30 to 40% within 1 min after exposure of the cells to PDGF. The levels of PIP and PIP2 returned to their initial values within 3 and 10 min, respectively, after PDGF addition. The level of PI continued to increase after it had returned to control values and was up threefold within 30 min after PDGF addition. In cells prelabeled with myo-[3H]inositol PDGF caused an eightfold increase in the levels of inositol trisphosphate (IP3) within 2 min. Lesser increases, twofold and 1.3-fold, respectively, were seen in levels of inositol bisphosphate (IP2) and inositol monophosphate (IP). Within 10 min after PDGF addition the levels of all three inositol phosphates had decreased to control values. The levels of IP3 measured 2 min after PDGF addition depended on the PDGF concentration and were maximal at 5-10 ng/ml of PDGF. Similar concentrations of PDGF stimulate maximal cell growth and DNA synthesis in these cells.  相似文献   

2.
The distribution of phosphoinositides and phosphatidic acid (PA) between the outer and inner layers of the human erythrocyte membrane was investigated by using two complementary methodologies: hydrolysis by phospholipase A2 (PLA2) and immunofluorescence detection with monoclonal antibodies against polyphosphoinositides. The contents of phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) and PA were decreased by 15-20% after 60 min incubation with PLA2, while that of phosphatidylinositol (PI) was increased. Studies with 32P-labelled cells revealed that PLA2 treatment led to indirect effects on the metabolism of these phospholipids. Therefore, the asymmetric distribution of phosphoinositides and PA was inferred from the data obtained in ATP-depleted erythrocytes. In these cells with arrested phosphoinositide metabolism, the asymmetric distribution of the major phospholipids was maintained: PLA2 hydrolyzed approx. 20% of PI, PIP2 and PA (but no PIP) indicating their localization in the outer layer of the membrane. This finding was confirmed by immunofluorescence studies with antibodies specific to each phosphoinositide. External addition of anti-PIP2 but not anti-PIP gave a positive reaction both in control and in ATP-depleted erythrocytes. A pretreatment of cells with PLA2 led to a decrease in the intensity of anti-PIP2 staining. These results demonstrate that significant fractions of PIP2, PI and PA are localized on the outer surface of the erythrocyte membrane.  相似文献   

3.
It is not clear if luteinizing hormone (LH) stimulates breakdown as well as synthesis of phosphoinositides in ovarian tissue. Possibly, LH stimulation results in hydrolysis of ovarian phosphoinositides in discrete subcellular compartments while increasing their synthesis at other sites. To investigate this hypothesis, we determined the effects of LH on phosphoinositide metabolism in whole homogenates and mitochondria of ovarian follicles. Medium (3-7 mm) follicles from porcine ovaries were preincubated for 2 h in phosphate (PO4)-free medium with 32PO4, and incubated without or with LH (1 microgram/ml). Phosphatidylinositol (PI) and related compounds, phosphatidic acid (PA), phosphatidylinositol phosphate (PIP) and phosphatidylinositol bisphosphate (PIP2), accounted for 40% of the radiolabeled phospholipids in whole homogenates and over 60% in mitochondria from preincubated follicles. After 5 min, LH caused a significant decrease in radiolabeling of PIP2 and PIP in mitochondria, but not in whole homogenates. Luteinizing hormone increased radiolabeling of PIP2, PIP, PI and PA within 10 min in whole homogenates, and within 20 to 30 min in mitochondria. This delayed increase in radiolabeling of mitochondrial phosphoinositides after LH treatment was accompanied by decreases in PIP2, PIP and PI radiolabeling in whole homogenates. Follicles also were preincubated for 4 h with [3H]inositol, then for 15 min with 10 mM LiCl (an inhibitor of inositol phosphate hydrolysis). Inositol phosphate accumulation in 30 min was 2.7 times higher in homogenates of LH-treated follicles then in untreated follicles. Also, LH significantly decreased inositol bisphosphate, but did not change inositol trisphosphate accumulation. Accumulation of inositol phosphates in mitochondria was not measurable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
When human platelets were incubated for 5 min with [32P]orthophosphate and then stimulated with serotonin, the 32P content of phosphatidylinositol (PI) increased within seconds, compared with the control. The 32P content of phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) only slightly increased during the first minute after addition of serotonin and became more apparent on prolonged stimulation. These changes were not caused by serotonin-induced change in the specific activity of ATP. Using inorganic phosphate determination for the chemical quantification of different inositol phospholipid pools, we found that the platelet PI content remained nearly constant; the amount of PIP increased while that of PIP2 decreased. When the platelets were first prelabeled for 80 min with [32P]orthophosphate, the changes in 32P-labeled inositol phospholipids after addition of serotonin were similar to their changes in mass. When the platelet inositol phospholipids were labeled with myo-[2-3H]inositol, serotonin induced an increase in [3H]inositol phosphates. From these data, it is concluded in addition to the earlier-reported effects on phospholipid metabolism (de Chaffoy de Courcelles, D. et al. (1985) J. Biol. Chem. 260, 7603-7608) that serotonin induces: a very rapid formation of PI; and alterations in inositol phospholipid interconversion that cannot be explained solely as a resynthesis process of PIP2.  相似文献   

5.
The quantitative relationship between phosphoinositides and free fatty acids (FFAs) in brain ischemia was studied by measuring contents of individual fatty acids in phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol (PI), phosphatidic acid (PA), diacylglycerol (DAG), and the FFA pool. Various periods of complete ischemia (1, 3, 10, and 30 min) were produced by decapitation. Ischemia of 1-3 min caused rapid decreases in PIP2 and PIP content together with preferential production of stearic and arachidonic acids in the DAG and FFA pools. The decrement in levels of these fatty acid residues in polyphosphoinositides was sufficient to account for their increment in levels in the enlarged DAG and FFA pools. After 10 min of ischemia, levels of PIP2, PIP, and DAG approached plateau values, but levels of all FFAs continued to increase. The increases in content of DAG and FFAs at later ischemic periods could not be accounted for by the decreases in content of PIP2 and PIP, PI and PA levels showed only transient and subtle changes. These results indicate that, at the onset of ischemia, phosphodiesteric cleavage of PIP2 and PIP and subsequent deacylation by lipases are primarily responsible for the preferential increase in levels of free stearic and arachidonic acids and that, later, hydrolysis of other phospholipids plays a major role in the continuous accumulation of FFAs.  相似文献   

6.
The effect of ergosterol on cell division and phospholipid metabolism was investigated in Saccharomyces cerevisiae strain GL7, a sterol and unsaturated fatty acid auxotroph. Cells growing poorly on cholesterol were stimulated to grow more rapidly by supplementing the medium with 100 ng of ergosterol per ml. Within 10 min after ergosterol addition to cells prelabeled with 32Pi or [3H]inositol the isotope content of the polyphosphoinositides increases markedly followed by an equally striking and rapid decrease. Subsequently upon continuous labeling, 32P incorporation into phosphatidylinositol and, to a lesser degree, other phospholipids increased. Finally 3h after ergosterol addition the growth rate increased. Only stimulation of the first process, i.e. polyphosphoinositide metabolism, upon ergosterol addition is resistant to inhibition by cycloheximide.  相似文献   

7.
Filamin, a high molecular weight actin-binding protein, cross-links actin filaments and produces a gel composed of F-actin. The effects of polyphosphoinositides on the gelating activity of smooth muscle filamin were examined by measuring the low shear viscosity of the F-actin solutions containing filamin incubated with phosphatidylinositol (PI), phosphatidylinositol 4-monophosphate (PIP), or phosphatidylinositol 4,5-bisphosphate (PIP2). Micelles of these inositol phospholipids bound to filamin inhibited the ability to form a gel of F-actin. The inhibiting activity of each phospholipid was in the following order, PIP2 greater than PIP greater than PI. The F-actin binding assay of filamin revealed that the inhibition of F-actin-gelation resulted in the loss of the F-actin-binding activity of filamin. Thus, polyphosphoinositides may play important roles in regulating the gelating activity of filamin.  相似文献   

8.
Levels of phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol (PI), phosphatidic acid, diacylglycerol (DAG), triacylglycerol (TAG), and free fatty acids (FFAs), as well as their fatty acid composition, were determined in rat forebrain during ischemia and postischemic recirculation. Cerebral energy state and electroencephalograms (EEGs) were also studied. Fifteen minutes of ischemia resulted in a decrease in PIP2 and PIP contents but not in PI content, concurrent with an enlargement of the FFA and DAG pools. The latter were enriched in stearate and arachidonate. Prolongation of ischemia did not produce further changes in content of any of the inositol phospholipids, but the increase in levels of FFAs and DAG continued. At the end of 45 min of ischemia, levels of both PIP2 and PIP decreased by 45-50%, and the total phosphoinositide content (PIP2 + PIP + PI) decreased by 21%, whereas levels of FFAs and DAG increased to 14- and 3.6-fold of control levels, respectively. During ischemia, the TAG-palmitate level decreased, but the TAG-arachidonate level increased; the tissue energy state deteriorated severely; and the EEG was suppressed. A 30-min recirculation period after 15 or 45 min of ischemia led to increases in PIP2, PIP, and total phosphoinositide contents, whereas levels of FFAs and DAG promptly decreased toward control values. The TAG-arachidonate level peaked and the TAG-palmitate level returned to a low control value during early recirculation. The ischemic changes in tissue lipids were completely reversed within 3 h of recirculation after both periods of ischemia. Adenylates were fully phosphorylated with as little as 30 min of reflow. The EEG activity partially recovered during reflow after 15 min of ischemia, whereas it remained depressed after prolonged ischemia. Thus, phosphodiesteric cleavage of PIP2 and PIP followed by deacylation of DAG is likely to contribute to the production of FFAs in early ischemia. Deacylation of undetermined lipids plays a role for the increment in levels of FFAs in the later period of ischemia. The rapid postischemic increase in levels of PIP2 and PIP indicates active synthesis not only from existing PI, but probably also by means of accumulated FFAs and DAG. These results indicate that the impaired resynthesis of inositol phospholipids cannot be a cause of the poor EEG activity after prolonged ischemia. Degradation and resynthesis of polyphosphoinositides and formation of TAG-arachidonate may be important for modulation of free arachidonic acid levels in the brain during temporary ischemia.  相似文献   

9.
M H Cho  S B Shears    W F Boss 《Plant physiology》1993,103(2):637-647
Carrot (Daucus carota L.) cells plasmolyzed within 30 s after adding sorbitol to increase the osmotic strength of the medium from 0.2 to 0.4 or 0.6 osmolal. However, there was no significant change in the polyphosphorylated inositol phospholipids or inositol phosphates or in inositol phospholipid metabolism within 30 s of imposing the hyperosmotic stress. Maximum changes in phosphatidylinositol 4-monophosphate (PIP) metabolism were detected at 5 min, at which time the cells appeared to adjust to the change in osmoticum. There was a 30% decrease in [3H]inositol-labeled PIP. The specific activity of enzymes involved in the metabolism of the inositol phospholipids also changed. The plasma membrane phosphatidylinositol (PI) kinase decreased 50% and PIP-phospholipase C (PIP-PLC) increased 60% compared with the control values after 5 min of hyperosmotic stress. The PIP-PLC activity recovered to control levels by 10 min; however, the PI kinase activity remained below the control value, suggesting that the cells had reached a new steady state with regard to PIP biosynthesis. If cells were pretreated with okadaic acid, the protein phosphatase 1 and 2A inhibitor, the differences in enzyme activity resulting from the hyperosmotic stress were no longer evident, suggesting that an okadaic acid-sensitive phosphatase was activated in response to hyperosmotic stress. Our work suggests that, in this system, PIP is not involved in the initial response to hyperosmotic stress but may be involved in the recovery phase.  相似文献   

10.
K S Ha  G A Thompson 《Biochemistry》1992,31(2):596-603
Hypoosmotic shock has been shown to trigger an immediate and selective increase of plasma membrane diacylglycerols (DAG) in the green alga Dunaliella salina, coinciding with an approximately equivalent loss of phosphatidylinositol 4,5-bisphosphate from this membrane [Ha, K.S., & Thompson, G.A., Jr. (1991) Plant Physiol. 97, 921-927]. Following a slight decline in amount, DAG levels of the plasma membrane resumed their rise by 2 min after the shock and by 40 min had achieved a maximum concentration equivalent to 230% of DAG levels in unstressed cells. This second, more sustained increase of plasma membrane DAG was matched by a DAG increase in the microsome-enriched cytoplasmic membrane fraction, commencing at 2 min and peaking at 140% of control values. The changing pattern of DAG molecular species produced in the plasma membrane during the early phases of hypoosmotic stress was compatible with their derivation from phospholipase C hydrolysis of inositol phospholipids and phosphatidylcholine. From 8 min following hypoosmotic shock, as relatively larger scale DAG accumulations developed in the cytoplasmic membranes, the molecular species composition changed to reflect a marked increase in de novo synthesis of sn-1-oleoyl, sn-2-palmitoylglycerol, and dioleoylglycerol. The former molecular species appears to be synthesized in the chloroplast while the latter is produced in the endoplasmic reticulum. The radioisotope labeling data with Na2(14)CO3 confirmed that the biphasic formation of DAG triggered by hypoosmotic shock culminates in a large-scale de novo synthesis of DAG. This is the first clear evidence for de novo synthesis as a source of DAG following PIP2-mediated signaling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The metabolism of inositol-containing phospholipids during insulin secretion was studied in rat islets of Langerhans preincubated with [3H]inositol to label their phospholipids. Glucose (20 mM) caused a rapid breakdown of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate and an accumulation of inositol trisphosphate and inositol bisphosphate. This effect was maximal at 60s, did not require the presence of extracellular Ca2+, and was abolished by mannoheptulose (15 mM), but not by noradrenaline (1 microM). Mannose (20 mM) and DL-glyceraldehyde (10 mM) produced similar effects to those of glucose, but galactose (20 mM) and KCl (30 mM) were without effect. These results are compatible with the hypothesis that an early event in the stimulus-secretion coupling mechanism in the pancreatic B-cell is the rapid breakdown of polyphosphoinositides catalysed by phospholipase C. Moreover, they suggest that the breakdown of polyphosphoinositides is linked to sugar metabolism in the B-cell. This observation is important, since it demonstrates that events in a cell other than plasma-membrane receptor occupancy can promote polyphosphoinositide hydrolysis.  相似文献   

12.
The effect of 0.5 mmol/l chlorpromazine (CPZ) on phospholipid metabolism, ATP content, and protein phosphorylation was studied in isolated human platelets. After 30 min incubation CPZ reduced the ATP content of the cells to 17% of the control. At the same time, the radioactivity in 32P prelabelled inositol lipids--phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol (PI), and phosphatidic acid (PA) decreased to 30, 51, and 61% of the controls, respectively, whereas an increase up to 188% of the control was observed in phosphatidylinositol 4-phosphate (PIP). A massive dephosphorylation of proteins was found. Thrombin, added to 32P prelabelled platelets for 90 s, increased the levels of radioactivity in phosphoinositides and PA. When added to CPZ--pretreated 32P prelabelled platelets, thrombin decreased the radio-activity in PIP2, PIP, and PA to 4, 86, and 10% of the control, respectively. We assume that the pharmacological effect of CPZ might be connected with the decreased ATP content, decreased PIP2 pool and with the impairment of protein phosphorylation.  相似文献   

13.
The metabolism of polyphosphoinositides (PPI) has been investigated during the meiosis reinitiation of the oocytes of a prosobranch mollusk, the limpet Patella vulgata. Meiosis reinitiation which leads to germinal vesicle breakdown (GVBD) and metaphase-1 spindle formation was artificially induced by treating the prophase-blocked oocytes with 10 mM NH4Cl, pH 8.2. This treatment, which results in a rise in intracellular pH, triggered a general increase in polyphosphoinositide synthesis. Determinations of phosphorus content showed that maturation induced a 30 to 50% increase in both phosphatidylinositol (PI) and phosphatidylinositol-1 monophosphate (PIP) concentrations. Incorporations of 32PO4 and [3H]inositol have been measured in three classes of polyphosphoinositides: PI, PIP, and phosphatidylinositol 4,5-bisphosphate (PIP2). By comparing incorporation rates of the radiolabeled precursors into PPI before and after meiosis reinitiation, we found that artificial maturation by ammonia induced a 50-fold increase in the turnover of these lipids. No significant burst of inositol 1,4,5-trisphosphate (IP3) was observed after maturation. We suggest that modifications in PPI metabolism occurring at maturation of Patella oocytes might ensure the formation of an important stock of PPI that would be available for the profuse production of IP3, the messenger responsible for the Ca2+ signal at fertilization.  相似文献   

14.
Angiotensin II acts on cultured rat aortic vascular smooth muscle cells to stimulate phospholipase C-mediated hydrolysis of membrane phosphoinositides and subsequent formation of diacylglycerol and inositol phosphates. In intact cells, angiotensin II induces a dose-dependent increase in diglyceride which is detectable after 5 s and sustained for at least 20 min. Angiotensin II (100 nM)-stimulated diglyceride formation is biphasic, peaking at 15 s (227 +/- 19% control) and at 5 min (303 +/- 23% control). Simultaneous analysis of labeled inositol phospholipids shows that at 15 s phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP) decline to 52 +/- 6% control and 63 +/- 5% control, respectively, while phosphatidylinositol (PI) remains unchanged. In contrast, at 5 min, PIP2 and PIP have returned toward control levels (92 +/- 2 and 82 +/- 4% control, respectively), while PI has decreased substantially (81 +/- 2% control). The calcium ionophore ionomycin (15 microM) stimulates diglyceride accumulation but does not cause PI hydrolysis. 4 beta-Phorbol 12-myristate 13-acetate, an activator of protein kinase C, inhibits early PIP and PIP2 breakdown and diglyceride formation, without inhibiting late-phase diglyceride accumulation. Thus, angiotensin II induces rapid transient breakdown of PIP and PIP2 and delayed hydrolysis of PI. The rapid attenuation of polyphosphoinositide breakdown is likely caused by a protein kinase C-mediated inhibition of PIP and PIP2 hydrolysis. While in vascular smooth muscle stimulated with angiotensin II inositol 1,4,5-trisphosphate formation is transient, diglyceride production is biphasic, suggesting that initial and sustained diglyceride formation from the phosphoinositides results from different biochemical and/or cellular processes.  相似文献   

15.
The properties of the enzymes involved in Ca2+-stimulated breakdown of phosphatidylinositol 4'-phosphate (PIP), phosphatidylinositol 4',5'-bisphosphate (PIP2), and phosphatidic acid (PA) in rabbit erythrocyte ghosts were studied. At 25 degrees C, 1 to 180 microM Ca2+ rapidly stimulated the breakdown of PIP and PIP2, and maximal breakdown occurred within 10 minutes at all Ca2+ concentrations. The rate and the total amount of breakdown of PA, PIP, and PIP2 increased with Ca2+ concentration. MgCl2 inhibited the rate of Ca2+-stimulated breakdown of PIP and PIP2 at Ca2+ concentrations less than 10 microM, but did not have any appreciable effects at higher Ca2+ concentrations. MgCl2 also protected against Ca2+-stimulated breakdown of PA. In the presence and absence of 5 mM MgCl2, Ca2+ stimulated half-maximal breakdown of PIP and PIP2 at 2-3 microM under hypotonic and isotonic conditions. In the presence of 5 mM MgCl2, Ca2+-stimulated breakdown of PIP and PIP2 was associated with the release of Pi and inositol bisphosphate. In the absence of MgCl2, Ca2+ stimulated the release of 32P-labeled Pi, inositol bisphosphate, and inositol trisphosphate from labeled PIP, PIP2, and PA. Ca2+ increased phosphatidylinositol content and decreased PIP and PIP2 content in these membranes. The results of this investigation suggest that Ca2+ stimulates the breakdown of polyphosphoinositides by stimulating polyphosphoinositide phosphomonoesterase and phosphodiesterase activities in rabbit erythrocyte ghosts. These activities were activated by less than 3 microM Ca2+ in the presence of MgCl2 under hypotonic or isotonic conditions. These Ca2+-stimulated polyphosphoinositide phosphoesterase activities could therefore be active under physiological conditions in normal rabbit erythrocytes.  相似文献   

16.
We have examined thrombin-induced metabolism of phosphoinositides in the platelets from fifteen NIDDM (non-insulin-dependent diabetes mellitus) patients and fifteen healthy subjects (control). The diabetic patients were divided into two groups. One group (group I) had diabetic retinopathy (microangiopathy) and the other group (group II) had atherosclerosis of great vessels (macroangiopathy). In platelets incubated with [32P] orthophosphate for 80 min, the incorporation of 32P radioactivity into phosphatidylinositol (PI), phosphatidylinositol 4-monophosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) was significantly lower in the group II than in the control. The addition of thrombin induced a marked decrease in PIP2 radioactivity at 10 sec in platelets from group I compared with that from the control. These results suggest that the breakdown of polyphosphoinositides is increased in platelets from diabetic subjects with retinopathy, and also that the formation of polyphosphoinositides is decreased in the platelets from diabetic subjects with macroangiopathy.  相似文献   

17.
Human platelet plasma membranes incubated in the presence of [gamma-32P]ATP and 15 mM MgCl2 incorporated radioactivity mostly into phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP), which represented together over 90% of the total lipid radioactivity. After washing, reincubation of prelabelled membranes revealed some hydrolysis of the two compounds by phosphomonoesterase(s), as detected by the release of radioactive inorganic phosphate (Pi) from the two phospholipids. This degradation attained 40%/30 min for PIP in the presence of 2 mM calcium and cytosol. The effect of calcium was observed at concentrations equal to or greater than 10(-4) M. In no case did calcium alone facilitate the formation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate (IP2). In contrast, simultaneous addition of 2 mM calcium and 2 mg/ml sodium deoxycholate promoted the formation of IP3 and IP2, indicating phosphodiesteratic cleavage of PIP2 and PIP. Phospholipase C activity was detected at calcium concentrations as low as 10(-7) M, in which case PIP2 hydrolysis was slightly more pronounced compared to PIP. Addition of cytosol increased to some extent the phospholipase C activity, suggesting that the low amount of enzyme remaining in the membrane is sufficient to promote submaximal degradation of PIP2 and PIP. We conclude that platelet polyphosphoinositides are present in the plasma membrane in a state where they remain inaccessible to phospholipase C, which is still fully active even at basal calcium concentrations, i.e., 10(-7) M. These results support the view that phosphodiesteratic cleavage of PIP2 promotes and thus precedes calcium mobilization brought about by IP3. The in vitro model presented here may prove very useful in future studies dealing with the mechanism rendering polyphosphoinositides accessible to phospholipase C attack upon agonist-receptor binding.  相似文献   

18.
We have previously reported that insulin increases the synthesis de novo of phosphatidic acid (PA), phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2) and diacylglycerol (DAG) in BC3H-1 myocytes and/or rat adipose tissue. Here we have further characterized these effects of insulin and examined whether there are concomitant changes in inositol phosphate generation and Ca2+ mobilization. We found that insulin provoked very rapid increases in PI content (20% within 15 s in myocytes) and, after a slight lag, PIP and PIP2 content in both BC3H-1 myocytes and rat fat pads (measured by increases in 32P or 3H content after prelabelling phospholipids to constant specific radioactivity by prior incubation with 32Pi or [3H]inositol). Insulin also increased 32Pi incorporation into these phospholipids when 32Pi was added either simultaneously with insulin or 1 h after insulin. Thus, the insulin-induced increase in phospholipid content appeared to be due to an increase in phospholipid synthesis, which was maintained for at least 2 h. Insulin increased DAG content in BC3H-1 myocytes and adipose tissue, but failed to increase the levels of inositol monophosphate (IP), inositol bisphosphate (IP2) or inositol trisphosphate (IP3). The failure to observe an increase in IP3 (a postulated 'second messenger' which mobilizes intracellular Ca2+) was paralleled by a failure to observe an insulin-induced increase in the cytosolic concentration of Ca2+ in BC3H-1 myocytes as measured by Quin 2 fluorescence. Like insulin, the phorbol diester 12-O-tetradecanoylphorbol 13-acetate (TPA) increased the transport of 2-deoxyglucose and aminoisobutyric acid in BC3H-1 myocytes. These effects of insulin and TPA appeared to be independent of extracellular Ca2+. We conclude that the phospholipid synthesis de novo effect of insulin is provoked very rapidly, and is attended by increases in DAG but not IP3 or Ca2+ mobilization. The insulin-induced increase in DAG does not appear to be a consequence of phospholipase C acting upon the expanded PI + PIP + PIP2 pool, but may be derived directly from PA. Our findings suggest the possibility that DAG (through protein kinase C activation) may function as an important intracellular 'messenger' for controlling metabolic processes during insulin action.  相似文献   

19.
Phospholipase C (PLC)-mediated degradation of polyphosphoinositides (phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP] was found to be present in rat heart ventricular soluble and total membrane fractions (100,000g supernatant and pellet). Distribution of polyphosphoinositide-specific phospholipase C activity between the membrane and soluble fraction was approximately 63 and 33% of total activity, respectively, whereas, phosphatidylinositol (PI) degradation could be detected only in the soluble fraction. Optimal PIP2-PLC activity occurred at a pCa2+ of 4.5. A similar peak in PIP-PLC activity could be demonstrated in soluble and membrane preparations; however, the rate of PIP degradation in the soluble fraction continued to increase at the highest calcium level tested (pCa2+ 3). With the exception of Sr2+, other noncalcium polycations did not support homogenate PIP2-PLC activity. In the presence of Ca2+, addition of Mg2+, La3+, or Sr2+ (10(-3) M) inhibited PIP2-PLC while Mn2+ and Gd3+ stimulated activity. In both the total membrane and soluble fractions, maximal polyphosphoinositide degradation occurs at pH 5.5 and 6.8. The detergents deoxycholate, cholate, and saponin exert a biphasic effect on PIP2-PLC activity (stimulating at lower concentrations and inhibiting at higher concentrations). The deoxycholate effect is observed in both the cytosolic and membrane fractions. Neutral and cationic detergents inhibit PIP2-PLC activity in a concentration-dependent manner. Similar to cytosolic PI-PLC activity, PIP2-PLC appears to depend on intact sulfhydryl groups. In the presence of a mixture of all three inositol phospholipids or the three phosphoinositides plus noninositol phospholipids, polyphosphoinositides are preferentially degraded.  相似文献   

20.
The inositol phospholipids of peritoneal macrophages were prelabeled with [3H]inositol to enable studies on the enzymatic mechanisms of stimulus-induced phosphatidylinositol breakdown. Ionophore A23187 induced a rapid breakdown of phosphatidylinositol in the presence of Ca2+ with 25% loss occurring within 5 min. The main water-soluble product of this breakdown was identified as inositol diphosphate. Since the accumulation of inositol diphosphate far exceeded the concomitant decrease in polyphosphoinositides, an increased phosphorylation of phosphatidylinositol must have preceded, or accompanied, the degradation of diphosphoinositide. The degradation of phosphatidylinositol induced by A23187 was shown to be strictly dependent on Ca2+. The monovalent cation ionophore monensin and platelet-activating factor increased the level of diphosphoinositide but caused no net degradation of inositol phospholipids. The same effect was seen with ionophore A23187 in the absence of Ca2+. Zymosan particles also induced extensive degradation of phosphatidylinositol. Products of phosphodiesterase-catalyzed cleavage of inositol lipids were observed, but the pathway of deacylation dominated as evidenced by the accumulation of lysophosphatidylinositol and glycerophosphoinositol. Deacylation was also enhanced in response to concanavalin A. Thus, in mouse peritoneal macrophages phosphatidylinositol breakdown occurred primarily by deacylation or via diphosphoinositide, depending on the stimulus, rather than through a phosphatidylinositol phosphodiesterase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号