首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipid signaling molecule ceramide is formed by the action of acid and neutral sphingomyelinases and degraded by acid and neutral ceramidases. Short-term stimulation of mesangial cells with the pro-inflammatory cytokine interleukin-1beta (IL-1beta) leads to a rapid and transient increase in neutral sphingomyelinase activity (Kaszkin, M., Huwiler, A., Scholz, K., van den Bosch, H., and Pfeilschifter, J. (1998) FEBS Lett. 440, 163-166). In this study, we report on a second delayed peak of activation occurring after hours of IL-1beta treatment. This second phase of activation was first detectable after 2 h of treatment and steadily increased over the next 2 h, reaching maximal values after 4 h. In parallel, a pronounced increase in neutral ceramidase activity was observed, accounting for a constant or even decreased level of ceramide after long-term IL-1beta treatment, despite continuous sphingomyelinase activation. The increase in neutral ceramidase activity was due to expressional up-regulation, as detected by an increase in mRNA levels and enhanced de novo protein synthesis. The increase in neutral ceramidase protein levels and activity could be blocked dose- dependently by the p38 MAPK inhibitor SB 202190, whereas the classical MAPK pathway inhibitor U0126 and the protein kinase C inhibitor Ro 318220 were ineffective. Moreover, cotreatment of cells for 24 h with IL-1beta and SB 202190 led to an increase in ceramide formation. Interestingly, IL-1beta-stimulated neutral ceramidase activation was not reduced in mesangial cells isolated from mice deficient in MAPK-activated protein kinase-2, which is a downstream substrate of p38 MAPK, thus suggesting that the p38 MAPK-mediated induction of neutral ceramidase occurs independently of the MAPK-activated protein kinase-2 pathway. In summary, our results suggest a biphasic regulation of sphingomyelin hydrolysis in cytokine-treated mesangial cells with delayed de novo synthesis of neutral ceramidase counteracting sphingomyelinase activity and apoptosis. Neutral ceramidase may thus represent a novel cytoprotective enzyme for mesangial cells exposed to inflammatory stress conditions.  相似文献   

2.
Interleukin-1 beta (IL-1beta) is an important regulator of the thyroid cell function. This cytokine has been largely described to trigger an important biological signaling cascade: the sphingomyelin/ceramide pathway. In this report, we show that IL-1beta induces the transient activation of a neutral sphingomyelinase in porcine thyroid cells. Moreover, IL-1beta and ceramides are demonstrated to inhibit the TSH-induced cAMP production via the implication of alphaGi subunit of the adenylyl cyclase system. This crosstalk between cAMP and ceramide pathways constitutes a preponderant process in the TSH-controlled differentiation state of thyrocytes. All these results argue for the involvement of ceramides and IL-1beta in the thyroid function regulation, leading to a cell dedifferentiated state.  相似文献   

3.
Involvement of the sphingomyelin cascade in Interleukin 1 beta (IL-1) signal transduction pathway in membrane fraction P2 of the murine brain cortex, was found. A key role of the membrane enzyme neutral sphingomyelinase (nSMase) in triggering the sphingomyelin pathway for IL-1 beta, was confirmed. The IL-1 beta was shown to activate in a dose-dependent manner nSMase in the P2 fraction of the brain cortex. Employment of both brain cortex membranes from the mice deficient in the type I IL-1 receptor and of IL-1 receptor antagonist made it possible to obtain evidence on the necessity of the IL-1 beta binding to the type I IL-1 receptor for the nSMase activation. It appears that the IL-1 beta effects on the CNS are realized via IL-1 receptor type I and activation of the nSMase as an initiating enzyme of the sphingomyelin cascade.  相似文献   

4.
The changes in the functional activities of sphingomyelinase and phospholipase C from rat liver cell plasma membranes were studied in postnatal ontogenesis in the presence of thyroxin and mercasolyl. It was found that endogenous phospholipases of plasma membranes control of phospholipid content in rat liver cells. The sphingomyelinase activity is under control of thyroid hormones, whereas that of phospholipase C which is phosphatidyl choline-specific, is unaffected by them. The data obtained testify to the possible involvement of diacylglycerols formed via enzymatic hydrolysis of phosphatidylcholine, in the regulation of the sphingomyelinase activity.  相似文献   

5.
Interleukin-1beta (IL-1beta) is a potent negative inotrope implicated in the functional abnormalities of heart failure. Because the adipokine, leptin, protects against some of the cardiovascular effects of endotoxin, we hypothesized that leptin may modulate the cardiosuppressive effects of IL-1beta in isolated cardiomyocytes. Ventricular cardiac myocytes isolated from adult male Sprague Dawley rats were analyzed simultaneously for electrically stimulated contractility and calcium transients following 30 min exposure to IL-1beta (10 ng/ml) with or without 60 min pretreatment with leptin (25 ng/ml). IL-1beta decreased cell shortening, depressed maximal velocities of shortening and relengthening, and prolonged the time to 90% relaxation. The change in fura2-AM fluorescence ratio amplitude (Delta[Ca(2+)]) was significantly depressed and the time to return to baseline [Ca(2+)] was prolonged. The negative inotropic effects of IL-1beta were blocked by the neutral sphingomyelinase inhibitor Manumycin A (5 microM) or the ceramidase inhibitor N-oleoyl ethanolamine (1 microM). Prior exposure of myocytes to leptin blocked IL-1beta-induced cardiosuppression in conjunction with a blunting of IL-1beta stimulated ceramide accumulation. These data suggest that leptin may modulate IL-1beta signaling through the sphingolipid signaling pathway in cardiomyocytes.  相似文献   

6.
Interleukin 1 beta (IL-1beta) is often associated with thyroidal autoimmune diseases. This cytokine has been largely described to trigger an important biological signalling pathway: the sphingomyelin/ceramide pathway. In this report we show that IL-1beta induces ceramide formation and sphingomyelin degradation in porcine thyroid cells via the activation of a neutral sphingomyelinase. Among the potential targets of IL-1beta and ceramides action, we have investigated the role of an atypical protein kinase C (PKC), the PKC zeta. We show that both IL-1beta and ceramides lead to an increase of PKCzeta activity. All these results suggest an important role for ceramides and IL-1beta in regulation of thyroid function, leading to cell survival or to apoptosis.  相似文献   

7.
The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes.  相似文献   

8.
The cytokine interleukin 1beta (IL-1beta) plays an important role in host defence reactions and neuro-immune interactions but it is still not clear which of the two interleukin 1 receptor subtypes is coupled to activation of neutral sphingomyelinase (nSMase) by IL-1beta. To investigate involvement of neutral sphingomyelinase (nSMase) in central IL-1beta effects we used P(2)fractions of brain cerebral cortex from wild-type mice and mice deficient in the type 1 IL-1 receptor. IL-1beta (human, recombinant) was shown to activate, in a dose-dependent manner, nSMase in the P(2)brain fraction of the wild-type mice while in the knock-out mice the stimulatory effect of IL-1beta on nSMase was absent. In the presence of an IL-1 receptor antagonist (IL-1ra), IL-1beta did not activate nSMase either in the cortex of wild-type or knock-out mice. These data suggest that nSMase, a key enzyme of the sphingomyelin signal transduction pathway, might be involved in IL-1beta signalling in the brain and that activation of the enzyme requires the IL-1 receptor type 1.  相似文献   

9.
The possibility that the sphingomyelin (SM)-ceramide pathway is activated by CD40, a transmembrane glycoprotein belonging to the tumor necrosis factor receptor superfamily and that plays a critical role in the regulation of immune responses has been investigated. We demonstrate that incubation of Epstein-Barr virus-transformed lymphoid cells with an anti-CD40 antibody acting as an agonist results in the stimulation of a neutral sphingomyelinase, hydrolysis of cellular SM, and concomitant ceramide generation. In addition, SM degradation was observed in acid sphingomyelinase-deficient cells, as well as after ligation by soluble CD40 ligand. The anti-CD40 antibody, as well as the soluble CD40 ligand induced a decrease in thymidine incorporation and morphological features of apoptosis, which were mimicked by cell-permeant or bacterial sphingomyelinase-produced ceramides. Stable expression of a dominant-negative form of the FAN protein (factor associated with neutral sphingomyelinase activation), which has been reported to mediate tumor necrosis factor-induced activation of neutral sphingomyelinase, significantly inhibited CD40 ligand-induced sphingomyelinase stimulation and apoptosis of transformed human fibroblasts. Transformed fibroblasts from FAN knockout mice were also protected from CD40-mediated cell death. Finally, anti-CD40 antibodies were able to co-immunoprecipitate FAN in control fibroblasts but not in cells expressing the dominant-negative form of FAN, indicating interaction between CD40 and FAN. Altogether, these results strongly suggest that CD40 ligation can activate via FAN a neutral sphingomyelinase-mediated ceramide pathway that is involved in the cell growth inhibitory effects of CD40.  相似文献   

10.
The vascular endothelium acutely autoregulates blood flow in vivo in part through unknown mechanosensing mechanisms. Here, we report the discovery of a new acute mechanotransduction pathway. Hemodynamic stressors from increased vascular flow and pressure in situ rapidly and transiently induce the activity of neutral sphingomyelinase but not that acid sphingomyelinase in a time- and flow rate-dependent manner, followed by the generation of ceramides. This acute mechanoactivation occurs directly at the luminal endothelial cell surface primarily in caveolae enriched in sphingomyelin and neutral sphingomyelinase, but not acid sphingomyelinase. Scyphostatin, which specifically blocks neutral but not acid sphingomyelinase, inhibits mechano-induced neutral sphingomyelinase activity as well as downstream activation of extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK2) by increased flow in situ. We postulate a novel physiological function for neutral sphingomyelinase as a new mechanosensor initiating the ERK cascade and possibly other mechanotransduction pathways.  相似文献   

11.
The subcellular distribution of neutral sphingomyelinase activity has been determined in rat liver. Neutral sphingomyelinase is present in the plasma membrane. This enzyme requires either Mg2+ or Mn2+ for full activity; these cations cannot be replaced by Co2+ or Ca2+. The plasma membrane sphingomyelinase is strongly inhibited by Hg2+. A small amount of neutral spingomyelinase activity appears to be present in microsomes. No neutral sphingomyelinase activity is present in liver mitochondria or bytosol. Lysosomal sphingomyelinase is fully active at pH 4.4--4.8 without added divalent cations. However, between pH 5.0 and 7.5 lysosomal sphingomyelinase activity is stimulated by Mg2+, Mn2+, Co2+, and Ca2+. Below pH 4.8, Mg2+ inhibits the reaction. In contrast to the results obtained with the neutral sphingomyelinase activity of plasma membranes and microsomes, lysosomal sphingomyelinase is unaffected by sulfhydryl inhibitors.  相似文献   

12.
Cultured murine neuroblastoma cells contain a neutral, Mg2+-stimulated sphingomyelinase and an alkaline phosphatidylcholine-hydrolyzing activity that are enriched in the plasma membrane fraction. The reaction products of sphingomyelin catabolism are phosphocholine and ceramide and those of phosphatidylcholine, glycerophosphocholine and fatty acid. These reactions were studied with endogenous as well as exogenous liposomal substrates. With both exogenous and endogenous substrates, the sphingomyelinase activity was stimulated two- to threefold by Mg2+ and a further three- to fourfold by volatile anesthetic agents. Stimulation was concentration-dependent and corresponded to anesthetic potency: methoxyflurane greater than halothane greater than enflurane. Greater than 80% of the plasma membrane sphingomyelin was hydrolyzed within 2 h in the presence of Mg2+ and anesthetic. In contrast, the activity with exogenous and endogenous phosphatidylcholine was unaffected by Mg2+ or Ca2+ and was markedly inhibited (50-80%) by anesthetic agents. The degree of inhibition was concentration-dependent and corresponded to anesthetic potency. The quantitative importance of choline-containing lipids in cell membranes, the relatively exclusive localization of the neutral Mg2+-stimulated sphingomyelinase in cells of neural origin, the totally different type of hydrolytic attack on phosphatidylcholine, and the reciprocal effects of anesthetics on the hydrolysis of these two lipids strongly suggest important roles for these activities in cell membranes in general and in the neuron in particular.  相似文献   

13.
14.
In this work, the specificity of ubiquinol as inhibitor of the neutral sphingomyelinases present at the plasma membrane (Mg(2+)-dependent and -independent) and structural requirements for such inhibition have been studied. Our results have shown that ubiquinol specifically inhibits Mg(2+)-dependent neutral sphingomyelinase activity in isolated liver plasma membranes, but no significant participation of the Mg(2+)-independent enzyme was observed. Both the reduction state of the (hydro)quinone ring and the length of the hydrophobic side chain were important determinants in neutral sphingomyelinase inhibition. Ubiquinols inhibited the nSMase more efficiently than ubiquinones, and hydrophobic homologs with six or nine isoprene units were the most effective inhibitors. Inhibition of nSMase by ubiquinols displayed similarities with inhibition by manumycin and the hydroquinones F11334's, suggesting that these compounds could act as structural analogs of ubiquinol. Beyond its participation in mitochondrial energy metabolism, and as antioxidant, this novel role for ubiquinol as a neutral sphingomyelinase inhibitor should be considered an important factor to regulate lipid signaling at the plasma membrane that could be related to its beneficial effects on cells, tissues, and organisms.  相似文献   

15.
Beta toxin is a neutral sphingomyelinase secreted by certain strains of Staphylococcus aureus. This virulence factor lyses erythrocytes in order to evade the host immune system as well as scavenge nutrients. The structure of beta toxin was determined at 2.4-Å resolution using crystals that were merohedrally twinned. This structure is similar to that of the sphingomyelinases of Listeria ivanovii and Bacillus cereus. Beta toxin belongs to the DNase I folding superfamily; in addition to sphingomyelinases, the proteins most structurally related to beta toxin include human endonuclease HAP1, Escherichia coli endonuclease III, bovine pancreatic DNase I, and the endonuclease domain of TRAS1 from Bombyx mori. Our biological assays demonstrated for the first time that beta toxin kills proliferating human lymphocytes. Structure-directed active site mutations show that biological activities, including hemolysis and lymphotoxicity, are due to the sphingomyelinase activity of the enzyme.  相似文献   

16.
Tetanus toxin (TeTx) is the protein, synthesized by the anaerobic bacteria Clostridium tetani, which causes tetanus disease. TeTx gains entry into target cells by means of its interaction with lipid rafts, which are membrane domains enriched in sphingomyelin and cholesterol. However, the exact mechanism of host membrane binding remains to be fully established. In the present study we used the recombinant carboxyl terminal fragment from TeTx (Hc-TeTx), the domain responsible for target neuron binding, showing that Hc-TeTx induces a moderate but rapid and sustained increase in the ceramide/sphingomyelin ratio in primary cultures of cerebellar granule neurons and in NGF-differentiated PC12 cells, as well as induces the formation of ceramide platforms in the plasma membrane. The mentioned increase is due to the promotion of neutral sphingomyelinase activity and not to the de novo synthesis, since GW4869, a specific neutral sphingomyelinase inhibitor, prevents neutral sphingomyelinase activity increase and formation of ceramide platforms. Moreover, neutral sphingomyelinase inhibition with GW4869 prevents Hc-TeTx-triggered signaling (Akt phosphorylation), as well as the protective effect of Hc-TeTx on PC12 cells subjected to oxidative stress, while siRNA directed against nSM2 prevents protection by Hc-TeTx of NSC-34 cells against oxidative insult. Finally, neutral sphingomyelinase activity seems not to be related with the internalization of Hc-TeTx into PC12 cells. Thus, the presented data shed light on the mechanisms triggered by TeTx after membrane binding, which could be related with the events leading to the neuroprotective action exerted by the Hc-TeTx fragment.  相似文献   

17.
A neutral sphingomyelinase in spermatozoal plasma membranes   总被引:2,自引:0,他引:2  
A highly active neutral sphingomyelinase was observed for the first time in ram spermatozoal plasma membranes. The optimal conditions for the enzyme activity are pH 7.4, 40 mM MgCl2, 40 min of incubation, and 267 nmol sphingomyelin. Ca2+ and cholesterol were found to inhibit sphingomyelinase activity.  相似文献   

18.
Stress influences of different duration and intensity induce production of a lymphocyte-activating factor (LAF) by murine peritoneal macrophages, and enhancement of Interleukin 1 (IL-1) level in the murine blood, inducing no alterations in the thymocyte reaction to concomitant action of the IL-1 beta which correlates with changes in the value of humoral immune response. The data obtained are in agreement with differently aimed stress-induced alterations in the activity of the membrane neutral sphingomyelinase: the key enzyme of the sphingomyelin cascade, in the membrane P2 fraction of the brain cortex. The IL-1 seems to participate in physiological mechanisms of realisation of stress reactions on the levels of its production and biological action on target cells as well as of the sphingomyelin pathway of its signal transduction in nerve tissue.  相似文献   

19.
Summary.  Sphingomyelin is an abundant constituent of the plasma membranes of mammalian cells. Ceramide, its primary catabolic intermediate, has emerged as an important lipid signaling molecule. Previous work carried out by our group has documented that plasma membrane Mg2+-dependent neutral sphingomyelinase can be effectively inhibited by exogenous ubiquinol. In this work, we have tested whether or not plasma-membrane-associated electron transport can also achieve this inhibition through endogenous ubiquinol. Our results have shown that Mg2+-dependent neutral sphingomyelinase in isolated plasma membranes was inhibited by NAD(P)H under conditions where ubiquinone is reduced to ubiquinol. This inhibition was potentiated in the presence of an extra amount of NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2). Depletion of plasma membranes from lipophilic antioxidants by solvent extraction abolished the inhibition by reduced pyridine nucleotides without affecting the sensitivity of the neutral sphingomyelinase to exogenous ubiquinol. Reconstitution of plasma membranes with ubiquinone restored the ability of NAD(P)H to inhibit the enzyme. Our results support that the reduction of endogenous ubiquinone to ubiquinol by NAD(P)H-driven electron transport may regulate the activity of the plasma membrane neutral sphingomyelinase. Received May 20, 2002; accepted September 20, 2002; published online May 21, 2003 RID="**" ID="**" Present address: Department of Biomedical Engineering, School of Medicine, University of Baltimore, Maryland, U.S.A. RID="*" ID="*" Correspondence and reprints: Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Edificio C-6, Campus Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain.  相似文献   

20.
D H Petkova  A B Momchilova  K S Koumanov 《Biochimie》1986,68(10-11):1195-1200
Investigations have been carried out on the influence of the phospholipid composition of rat liver plasma membranes and of their physico-chemical properties on the activity of membrane-bound neutral sphingomyelinase. The membrane phospholipid composition was modified by the incorporation of different phospholipids into the membrane bilayer by means of lipid transfer proteins, n-butanol delipidation or exogenous sphingomyelinase (Staphylococcus aureus) treatment. The results indicate that the activity of neutral sphingomyelinase in liver plasma membranes depends upon phosphatidyl choline presence in the membrane bilayer and not upon membrane fluidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号