首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cynomologus monkeys, systemic administration of MK-801, a noncompetitive antagonist for the N-methyl-D-aspartate receptor, prevented the development of the parkinsonian syndrome induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MK-801 also attenuated dopamine depletion in the caudate and putamen and protected dopaminergic neurons in the substantia nigra from the degeneration induced by the neurotoxin. Nevertheless, 7 days after MPTP administration in the caudate and putamen of monkeys also receiving MK-801, the levels of toxic 1-methyl-4-phenylpyridinium were even higher than those measured in monkeys receiving MPTP alone. This indicates that the protective action of MK-801 is not related to MPTP metabolism and strongly suggests that, in primates, the excitatory amino acids could play a crucial role in the mechanism of the selective neuronal death induced by MPTP.  相似文献   

2.
Oxidase electrode measurements as well as optical and electron spin resonance spectroscopic data have shown that synthetic neuromelanin oxidizes the neurotoxin metabolite 1-methyl-4-phenyl-2,3-dihydropyridinium in a dose-dependent manner forming 1-methyl-4-phenylpyridinium and hydrogen peroxide. Hydroxyl radicals are formed in this reaction which is promoted by iron chelates. In contrast, neither 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine nor 1-methyl-4-phenylpyridinium reacts with synthetic neuromelanin in a similar fashion. The mechanism of selective toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in pigmented neuronal cells is discussed in the light of these findings.  相似文献   

3.
The one-electron reduction product of 1-methyl-4-phenyl-2,3-dihydropyridinium ion has been generated by pulse radiolysis and its absorption spectrum recorded. This radical was found to decay by second-order kinetics (2k = 9.5 x 10(8) M-1 s-1) to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenyl-2,3-dihydropyridinium ion. Reactions of the above radical species and that formed by one-electron reduction of 1-methyl-4-phenylpyridinium ion, which can also be generated by one-electron oxidation of 1-methyl-4-phenyl-1,2-dihydropyridine, with a number of molecules of biochemical interest have been studied. The one-electron reduction product of oxidised nicotinamide adenine dinucleotide efficiently reduced 1-methyl-4-phenyl-2,3-dihydropyridinium ion (k = 2.2 x 10(9) M-1 s-1). The relevance of these results in relation to redox cycling, a possible mechanism for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity, is discussed.  相似文献   

4.
A saturable, specific, high-affinity binding site for [3H]1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine was found in rat brain homogenates. The CNS regional distribution, the subcellular fractionation, and the displacement by pargyline, clorgyline, and deprenyl suggest that this binding site may correspond to monoamine oxidase. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine inhibited the oxidative deamination of dopamine, both in vivo and in vitro. Striatal levels of 3,4-dihydroxyphenylacetic acid were significantly reduced shortly after intravenous administration, and returned to normal values after a few hours. The in vitro formation of 3,4-dihydroxyphenylacetic acid from dopamine was inhibited by concentrations of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine comparable to those of pargyline.  相似文献   

5.
Oxidase electrode measurements have shown that the neurotoxin metabolite 1-methyl-4-phenyl-2,3-dihydropyridinium autoxidizes to hydrogen peroxide and 1-methyl-4-phenylpyridinium in a reaction promoted by iron chelates. The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity is discussed in the light of these findings.  相似文献   

6.
Various unstable intermediate oxidation states have been postulated in the metabolic activation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to the 1-methyl-4-phenyl pyridinium ion. We now report the first direct observation of these free radical intermediates by pulse radiolysis and flash photolysis. Studies are described of various reactions of such species, in particular with dopamine whose autoxidation to dopamine quinone is reported to be potentiated by 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine.  相似文献   

7.
Intracerebroventricular infusion of epidermal growth factor (EGF) into mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced degeneration of dopaminergic nigrostriatal neurons partially enhanced the content of dopamine (DA) and 3,4-dihydroxyphenylacetic acid as well as the activity of tyrosine hydroxylase in the striatum. EGF also enhanced these parameters in control, unlesioned animals. Neurotrophic activity also was observed in embryonic mesencephalic cultures, where EGF enhanced DA uptake after a lesion with the neurotoxic metabolite of MPTP, 1-methyl-4-phenylpyridinium ion. Our in vivo and in vitro studies suggest that EGF may be a neurotrophic factor for dopaminergic neurons, or may act indirectly by inducing the release of a dopaminergic trophic factor from other cells.  相似文献   

8.
Guinea pigs were injected subcutaneously with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in maximal tolerated doses (8 mg/kg, once daily) for 10 or 15 days. No neurological effects were noted, other than sedation and hypotonia lasting a few hours after each injection, either in animals maintained on normal diet or in animals fed an ascorbate-deficient diet and rendered severely scorbutic. Subsequent chemical analyses of the striatum showed no evidence of lasting damage to nigrostriatal dopaminergic neurons in MPTP treated guinea pigs on normal diet, and minimal evidence of permanent damage to these neurons in scorbutic animals. MPTP was undetectable in the urine of MPTP-treated animals, although a metabolite, presumably 1-methyl-4-phenylpyridinium ion (MPP+) was regularly present in urine. The relative lack of neurotoxicity of MPTP in the guinea pig remains unexplained. This species clearly is not a suitable small animal for MPTP-induced parkinsonism.  相似文献   

9.
In the mammalian brain, the (NMDA) subtype of glutamate receptor is coupled to a cation channel and a strychnine-insensitive glycine receptor. The present paper demonstrates the presence of NMDA receptor-coupled strychnine-insensitive glycine receptors in embryonic chick retina. Both glycine and 1-aminocyclopropanecarboxylic acid (ACPC) exhibited similar potencies (271 ± 39 vs 247 ± 39 nM, respectively) as inhibitors of strychnine-insensitive [3H]glycine binding to retinal membranes. Moreover, glycine and ACPC enhanced [3H]MK-801 binding to sites within the NMDA-coupled cation channel in retinal membranes with potencies comparable to those reported in rat brain. While the potency of ACPC was significantly higher than glycine (EC50 54±12 vs 256±57 nM, P < 0.02) in this measure, there were no significant differences in the maximum enhancement (efficacy) of [3H]MK-801 binding by these compounds. Since glycine appears to be required for the operation of NMDA-coupled cation channels, we examined the effects of glycine and ACPC on NMDA-induced acute excitotoxicity in the 14-day embryonic chick retina. Histological evaluation of retina revealed that either ACPC (10–100 μM) or glycine (200 μM) attenuated NMDA- induced (200 μM) retinal damage, and a combination of these agents produced an enhanced protection against acute NMDA toxicity. ACPC (100 μM), but not MK-801 (1 μM) also afforded a modest protection against kainate-induced (25 μM) retinal damage. These findings demonstrate that while strychnine-insensitive glycine receptors are present in embryonic chick retina, occupation of these sites does not augment the cytotoxic actions of NMDA. Moreover, the ability of ACPC and glycine to attenuate NMDA-induced cytotoxicity does not appear to be mediated through occupation of these sites.  相似文献   

10.
Since the discovery of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, it has been postulated that (a) MPTP-like toxin(s) such as 1,2,3,4-tetrahydroisoquinoline (TIQ) may induce Parkinson's disease. As the neuronal degeneration in MPTP-induced parkinsonism is thought to be caused by the inhibition of the mitochondrial respiration by 1-methyl-4-phenylpyridinium ion (MPP+), we studied the effects of TIQ-like alkaloids including dopaminederived ones on the mitochondrial respiration using mouse brains. TIQ, tetrahydropapaveroline (THP), and tetrahydropapaverine (THPV) produced significant inhibition of the state 3 and 4 respiration and respiratory control ratio supported by glutamate + malate, the activity of Complex 1 and the ATP synthesis. Among those compounds, THPV was most potent. Toxic properties of these compounds on mitochondria were quite similar to that of MPP+. Our results support the hypothesis that (a) MPTP- or MPP+-like substance(s) may be responsible for the nigral degeneration in Parkinson's disease.Abbreviations used MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - MPP+ 1-methyl-4-phenylpyridinium ion - ATP adenosine triphosphate - ADP Adenosine diphosphate - TCL tricarboxylic acid - TIQ cycle: 1,2,3,4-Tetrahydroisoquinoline - THPV Tetrahydropapaverine - THP Tetrahydropaveroline  相似文献   

11.
1-Methyl-4-phenylpyridinium ion (MPP+) is the product of the metabolic oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by monoamine oxidase (MAO). MPP+ is toxic to 3,4-dihydroxyphenylethylamine (dopamine, DA) neurons in explant cultures of rat embryonic midbrain. Addition of 2.5 microM MPP+ to the feeding medium for 6 days results in significant reduction of the DA levels in the cultures (to 19% of control) as well as in the uptake of [3H]DA (to 32% of control). When the cultures are treated with the MAO inhibitor deprenyl (10 microM) 24 h prior to and during exposure to MPP+, the DA neurons are protected from the toxicity of the drug. In the combined deprenyl plus MPP+ treatment, the levels of DA in the cultures remain at the control range and the [3H]DA uptake is reduced to only 73% of control. These results indicate that MAO is involved in the toxicity of MPP+ on DA neurons.  相似文献   

12.
Several analogs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were synthesized and screened for their capacity to be oxidized by monoamine oxidase (MAO-A or MAO-B) and their capacity to produce nigrostriatal dopaminergic neurotoxicity in mice. All of the compounds were relatively weak substrates for MAO-A but many of the compounds were found to be good substrates for MAO-B. Only three of the compounds, in addition to MPTP itself, were found to be neurotoxic. These were 1-methyl-4-cyclohexyl-1,2,3,6-tetrahydropyridine, 1-methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydropyridine and 1-methyl-4-(3'-methoxyphenyl)-1,2,3,6-tetrahydropyridine. All three of these neurotoxic compounds were found to be substrates for MAO-B; in contrast no compound was found to be neurotoxic that was not oxidized by MAO-B. The capacity of the compounds studied to be oxidized by MAO-B appears to be an important aspect of the neurotoxic process.  相似文献   

13.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is known to cause parkinsonism in man and animals, producing acute behavioral effects within minutes of administration. This syndrome has been attributed to specific effects on dopaminergic systems. MPTP blocked the binding of haloperidol to membranes from rat and human brain (IC50 = 2.5 μM), but it did not block the binding of flupenthixol to these membranes. These results indicate that MPTP is a ligand for D-2 dopamine receptors but not for D-1 dopamine receptors. Synaptosomes from rat, mouse or guinea-pig corpus striatum or from monkey caudate nucleus exhibited little ability to take up MPTP from the incubation medium. The synaptosomes took up at least 20–50 times more dopamine than MPTP. These results indicate that MPTP could cause acute effects by binding to dopamine receptors and that the specific toxicity MPTP exerts for dopaminergic neuron is not primarily based on the specific uptake of MPTP into these neurons.  相似文献   

14.
The survival and functional maintenance of vertebrate neurons depends on the availability of specific neurotrophic factors. We studied the influence of neurotrophic support on responses of dopaminergic neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin known to damage the nigrostriatal dopaminergic pathway in humans and other mammals. Treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine caused decreases in levels of Ret, a tyrosine kinase receptor for glial cell line-derived neurotrophic factor (GDNF) in the striatum, under the condition in which tyrosine hydroxylase was moderately decreased and the GDNF family receptor alpha1, another receptor of GDNF that is the ligand-binding subunit, were unaffected. Down-regulation of Ret was also observed in dopamine-producing PC12 cells undergoing apoptosis induced by rotenone, another toxic substance for dopaminergic neurons, while other cellular components were not affected. Ret was also extremely vulnerable to other apoptotic inducing conditions. Taken together, these results indicate that Ret, an important signal molecule in dopaminergic neurons, may be down-regulated in the early stages of neuronal degeneration caused by various neurotoxic substances, and may lead to reduced neurotrophic influences.  相似文献   

15.
Explants of embryonic rat substantia nigra in organotypic culture are sensitive to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at concentrations approximating the doses given in vivo to monkeys. Fluorescence microscopy and 3H-dopamine uptake measurements reveal that the toxicity is selective for dopamine neurons, whereas other neurons and cells in the culture appear normal by phase contrast microscopy. Reduced MPTP (piperidine analog) is inactive in the tissue culture model, while fully oxidized MPTP (pyridinium analog) destroys dopamine neurons. Pargyline and deprenyl, two monoamine oxidase inhibitors, inhibit the neurotoxic action of MPTP. Pargyline and deprenyl also protect monkeys in vivo. The results implicate monoamine oxidase in the mechanism of action of MPTP. Two possible mechanisms for protection by monoamine oxidase are discussed.  相似文献   

16.
A catalyst function for MPTP in superoxide formation   总被引:1,自引:0,他引:1  
We demonstrate that 1-methyl-4-phenyl-1,2-dihydropyridine (MPDP) can be generated, in an alternate pathway, from the catalyst action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) upon the iron redox equilibrium reaction. Superoxide and ferric iron are instantaneously produced after addition of MPTP to a solution of ferrous iron. This reaction is oxygen and pH dependent. Superoxide, through a iron dependent Haber-Weiss reaction with peroxide, can generate the cytotoxic hydroxyl radical. A small portion of the superoxide reacts with MPTP to produce the reactive species X. which, in the presence of Fe+3 can also generate MPDP.  相似文献   

17.
The loss of viability of isolated rat hepatocytes exposed to either 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or its toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) was prevented by addition of fructose to the incubation medium. This protection was dependent on fructose concentration, being complete at 10 mM. Addition of fructose dramatically delayed MPTP- and MPP+-induced depletion of ATP and was accompanied by a significant accumulation of lactate, indicating the occurrence of enhanced glycolytic production of ATP. Glucose was much less effective against MPTP and MPP+ toxicity, probably because it is a relatively poor substrate for glycolysis in liver cells. We conclude that depletion of ATP is a critical event in MPTP cytotoxicity in our in vitro model system, and that the use of alternative sources of ATP production may represent an important protective device against the effects of this toxic agent.  相似文献   

18.
MPTP (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is converted by monoamine oxidase B to its putative toxic metabolite MPP+ (1-methyl-4-phenylpyridinium ion) via MPDP+ (1-methyl-4-phenyl-2,3-dihydropyridinium ion). Both the parent compound and these two major metabolites were toxic to isolated rat hepatocytes with MPDP+ being the most toxic and MPP+ the least effective. MPP+ produced a slight increase in lipid peroxidation above control levels in hepatocytes, while both MPTP and MPDP+ showed antioxidant effects. The latter two compounds also protected against chemically and nonchemically induced lipid peroxidation in rat liver microsomes. MPDP+ was effective at much lower concentrations than MPTP. MPDP+ was also markedly more efficient when NADPH was used to induce microsomal lipid peroxidation. Lipid peroxidation as a consequence of oxygen radical generation is therefore unlikely to be involved in MPTP toxicity in vitro and the rationale of using chain-breaking antioxidants as protective agents in vivo needs a more careful evaluation.  相似文献   

19.
Because 1-methyl-4-phenyl-2,3-dihydropyridinium ion (MPP+) appears to damage the dopaminergic neuron and cause neuronal death, we characterized [3H]MPP+ binding sites in mouse brain membranes. Among several compounds tested, debrisoquin [3,4-dihydro-2(1H)-isoquinolinecarboxamidine] and some analogues were able to antagonize [3H]MPP+ binding. Debrisoquin is able to block adrenergic transmission and inhibit the activity of monoamine oxidase A (MAO-A). We found a certain correlation between the ability of these agents to displace [3H]MPP+ from its binding sites and their capacity to inhibit MAO-A activity. These data and the finding of a higher number of [3H]MPP+ binding sites in human placenta compared to mouse brain suggest that these sites may correspond to MAO-A enzymes. Recently it has been demonstrated in human brain that neurons in regions rich in catecholamines are positive for MAO-A. Accordingly, we suggest MAO-A as a possible accumulation site of MPP+ within the dopaminergic neuron. We also indicate the chemical structural requirement associated with the best binding of debrisoquin analogues with [3H]MPP+ sites. It would be reasonable to test the effects of debrisoquin-like drugs able to pass the blood-brain barrier on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity.  相似文献   

20.
The dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) derives from its metabolism to 1-methyl-4-phenyl-pyridinium cation (MPP+), which is then selectively accumulated in dopaminergic neurons. In an effort to assess the structural requirements governing MPP+ cytotoxicity, we evaluated dopaminergic toxicity of MPP+ analogues 3 weeks after their microinfusion into rat substantia nigra. We also evaluated the substrate suitability of MPP+ analogues for high-affinity dopamine uptake in striatal synaptosomes by measuring their ability to induce specific dopamine release. The intranigral neurotoxicity of MPP+ analogues in vivo correlates mainly with their in vitro inhibitory activity on mitochondrial respiration, consistent with a compromise in cellular energy production as the principal mechanism of MPTP-induced cell death. This study extends the structure-neurotoxicity data base beyond that obtainable using MPTP analogues, since many of these are not metabolized to pyridinium compounds. Such information is crucial to assess which possible endogenous or exogenous compounds may exert MPTP/MPP(+)-like toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号