首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 246 毫秒
1.
Invasion of the erythrocyte by the merozoites of the malaria parasite is a complex process involving a range of receptor-ligand interactions. Two protein families termed Erythrocyte Binding Like (EBL) proteins and Reticulocyte Binding Protein Homologues (RH) play an important role in host cell recognition by the merozoite. In the rodent malaria parasite, Plasmodium yoelii, the 235 kDa rhoptry proteins (Py235) are coded for by a multigene family and are members of the RH. In P. yoelii Py235 as well as a single member of EBL have been shown to be key mediators of virulence enabling the parasite to invade a wider range of host erythrocytes. One member of Py235, PY01365 is most abundantly transcribed in parasite populations and the protein specifically binds to erythrocytes and is recognized by the protective monoclonal antibody 25.77, suggesting a key role of this particular member in virulence. Recent studies have indicated that overall levels of Py235 expression are essential for parasite virulence. Here we show that disruption of PY01365 in the virulent YM line directly impacts parasite virulence. Furthermore the disruption of PY01365 leads to a reduction in the number of schizonts that express members of Py235 that react specifically with the mcAb 25.77. Erythrocyte binding assays show reduced binding of Py235 to red blood cells in the PY01365 knockout parasite as compared to YM. While our results identify PY01365 as a mediator of parasite virulence, they also confirm that other members of Py235 are able to substitute for PY01365.  相似文献   

2.
The precursor of the major merozoite surface Ag (PMMSA) represents one of the principal molecules of the erythrocytic stages of malarial parasites. Previously we reported that mAb 302 recognizing the 230-kDa PMMSA of Plasmodium yoelii provided passive protection to mice challenged with this parasite. We now report that the protective capacity of mAb 302 is variant specific, affording protection against infection with only three of five P. yoelii lines. Immunoprecipitation analyses of their PMMSA revealed that the expression of the epitope recognized by mAb 302 also varied and correlated completely with the results of the passive protection studies. Although this specific determinant was not present on the merozoite Ag of all P. yoelii lines, the common expression of other B cell epitopes was noted by the demonstration of serologic cross-reactivity between these molecules. Furthermore, the relatedness of the genes encoding the PMMSA of several murine plasmodial strains and species was clearly shown in nucleic acid hybridization studies. Although strain-common and strain-variable epitopes have been observed in the PMMSA of the human parasite, Plasmodium falciparum, little is known concerning the variability of its biologically relevant epitopes. The current studies using the P. yoelii model system demonstrate that the epitope recognized by a protective mAb is strain variable. Because of the similarities between these antigens of P. falciparum and P. yoelii, this information may impact on the construction of an effective blood-stage malarial vaccine.  相似文献   

3.
The simian malaria Plasmodium knowlesi provides many favourable features as an experimental model; it can be grown in vivo or in vitro. Parasites of defined variant specificity and stage of development are readily obtained and both the natural host and a highly susceptible host are available for experimental infection and vaccination trials. Proteins synthesized by erythrocytic P. knowlesi parasites are characteristic of the developmental stage, as are the alterations that the parasite induces in the red cell surface. Erythrocytic merozoites are anatomically and biochemically complex, their surface alone is covered by at least eight distinct polypeptides. Immune serum from merozoite-immunized rhesus recognizes many parasite components, especially those synthesized by schizonts. All of the merozoite surface components and some of the schizont-infected red cell surface antigens are recognized by such immune sera. Rhesus monkeys rendered immune by repeated infection may by contrast recognize comparatively few antigens; a positive correlation was established for these 'naturally' immunized monkeys between protection and antibody directed against a 74 000 molecular mass antigen. Immunization with this purified antigen confers partial protection. Other putative protective antigens have been identified by monoclonal antibodies that inhibit merozoite invasion of red cells in vitro. The antigens recognized by inhibitory monoclonal antibodies are synthesized exclusively by schizonts and are processed, at the time of schizont rupture and merozoite release, to smaller molecules that are present on the merozoite surface. The multiplicity of protective antigens is clearly demonstrated by the fact that seven distinct merozoite surface antigens are recognized by three different inhibitory monoclonals. None of the protective antigens identified are variant or strain specific.  相似文献   

4.
The relationship between autoimmunity and malaria is not well understood. To determine whether autoimmune responses have a protective role during malaria, we studied the pattern of reactivity to plasmodial antigens of sera from 93 patients with 14 different autoimmune diseases (AID) who were not previously exposed to malaria. Sera from patients with 13 different AID reacted against Plasmodium falciparum by indirect fluorescent antibody test with frequencies varying from 33-100%. In addition, sera from 37 AID patients were tested for reactivity against Plasmodium yoelii 17XNL and the asexual blood stage forms of three different P. falciparum strains. In general, the frequency of reactive sera was higher against young trophozoites than schizonts (p < 0.05 for 2 strains), indicating that the antigenic determinants targeted by the tested AID sera might be more highly expressed by the former stage. The ability of monoclonal auto-antibodies (auto-Ab) to inhibit P. falciparum growth in vitro was also tested. Thirteen of the 18 monoclonal auto-Ab tested (72%), but none of the control monoclonal antibodies, inhibited parasite growth, in some cases by greater than 40%. We conclude that autoimmune responses mediated by auto-Ab may present anti-plasmodial activity.  相似文献   

5.
Murine immunoglobulin G (IgG) plays an important role in mediating protective immune responses to malaria. We still know relatively little about which IgG subclasses protect against this disease in mouse models, although IgG2a and IgG2b are considered to be the most potent and dominate in successful passive transfer experiments in rodent malarias. To explore the mechanism(s) by which the different mouse IgG subclasses may mediate a protective effect, we generated mouse IgG1, IgG2a, IgG2b and IgG3 specific for the C-terminal 19-kDa region of Plasmodium falciparum merozoite surface protein 1 (PfMSP1(19)), and to the homologous antigen from Plasmodium yoelii (P. yoelii), both major targets of protective immune responses. This panel of eight IgGs bound antigen with an affinity comparable to that seen for their epitope-matched parental monoclonal antibodies (mAbs) from which they were derived, although for reasons of yield, we were only able to explore the function of mouse IgG1 recognizing PfMSP1(19) in detail, both in vitro and in vivo. Murine IgG1 was as effective as the parental human IgG from which it was derived at inducing NADPH-mediated oxidative bursts and degranulation from neutrophils. Despite showing efficacy in in vitro functional assays with neutrophils, the mouse IgG1 failed to protect against parasite challenge in vivo. The lack of protection afforded by MSP1(19)-specific IgG1 against parasite challenge in wild type mice suggests that this Ab class does not play a major role in the control of infection with mouse malaria in the Plasmodium berghei transgenic model.  相似文献   

6.
Bioinformatic analyses of gene homologues have revealed functionally conserved epitopes between human and rodent malaria parasites. Here, we present experimental evidence for the presence of functionally and antigenically conserved domains between Plasmodium falciparum and Plasmodium yoelii asexual blood-stages. Merozoite released soluble proteins (MRSPs) from both P. falciparum and P. yoelii bound to heterologous mouse or human red blood cells, respectively. The presence of conserved antigenic epitopes between the two species of parasites was evident by the inhibitory effect of antibodies, developed against P. yoelii in convalescent mice, on P. falciparum growth and merozoite reinvasion in vitro. Furthermore, mice immunized with P. falciparum MRSPs were protected from infection by a P. yoelii challenge. These data indicate that different species of Plasmodium contain antigenically conserved interspecies domains, which are immunogenic and, thus constitute a potential novel antigen source for vaccine development and testing using a mouse model.  相似文献   

7.
Immunization with extracellular sexual stages of the malaria parasites can induce the production of antibodies which block the development of the parasites in the midgut of a mosquito after a blood meal. We have generated a number of monoclonal antibodies against gametes and zygotes of the human malaria Plasmodium falciparum. Two monoclonal antibodies (mAb) reacting with a 230-kDa gamete surface protein (mAb 1B3 and 2B4 both isotype IgG2a) were found to block transmission of P. falciparum to mosquitoes. Blocking was complement dependent and this was verified in vitro by the rapid lysis of newly formed gametes and zygotes in the presence of the mAb and active complement. Both mAb reacted by immunofluorescence with the surface of gametes and zygotes from isolates of P. falciparum from various geographical areas. Each mAb immunoprecipitated a 230-kDa protein from 125I-labeled surface proteins of newly formed gametes and zygotes and immunoblotted a protein doublet of about molecular mass 260 and 230 kDa from gametocytes and gametes of P. falciparum. Only the 230-kDa protein is expressed on the surface of newly formed macrogametes and zygotes. The 230-kDa gamete surface protein forms a molecular complex with two proteins of 48 and 45 kDa. The 48- and 45-kDa gamete surface proteins have previously been shown to be targets of mAb which block infectivity of P. falciparum to mosquitoes. The present study now demonstrates that antibodies against the 230-kDa gamete surface protein block transmission of P. falciparum to mosquitoes. The 230-kDa gamete protein is thus a potential candidate for a gamete vaccine.  相似文献   

8.
Rhoptries are cellular organelles localized at the apical pole of apicomplexan parasites. Their content is rich in lipids and proteins that are released during target cell invasion. Plasmodium falciparum rhoptry-associated protein 1 (RAP1) has been the most widely studied among this parasite species' rhoptry proteins and is considered to be a good anti-malarial vaccine candidate since it displays little polymorphism and induces antibodies in infected humans. Monoclonal antibodies directed against RAP1 are also able to inhibit target cell invasion in vitro and protection against P. falciparum experimental challenge is induced when non-human primates are immunized with this protein expressed in its recombinant form. This study describes identifying and characterizing RAP1 in Plasmodium vivax, the most widespread parasite species causing malaria in humans, producing more than 80 million infections yearly, mainly in Asia and Latin America. This new protein is encoded by a two-exon gene, is proteolytically processed in a similar manner to its falciparum homologue and, as observed by microscopy, the immunofluorescence pattern displayed is suggestive of its rhoptry localization. Further studies evaluating P. vivax RAP1 protective efficacy in non-human primates should be carried out taking into account the relevance that its P. falciparum homologue has as an anti-malarial vaccine candidate.  相似文献   

9.
Antibodies to polymorphic antigens expressed during the parasites erythrocytic stages are important mediators of protective immunity against P. falciparum malaria. Therefore, polymorphic blood stage antigens like MSP3, EBA-175 and GLURP and variant surface antigens PfEMP1 and RIFIN are considered vaccine candidates. However, to what extent these antibodies to blood stage antigens are acquired during naive individuals' first infections has not been studied in depth. Using plasma samples collected from controlled experimental P. falciparum infections we show that antibodies against variant surface antigens, PfEMP1 and RIFIN as well as MSP3 and GLURP, are acquired during a single short low density P. falciparum infection in non-immune individuals including strain transcendent PfEMP1 immune responses. These data indicate that the immunogenicity of the variant surface antigens is similar to the less diverse merozoite antigens. The acquisition of a broad and strain transcendent repertoire of PfEMP1 antibodies may reflect a parasite strategy of expressing most or all PfEMP1 variants at liver release optimizing the likelihood of survival and establishment of chronic infections in the new host.  相似文献   

10.
The 110 kDa/Rhop-3 rhoptry protein of Plasmodium falciparum is non-covalently associated with two other proteins, the 140 kDa Rhop-1 and the 130 kDa Rhop-2. cDNAs encoding Rhop-3 from Plasmodium yoelii were isolated using rhoptry-specific antisera from Plasmodium falciparum, P. yoelii, and Plasmodium chabaudi. The cDNAs encoded peptides with partial homology to the C-terminal region (residues 541-861) of P. falciparum Rhop-3. Core regions of homology to the P. falciparum gene will be useful in determining the biological role of Rhop-3 and its potential as a vaccine candidate for malaria.  相似文献   

11.
Multiplication of the human malaria parasite Plasmodium falciparum within red blood cells is an energy-dependent process and glucose consumption increases dramatically in infected red blood cells (IRBC) versus normal red blood cells (NRBC). The major pathway for glucose metabolism in P. falciparum IRBC is anaerobic glycolysis. Phosphoglycerate kinase (PGK) is one of the key enzymes of this pathway as it generates ATP. We found that the PGK specific activity in P. falciparum IRBC is seven times higher than that in NRBC. The parasitic origin of the increase in PGK activity is confirmed by isoelectric focusing. Indeed, two P. falciparum isoenzymes with neutral isoelectric points were detected. P. falciparum PGK in purified form has a molecular mass of 48 kDa. Antiserum raised against purified P. falciparum PGK specifically recognizes the 48-kDa protein band in P. falciparum and also reacts with P. berghei and P. yoelii IRBC lysates but does not cross-react with PGK associated with NRBC.  相似文献   

12.
Passive immunization against murine malaria with an IgG3 monoclonal antibody   总被引:31,自引:0,他引:31  
Spleen cells of BALB/c mice that were immune to the 17X strain of P. yoelii were fused with P3X63Ag8 myeloma cells. Two hundred fifty-three of 1053 hybrid cells produced antibodies reactive with disrupted 17X parasites in a solid phase radioimmunoassay. One of these antibodies, McAb 302, reacted with the merozoites of the 17X (nonlethal) and 17XL (lethal) variants of P. yoelii. Of greater significance, McAb 302 passively protected mice against challenge infection with the lethal variant. Mice treated with this antibody before infection developed low-grade parasitemia (less than 0.3%) of short duration when challenged with P. yoelii 17XL . In contrast, control mice that had been untreated or injected with ascites fluid lacking McAb 302 uniformly died with fulminating malaria upon challenge with the same parasite. In other experiments, McAb 302 was shown capable of controlling blood parasite levels when administered to mice with patent P. yoelii 17XL infections. Although all control mice died, mice protected with a single dose of McAb 302 ultimately cleared their infections. Regardless of how passive immunization was performed, mice given McAb 302 were resistant to subsequent challenge with P. yoelii 17XL , indicating they had developed significant immunity during their initial controlled infections. McAb 302 also showed pronounced passive protective activity against the nonlethal 17X strain of P. yoelii, which is a parasite of reticulocytes. The protection afforded by McAb 302 was specific, because mice passively immunized with this antibody died when challenged with the unrelated P. vinckei. McAb 302 was shown to possess the IgG3 isotype and precipitated a 230-kd protein plus several smaller polypeptides from metabolically labeled parasite antigen preparation derived from both variants of P. yoelii. It did not react with similar preparations of other murine plasmodial species.  相似文献   

13.
The C-terminal region of Plasmodium falciparum merozoite surface protein 1 (MSP-119) is at present a leading malaria vaccine candidate. Antibodies against the epidermal growth factor-like domains of MSP-1 19are associated with immunity to P. falciparum and active immunization with recombinant forms of the molecule protect against malaria challenge in various experimental systems. These findings, with the knowledge that epidermal growth factor-like domains in other molecules have essential binding functions, indicate the importance of this protein in merozoite invasion of red blood cells. Despite extensive molecular epidemiological investigations, only limited sequence polymorphism has been identified in P. falciparum MSP-119 (refs. 9-11). This indicates its sequence is functionally constrained, and is used in support of the use of MSP-119 as a vaccine. Here, we have successfully complemented the function of most of P. falciparum MSP-119 with the corresponding but highly divergent sequence from the rodent parasite P. chabaudi. The results indicate that the role of MSP-119 in red blood cell invasion is conserved across distantly related Plasmodium species and show that the sequence of P. falciparum MSP-119 is not constrained by function.  相似文献   

14.
Four Plasmodium species cause malaria in humans, Plasmodium falciparum being the most widely studied to date. All Plasmodium species have paired club-shaped organelles towards their apical extreme named rhoptries that contain many lipids and proteins which are released during target cell invasion. P. falciparum RhopH3 is a rhoptry protein triggering important immune responses in patients from endemic regions. It has also been shown that anti-RhopH3 antibodies inhibit in vitro invasion of erythrocytes. Recent immunisation studies in mice with the Plasmodium yoelii and Plasmodium berghei RhopH3 P. falciparum homologue proteins found that they are able to induce protection in murine models. This study described identifying and characterising RhopH3 protein in Plasmodium vivax; it is encoded by a seven exon gene and expressed during the parasite's asexual stage. PvRhopH3 has similar processing to its homologue in P. falciparum and presents a cellular immunolocalisation pattern characteristic of rhoptry proteins.  相似文献   

15.
The merozoite is the invasive stage of the malaria parasite which is released by rupture of the schizont-infected erythrocyte. A monoclonal antibody against a 140 kilodalton (kDa) merozoite surface antigen of Plasmodium knowlesi was used to characterize and to purify this antigen. It was shown by pulse-chase metabolic labeling of mature schizonts that the 140 kDa merozoite antigen was the processed product of a 143 kDa schizont component, and that processing occurred at the time of erythrocyte rupture. Antiserum, prepared by immunizing a rabbit with the 143/140 kDa antigen purified by immunoaffinity chromatography with the monoclonal antibody, strongly inhibited invasion of erythrocytes in vitro; Fab fragments prepared from purified rabbit IgG were inactive at blocking invasion, suggesting that agglutination of merozoites was the mechanism of invasion inhibition. The purified 143/140 kDa antigen was used in Freund's adjuvant to immunize four rhesus monkeys. Two of the immunized animals developed fulminating infections on challenge with 10(4) schizonts, as did the three control animals. The remaining two immunized animals controlled their infections and developed chronic low-grade parasitemias. The animals which were partially protected were those that had developed anti-143/140 kDa antibodies capable of blocking invasion in vitro. Parasites were isolated from the chronic stage of infection (V5 population) and were compared with the original parasite population used for challenge (P population). Inhibition of invasion, immunofluorescence, and immunoprecipitation with anti-143/140 kDa monoclonal antibody, with immune rabbit, and with monkey sera showed that the 143/140 kDa surface antigen had been replaced by multiple cross-reacting alternate antigenic forms of the molecule in the V population. Thus, specific immune response directed against a purified merozoite surface antigen resulted in the replacement of this antigen by variant or mutant forms.  相似文献   

16.
Malaria is a major global health problem for which effective control measures are urgently needed. Considerable effort has been focused on the development of effective vaccines against the causative parasite and protective vaccine trials are now being reported. Due to the relative poverty and lack of infrastructure in malaria-endemic areas, a successful immunisation strategy will depend critically on cheap and scaleable methods of vaccine production, distribution and delivery. One promising technology is transgenic plants, both as a bioreactor for the vaccine-manufacturing process as well as a matrix for oral immunisation. In this study, we investigated the feasibility of using transgenic plants to induce protective immunity against malaria infection using Plasmodium yoelii merozoite surface protein 4/5 (PyMSP4/5) in a mouse model of malaria infection. Our data show that the PyMSP4/5 protein can be produced in plants in a configuration that reacts with protective antibodies. Optimisation of codon usage for the PyMSP4/5 gene resulted in significantly increased antigen expression in plants. PyMSP4/5 protein from the codon-optimised construct accumulated to 0.25% of total soluble protein, a sixfold increase over the native gene sequence. Tobacco-made PyMSP4/5 was able to induce antigen-specific antibodies in mice following parenteral delivery, as well as boost the antibody responses induced by DNA vaccination when delivered parenterally or orally. We believe this is the first report to show that plant-made malaria antigens are immunogenic. However, the antibody levels were not high enough to protect the immunised mice against a lethal challenge with P. yoelii. Further strategies are needed to achieve a protective dose, including improvements to antigen expression levels in plants and strategies to enhance the immunogenicity of the expressed antigen.  相似文献   

17.
The 235-kDa antigenic rhoptry protein Py235 of Plasmodium yoelii is encoded by a large, highly polymorphic gene family. Monoclonal antibodies to some of these antigens have been shown to attenuate the virulence of the lethal YM strain of the parasite, converting a potentially fatal YM infection to a fulminating one typical of the nonlethal 17X strain, by inducing a switch in target cell preference from mature red blood cells to reticulocytes. The reason for this is not known but would suggest that antigenic determinants of Py235 may be useful in or as subunit vaccines. To identify such determinants, we constructed an epitope expression library of one Py235 variant and screened the library with the antibodies. Thus, we mapped 5- and 12-amino acid epitopes to the C-terminus of the antigen. Both epitopes were more reactive with protective than with nonprotective monoclonal antibodies. This may explain the differential protection conferred by these antibodies upon their passive transfer into mice.  相似文献   

18.
Recent insights into humoral and cellular immune responses against malaria   总被引:1,自引:0,他引:1  
Effective immunity to malaria has been clearly demonstrated among individuals naturally exposed to malaria, and can be induced by experimental infections in animals and humans. The large number of malaria antigens has presented a major challenge to identifying protective responses and their targets, and it is likely that robust immunity is mediated by responses to multiple antigens. These include merozoite surface antigens and invasion ligands, variant antigens on the surface of parasitized red blood cells, in addition to sporozoite and liver-stage antigens. Immunity seems to require humoral and cellular immune components, probably in co-operation, although the relative importance of each remains unclear. This review summarizes recent progress towards understanding the targets and mechanisms that are important for mediating immunity to malaria.  相似文献   

19.
One of the primary strategies for malaria vaccine development has been to design subunit vaccines that induce protective levels of antibodies against the circumsporozoite (CS) protein of malaria sporozoites. In the Plasmodium yoelii mouse model system such vaccines have been uniformly unsuccessful in protecting against sporozoite-induced malaria. To demonstrate that antibodies to P. yoelii CS protein could provide protection we established a passive transfer model. Passive transfer of Navy yoelii sporozoite 1 (NYS1), an IgG3 mAb against the P. yoelii CS protein, protected 100% of mice against challenge with 5000 P. yoelii sporozoites. Binding of NYS1 to sporozoites was inhibited by incubation with (QGPGAP)2, a synthetic peptide derived from the repeat region of the P. yoelii CS protein, indicating that the epitope on sporozoites recognized by this mAb was included within this peptide. The levels of antibodies to (QGPGAP)2 by ELISA, and to sporozoites by indirect fluorescent antibody test and CS precipitation reaction were similar in sera from mice that received NYS1 in passive transfer and were protected against challenge with 5000 sporozoites, and from mice that had been immunized with subunit vaccines containing (QGPGAP)2 but were not protected against challenge with 40-200 sporozoites. To determine if antibody avidity, not absolute concentration could explain the striking differences in protection, we established a thiocyanate elution assay. The results suggest that NYS1, the protective mAb, has a lower avidity for (QGPGAP)2 and for sporozoites than do the vaccine-induced antibodies. Although the results of the conventional antibody assays did not correlate with protection, sera from the protected animals inhibited sporozoite development in mouse hepatocyte cultures significantly more than did the sera from the unprotected, subunit vaccine-immunized animals, correlating with protection. The data clearly demonstrate that antibodies to the CS protein can protect against intense sporozoite infection. Improved understanding of the differences between protective mAb and nonprotective polyclonal antibodies will be important in the further development of malaria vaccines.  相似文献   

20.
Plasmodium vivax is one of the most widely distributed human malaria parasites and due to drug-resistant strains, its incidence and prevalence has increased, thus an effective vaccine against the parasites is urgently needed. One of the major constraints in developing P. vivax vaccine is the lack of suitable in vivo models for testing the protective efficacy of the vaccine. P. vivax and P. cynomolgi bastianelli are the two closely related malaria parasites and share a similar clinical course of infection in their respective hosts. The merozoite surface protein-1 (MSP-1) of these parasites has found to be protective in a wide range of host-parasite systems. P. vivax MSP-1 is synthesized as 200 kDa polypeptide and processed just prior to merozoite release from the erythrocytes into smaller fragments. The C- terminal 42 kDa cleavage product of MSP-1 (MSP-1(42)) is present on the surface of merozoites and a major candidate for blood stage malaria vaccine. In the present study, we have biochemically and immunologically characterized the soluble and refolded 42 kDa fragment of MSP-1 of P. vivax (PvMSP-1(42)) and P. cynomolgi B (PcMSP-1(42)). SDS-PAGE analysis showed that both soluble and refolded E. coli expressed P. vivax and P. cynomolgi B MSP-1(42) proteins were homogenous in nature. The soluble and refolded MSP-1(42) antigens of both parasites showed high reactivity with protective monkey sera and conformation-specific monoclonal antibodies against P. cynomolgi B and P. vivax MSP-1(42) antigens. Immunization of BALB/c mice with these antigens resulted in the production of high titres of cross-reactive antibodies primarily against the conformational epitopes of MSP-1(42) protein. The immune sera from rhesus monkeys. immunized with soluble and refolded MSP-1(42) antigens of both parasites also showed high titered cross-reactive antibodies against MSP-1(42) conformational epitopes. These results suggested that the soluble and refolded forms of E. coli expressed P. vivax MSP-1(42) antigens were highly immunogenic and thus a viable candidate for vaccine studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号