首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The Keap1-Nrf2 system is the major regulatory pathway of cytoprotective gene expression against oxidative and/or electrophilic stresses. Keap1 acts as a stress sensor protein in this system. While Keap1 constitutively suppresses Nrf2 activity under unstressed conditions, oxidants or electrophiles provoke the repression of Keap1 activity, inducing the Nrf2 activation. However, the precise molecular mechanisms behind the liberation of Nrf2 from Keap1 repression in the presence of stress remain to be elucidated. We hypothesized that oxidative and electrophilic stresses induce the nuclear accumulation of Nrf2 by affecting the Keap1-mediated rapid turnover of Nrf2, since such accumulation was diminished by the protein synthesis inhibitor cycloheximide. While both the Cys273 and Cys288 residues of Keap1 are required for suppressing Nrf2 nuclear accumulation, treatment of cells with electrophiles or mutation of these cysteine residues to alanine did not affect the association of Keap1 with Nrf2 either in vivo or in vitro. Rather, these treatments impaired the Keap1-mediated proteasomal degradation of Nrf2. These results support the contention that Nrf2 protein synthesized de novo after exposure to stress accumulates in the nucleus by bypassing the Keap1 gate and that the sensory mechanism of oxidative and electrophilic stresses is closely linked to the degradation mechanism of Nrf2.  相似文献   

4.
5.
刘薇  王红霞  王立魁  苏丽丽  罗成 《生命科学》2011,(10):1027-1033
近年新研究发现COX-2可使用比COX-1更广泛的底物。比如,除了标准的花生四烯酸外,COX-2也能将二十二碳六烯酸(DHA)和二十碳五烯酸(EPA)等转换成前列腺素衍生物。这些前列腺素衍生物可进一步转化成促进消炎、抗氧化的亲电羰基衍生物(EFOX)分子,并且可以从Keap1解离转录因子Nrf2,继而可以激活多种与抗氧化相关的含ARE应答元件的基因,如血红素氧化酶-1、谷胱甘肽还原酶等。COX-2的这些新功能有可能帮助更好地理解Nrf2/ARE信号通路及其抗炎、抗氧化、诱导肿瘤细胞凋亡等机理。对外源性抗氧化剂触发体内的抗氧化基因及抗炎信号的可能性,以及与饮食相关的抗衰老机理进行探讨。  相似文献   

6.
7.
8.
9.
Increased intake of fish oil rich in the omega-3 fatty acids eicosapentaenoic acid (EPA, C20:5 omega-3) and docosahexaenoic acid (DHA, C22:6 omega-3) reduces the incidence of human disorders such as atherosclerotic cardiovascular disease. However, mechanisms that contribute to the beneficial effects of fish oil consumption are poorly understood. Mounting evidence suggests that oxidation products of EPA and DHA may be responsible, at least in part, for these benefits. Previously, we have defined the free radical-induced oxidation of arachidonic acid in vitro and in vivo and have proposed a unified mechanism for its peroxidation. We hypothesize that the oxidation of EPA can be rationally defined but would be predicted to be significantly more complex than arachidonate because of the fact that EPA contains an addition carbon-carbon double bond. Herein, we present, for the first time, a unified mechanism for the peroxidation of EPA. Novel oxidation products were identified employing state-of-the-art mass spectrometric techniques including Ag(+) coordination ionspray and atmospheric pressure chemical ionization mass spectrometry. Predicted compounds detected both in vitro and in vivo included monocylic peroxides, serial cyclic peroxides, bicyclic endoperoxides, and dioxolane-endoperoxides. Systematic study of the peroxidation of EPA provides the basis to examine the role of specific oxidation products as mediators of the biological effects of fish oil.  相似文献   

10.
11.
12.
13.
The n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to enhance the effect of chemotherapeutic drugs in clinical studies in cancer patients and to induce apoptotic tumor cell death in vitro. Until now, EPA and DHA have never been investigated in multiple myeloma (MM). Human myeloma cells (L363, OPM-1, OPM-2 and U266) and normal peripheral blood mononuclear cells were exposed to EPA and DHA, and effects on mitochondrial function and apoptosis, caspase-3 activation, gene expression and drug toxicity were measured. Exposure to EPA and DHA induced apoptosis and increased sensitivity to bortezomib in MM cells. Importantly, they did not affect viability of normal human peripheral mononuclear cells. Messenger RNA expression arrays showed that EPA and DHA modulated genes involved in multiple signaling pathways including nuclear factor (NF) κB, Notch, Hedgehog, oxidative stress and Wnt. EPA and DHA inhibited NFκB activity and induced apoptosis through mitochondrial perturbation and caspase-3 activation. Our study suggests that EPA and DHA induce selective cytotoxic effects in MM and increase sensitivity to bortezomib and calls for further exploration into a potential application of these n-3 polyunsaturated fatty acids in the therapy of MM.  相似文献   

14.
15.
16.
In a recent study, we showed that eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two common omega‐3 fatty acids, can cause ROS accumulation and subsequently induce caspase‐8‐dependent apoptosis in human breast cancer cells (Kang et al. [2010], PLoS ONE 5: e10296). In this study, we showed that the pancreas has a unique ability to accumulate EPA at a level markedly higher than several other tissues analyzed. Based on this finding, we sought to further investigate the anticancer actions of EPA and its analog DHA in human pancreatic cancer cells using both in vitro and in vivo models. EPA and DHA were found to induce ROS accumulation and caspase‐8‐dependent cell death in human pancreatic cancer cells (MIA‐PaCa‐2 and Capan‐2) in vitro. Feeding animals with a diet supplemented with 5% fish oil, which contains high levels of EPA and DHA, also strongly suppresses the growth of MIA‐PaCa‐2 human pancreatic cancer xenografts in athymic nude mice, by inducing oxidative stress and cell death. In addition, we showed that EPA can concomitantly induce autophagy in these cancer cells, and the induction of autophagy diminishes its ability to induce apoptotic cell death. It is therefore suggested that combination of EPA with an autophagy inhibitor may be a useful strategy in increasing the therapeutic effectiveness in pancreatic cancer. J. Cell. Biochem. 114: 192–203, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Dietary n-3 fatty acids generally attenuate elevated cyclooxygenase-2 (COX-2) levels in disease states. However, models of renal cystic disease (RCD) exhibit reduced renal COX-2 expression. Therefore, the in vivo regulation of COX-2 expression by dietary n-3 fatty acids was examined. In archived tissues from dietary studies, COX-2 protein and gene expression was up-regulated in diseased pcy mouse and Han:SPRD-cy rat kidneys when given diets containing eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA), but not those containing -linolenic acid (ALA), compared to control diets with linoleic acid (LA). The presence of disease was necessary to elicit these effects as COX-2 expression was unaltered by diet in normal kidneys. The effects were specific for COX-2, since COX-1 levels were unaltered by these dietary manipulations in either model. Thus, in RCD, diets containing EPA and DHA but not ALA appear to specifically up-regulate renal COX-2 gene and protein levels in vivo.  相似文献   

18.
Inflammation triggers an increase in osteoclast (bone resorbing cell) number and activity. Osteoclastogenesis is largely controlled by a triad of proteins consisting of a receptor (RANK), a ligand (RANK-L) and a decoy receptor (osteoprotegerin, OPG). Whilst RANK is expressed by osteoclasts, RANK-L and OPG are expressed by osteoblasts. The long chain polyunsaturated fatty acid (LCPUFA) arachidonic acid (AA, 20:4n-6) and its metabolite prostaglandin E2 (PGE2), are pro-inflammatory and PGE2 is a potent stimulator of RANKL expression. Various LCPUFAs such as eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3) and gamma-linolenic acid (GLA, 18:3n-6) have anti-inflammatory activity. We aimed to determine if AA itself can stimulate RANKL expression and whether EPA, DHA and GLA inhibit RANKL expression in osteoblasts. MC3T3-E1/4 osteoblast-like cells were cultured under standard conditions with each of the LCPUFAs (5microg/ml) for 48h. Membrane-bound RANKL expression was measured by flow cytometry and OPG secretion measured by ELISA. In a second experiment, RANKL expression in MC3T3-E1/4 cells was stimulated by PGE2 treatment and the effect of EPA, DHA and GLA on membrane-bound RANKL expression and OPG secretion determined. The percentage of RANKL-positive cells was higher (p<0.05) than controls following treatment with AA or GLA but not after co-treatment with the cyclooxygenase inhibitor, indomethacin. DHA and EPA had no effect on membrane-bound RANKL expression under standard cell culture conditions. Secretion of OPG was lower (p<0.05) in AA-treated cells but not significantly different from controls in GLA, EPA or DHA treated cells. Treatment with prostaglandin E2 (PGE2) resulted in an increase (p<0.05) in the percentage of RANK-L positive cells and a decrease (p<0.05) in mean OPG secretion. The percentage of RANKL positive cells was significantly lower following co-treatment with PGE2 and either DHA or EPA compared to treatment with PGE2 alone. Mean OPG secretion remained lower than controls in cells treated with PGE2 regardless of co-treatment with EPA or DHA. Results from this study suggest COX products of GLA and AA induce membrane-bound RANKL expression in MC3T3-E1/4 cells. EPA and DHA have no effect on membrane-bound RANKL expression in cells cultured under standard conditions however both EPA and DHA inhibit the PGE2-induced increase in RANKL expression in MC3T3-E1/4 cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号