首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations in neostriatal dopamine metabolism, release, and biosynthesis were determined 3, 5, or 18 days following partial, unilateral destruction of the rat nigrostriatal dopamine projection. Concentrations of dopamine and each of its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 3-methoxytyramine (3-MT) were markedly decreased in the lesioned striata at 3, 5, or 18 days postoperation. The decline in striatal high-affinity [3H]dopamine uptake closely matched the depletion of dopamine at 3 and 18 days postoperation. However, neither DOPAC, HVA, nor 3-MT concentrations were decreased to as great an extent as dopamine at any time following lesions that depleted the dopamine innervation of the striatum by greater than 80%. In these more severely lesioned animals, dopamine metabolism, estimated from the ratio of DOPAC or HVA to dopamine, was increased two- to four-fold in the injured hemisphere compared with the intact hemisphere. Dopamine release, estimated by the ratio of 3-MT to dopamine, was more increased, by five- to sixfold. Importantly, the HVA/dopamine, DOPAC/dopamine, and 3-MT/dopamine ratios did not differ between 3 and 18 days postlesioning. The rate of in vivo dopamine biosynthesis, as estimated by striatal DOPA accumulation following 3,4-dihydroxyphenylalanine (DOPA) decarboxylase inhibition with NSD 1015, was increased by 2.6- to 2.7-fold in the surviving dopamine terminals but again equally at 3 and 18 days postoperation. Thus, maximal increases in dopamine metabolism, release, and biosynthesis occur rapidly within neostriatal terminals that survive a lesion. This mobilization of dopaminergic function could contribute to the recovery from the behavioral deficits of partial denervation by increasing the availability of dopamine to neostriatal dopamine receptors. However, these presynaptic compensations are not sufficient to account for the protracted (at least 3-week) time course of sensorimotor recovery that has been observed following partial nigrostriatal lesion.  相似文献   

2.
The rate of removal of 3,4-dihydroxyphenylacetic acid (DOPAC) in nine rat brain areas (striatum, nucleus accumbens, tuberculum olfactorium, hypothalamus, lateral hippocampus, occipital cortex, brain stem, cerebellum, and retina) was calculated from its exponential decline after monoamine oxidase inhibition by pargyline. The experiments were carried out with rats pretreated with either saline or haloperidol. It appeared that the efficiency with which DOPAC was removed from the brain (expressed by the fractional rate constant k) varied considerably throughout the brain. Haloperidol dramatically decreased the k values, and in addition these effects differed widely in the various brain areas. Similarly to DOPAC, haloperidol had a pronounced retarding effect on the efflux of homovanillic acid (HVA) from the brain. These findings strongly suggest that great care should be taken when drug-induced alterations in DOPAC and HVA concentrations are interpreted as changes in dopaminergic activity. The dopamine (DA) concentrations were measured in the same experiments, but it appeared that the pargyline-induced rise in DA was of limited use for the estimation of the synthesis rate of the amine. We calculated the rate of catecholamine synthesis in the nine brain areas from the rise of 3,4-dihydroxyphenylalanine (DOPA) during decarboxylase inhibition. In saline- as well as in haloperidol-pretreated rats it was found that the total catecholamine synthesis rate in the typical dopaminergic areas (striatum, nucleus accumbens, and tuberculum olfactorium) was of the same order of magnitude as the DOPAC rate of removal. This confirms that DOPAC formation is quantitatively the main route of degradation in these brain areas.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Dopamine Sulfoconjugation in the Rat Brain: Regulation by Monoamine Oxidase   总被引:2,自引:2,他引:0  
An increase of free 3,4-dihydroxyphenylethylamine (DA, dopamine) in the rat brain such as is found following 3,4-dihydroxyphenylalanine (L-DOPA) administration or an intraventricular injection of free dopamine did not result in DA sulfate formation, despite the presence of phenolsulfotransferase activity in various regions of the brain and the high affinity of DA for this enzyme. However, when rats were pretreated with pargyline, a monoamine oxidase inhibitor, the same treatment with L-DOPA or free DA led to active synthesis of DA sulfate. The increase in DA sulfate was significantly correlated with the degree of monoamine oxidase inhibition and directly proportional to free DA concentrations in the hypothalamus (r = 0.86), striatum (r = 0.54), and brainstem (r = 0.89). The highest ratio of DA sulfate to free DA was found in the hypothalamus, suggesting that sulfoconjugation is most active in this region. Prior treatment of rats with 6-hydroxydopamine did not decrease DA sulfate concentrations, indicating that sulfoconjugation occurs most likely in extraneuronal tissues not destroyed by the neurotoxin. The results are compatible with the notion that phenolsulfotransferase may be highly compartmentalized and that inhibition of monoamine oxidase allows the newly generated free DA to become accessible to the sulfoconjugating enzyme, resulting in increase in DA sulfation.  相似文献   

4.
Abstract: Levodopa was infused under various circumstances of pretreatment into the ear veins of unanesthetized rabbits. Concentrations of neostriatal dopamine formed in response to levodopa administration were determined. The aim was to characterize the temporal relationship between the concentrations of levodopa in plasma and dopamine in the neostriatum. When plasma levodopa was maintained constant by i.v. infusion, the concentration of neostriatal dopamine reached a plateau by 1 h. Increases in dopamine were proportional to the amount of precursor in plasma. The tissue half-life of this dopamine in normal rabbits was not more than 15 min. Half-lives of comparable duration for striatal dopamine were calculated from rabbits treated chronically with levodopa, and from rabbits with monoamine-depleting lesions. The results show that the concentration of dopamine in rabbit neostriatum correlates closely with the concentration of levodopa in plasma. Concurrent analyses of neocortical tissues indicate that the neostriatum may not be different from other brain regions with regard to dopamine storage mechanisms. Interpretation of the results in terms of the clinical use of levodopa suggests that the durations of short-term effects (measured in h) of the drugs are paralleled by changes in concentration of brain dopamine.  相似文献   

5.
Abstract: In rat striatal membranes, NaCl induced a twofold increase in the maximal number of cocaine binding sites but did not alter the affinity of these sites for cocaine. This effect was concentration-dependent, specific to sodium ions, and occurred in membranes prepared from corpus striatum but not from other brain regions. Lesions with 6-hydroxydopamine but not with kainic acid eliminated the sodium-induced increase in binding and produced a decrease in the Bmax of binding measured in the presence of NaCl. The capacity of a series of drugs to interfere with Na+–dependent cocaine binding correlated well with their capacity to inhibit [3H]dopamine uptake into rat striatal synaptosomes. The present results suggest that Na+–dependent cocaine binding sites are localized presynaptically on dopaminergic nerve terminals in corpus striatum, and may be related to dopamine uptake sites.  相似文献   

6.
Following administration of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 0.04-5.0 micrograms/0.5 microliter) in the raphe nucleus dorsalis (DR) or medianus (MR), the synthesis of serotonin (5-HT), as assessed by the accumulation of 5-hydroxytryptophan (5-HTP) after decarboxylase inhibition, was measured in various regions of the rat CNS. At all doses, 8-OH-DPAT in the DR significantly reduced 5-HTP accumulation in the striatum, nucleus accumbens, cortex, and prefrontal cortex, whereas even the highest dose had no effect in the hippocampus, hypothalamus, and spinal cord. One microgram of 8-OH-DPAT in the MR significantly reduced 5-HTP accumulation in the nucleus accumbens and prefrontal cortex, and 5 micrograms had an effect in all the areas except the striatum and spinal cord. One and 5 micrograms of 8-OH-DPAT, administered in either the DR or MR, did not significantly modify the accumulation of dihydroxyphenylalanine in the striatum and nucleus accumbens. The results confirm that DR and MR have different sensitivities to 5-HT1A receptor agonists, and that activation of 5-HT1A receptors in these nuclei produces different effects on 5-HT synthesis in different brain regions.  相似文献   

7.
After intraperitoneal injection of rats with 6-fluorotryptophan (6-FT), brain 5-hydroxytryptamine (5-HT) levels decreased exponentially over 1 h. Depletion was dose-dependent and maximum depletion was observed at 200 mg/kg. 6-FT (200 mg/kg) did not significantly alter the content of 5-hydroxyindoleacetic acid. Turnover rates of 5-HT obtained by the 6-FT and other methods were fairly consistent. 6-FT had little effect on the content of noradrenaline and dopamine. These data suggest that 6-FT completely inhibits tryptophan hydroxylase, in vivo, without affecting the release of 5-HT from 5-HT neurons and with little effect on the activities of tyrosine hydroxylase. Therefore, 6-FT is a good pharmacological tool for studying the turnover rate of 5-HT in the brain.  相似文献   

8.
The effects of hypoxia (10% O2, 90% N2) on the content, biosynthesis, and turnover of noradrenaline (NA) and 3,4-dihydroxyphenylethylamine (dopamine, DA) in the rat brain were examined. Up to 24 h following exposure to hypoxia, NA content in the whole brain was decreased, whereas DA content remained unchanged. The accumulation of 3,4-dihydroxyphenylalanine (DOPA) after central decarboxylase inhibition was decreased. The turnover rate of DA after synthesis inhibition was markedly decreased up to 8 h and returned to the control level within 24 h. In contrast, the turnover rate of NA was all but unchanged, except for a 4-h exposure. The 2-h exposure to the hypoxic environment resulted in a significant decrease in NA content and DOPA accumulation in all brain regions tested, but no significant change was observed in DA content. The turnover rate of DA was remarkably decreased in all brain regions tested, whereas the rate of NA was slightly decreased only in the cerebral cortex and hippocampus. These results suggest that although hypoxia decreases the biosynthesis of both NA and DA, the effects of oxygen depletion on the functional activities of NA neurons differ considerably from those of DA neurons: Only in the cerebral cortex and hippocampus are the NA neurons slightly sensitive to hypoxia, whereas the DA neurons are most sensitive in all brain regions.  相似文献   

9.
Turnover of dopamine (DA), serotonin [5-hydroxytryptamine (5-HT)], and their metabolites has been measured in adult and aged rats. Turnover rates of 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxy-3-indoleacetic acid (5-HIAA) have been assayed from the disappearance rates after blocking by pargyline inhibition of monoamine oxidase (MAO) and from the accumulation rates by probenecid inhibition of the probenecid-sensitive transport system. DA and 5-HT turnover rates have been measured as accumulation rates of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively, after central decarboxylase inhibition by 3-hydroxybenzylhydrazine (NSD-1015) and as accumulation rates of DA and 5-HT after pargyline inhibition of MAO. The DA turnover rate after NSD-1015 was 23.9% lower in aged rats than in adults, whereas after pargyline there was no significant difference between the two age groups. The HVA fractional rate constant and turnover after pargyline were lower in aged rats than in adults, and HVA turnover after probenecid was higher in aged rats than in adults. The DOPAC-HVA pathway seems to be reinforced at the expense of DOPAC conjugation. In aged and adult rats whose 5-HT steady-state levels were not statistically different, the 5-HT turnover rate after pargyline and NSD-1015 treatment was lower in aged rats than in adults. An increase of 5-HIAA levels after pargyline and probenecid treatment in aged rats could be due to the handling stress.  相似文献   

10.
Destruction of nigrostriatal dopamine (DA) neurons with 6-hydroxydopamine (6-OHDA) early in development results in hyperinnervation of striatum by the serotonergic afferents deriving from the dorsal raphe nucleus. We have used in vivo microdialysis to investigate the degree to which serotonergic neurotransmission in striatum is altered by this increase in the density of serotonin (5-HT) terminals. The effects of several manipulations known to influence 5-HT function on extracellular 5-HT and 5-hydroxyindoleacetic acid in striatum were compared in adult rats treated neonatally with 6-OHDA and in intact adult rats. Basal levels of 5-HT in extracellular fluid (ECF) of striatum were similar in neonatally DA-depleted rats and in intact rats. Perfusion with the 5-HT reuptake blocker, fluoxetine (100 microM), increased 5-HT in striatal ECF of neonatally DA-depleted rats to levels that were threefold greater than those achieved in intact rats. Likewise, K(+)-depolarization of the 5-HT terminals (100 mM in perfusate) or systemic administration of the 5-HT releaser, (+/-)-fenfluramine (10 mg/kg i.p.), increased the concentration of 5-HT in striatal ECF of neonatally DA-depleted rats to levels approximately threefold greater than those observed in striatum of intact rats. These findings indicate that the 5-HT hyperinnervation of striatum that takes place in rats depleted of DA at infancy is associated with an increased capacity for neurotransmitter release in this system. Concomitant increased in high-affinity 5-HT uptake may prevent the occurrence of any measurable changes in the resting concentration of 5-HT in striatal ECF.  相似文献   

11.
Dopamine Release in Rat Striatum: Physiological Coupling to Tyrosine Supply   总被引:2,自引:1,他引:1  
Intracerebral microdialysis was used to monitor dopamine release in rat striatal extracellular fluid following the intraperitoneal administration of dopamine's precursor amino acid, L-tyrosine. Dopamine concentrations in dialysates increased transiently after tyrosine (50-100 mg/kg) administration. Pretreatment with haloperidol or the partial lesioning of nigrostriatal neurons enhanced the effect of tyrosine on dopamine release, and haloperidol also prolonged this effect. These data suggest that nigrostriatal dopaminergic neurons are responsive to changes in precursor availability under basal conditions, but that receptor-mediated feedback mechanisms limit the magnitude and duration of this effect.  相似文献   

12.
Abstract: Formation of 6-hydroxydopamine (6-OHDA) from dopamine has been hypothesized to mediate neuro-degeneration induced by some psychostimulants. Although the emergence of a 6-OHDA-like substance was reported in the striatum of methamphetamine-treated rats, this substance has not been identified by a direct approach. We used mass fragmentography to search for 6-OHDA in the rat frontal cortex and striatum after the administration of a number of drugs including 3,4-dihy-droxyphenyl-L-alanine, methamphetamine, amphetamine, and cocaine, all of which increase synaptic dopamine. No 6-OHDA was detected after the acute systemic administration of these agents. Intraventricular administration of 6-OHDA (10 μg/rat.) produced measurable concentrations of 6-OHDA that were higher in the striatum than in the frontal cortex. Intraventricular administration of 2,4,5-trihydroxy-phenyl-D,L-alanine (6-OHDOPA; 10 μg/rat) produced similar concentrations of 6-OHDA in both regions. Pargyline, but not carbidopa (α-methyldopahydrazine), enhanced the effect of intraperitoneal 6-OHDOPA administration (80 mg/kg). We conclude that (1) 6-OHDOPA can cross the blood-brain barrier and is converted to 6-OHDA in the brain, (2) 6-OHDA is a substrate for monoamine oxidase(s) and therefore a search for its purported deaminated metabolite is warranted, and (3) acute treatment with the above stimulants either does not lead to the formation of 6-OHDA or produces concentrations below the detection limit of the assay (<34 pg/mg of protein).  相似文献   

13.
In the rat brain, dopamine is metabolised by both A and B forms of monoamine oxidase (MAO), although the A form of the enzyme is the major component. The Km of MAO-A toward dopamine (120 microM) is lower than the Km of MAO-B toward this substrate (340 microM). The activity of MAO-A was lower in old rats than in young rats, and the same degree of decrease was found for 5-hydroxytryptamine as for dopamine as substrates for this enzyme form. The activity of MAO-B was higher in the old rats, the degree of increase being the same for dopamine as for beta-phenethylamine as substrates for this enzyme form. The Ki values of the inhibition of MAO-A by cimoxatone and MD770222 (the principal plasma metabolite of cimoxatone) were independent of the substrate used to assay for activity, but were lower than the Ki values for the inhibition of MAO-B by these compounds.  相似文献   

14.
The influence of deprivation of the neurotransmitter dopamine (DA) on the development of [Met5]-enkephalin (ME) and substance P (SP) neuropeptide systems of the striatum was investigated in Sprague-Dawley rats. The neurotoxin 6-hydroxydopamine (6-OHDA) was used to induce DA deficiency on postnatal day 3 in rats, and the animals were killed at different postnatal time points until 35 days of age. The levels of ME and SP were determined by radioimmunoassay, and the abundance of preproenkephalin (PPE) and preprotachykinin (PPT) mRNA in the striatum was assessed by Northern blot hybridization analysis. The concentrations of DA, 5-hydroxytryptamine (5-HT), and their acid metabolites were determined by HPLC with electrochemical detection. The postnatal development of the PPE-derived peptide ME and the PPT-derived peptide SP closely paralleled the appearance of the respective mRNAs coding for these peptides. The dopaminergic lesion with 6-OHDA led to a marked depletion of DA and its metabolites but produced an increase in content of 5-HT and its metabolite in the striatum. The lesion did not affect the ME and PPE mRNA levels in the striatum up to 25 days but increased the levels at 35 days. In contrast, a decreased developmental expression in SP and PPT mRNA was observed throughout the observation period. The lesion failed to influence the development of the mRNA coding for the structural protein beta-actin. The results indicate that the normal development of enkephalin, tachykinin, and 5-HT systems of the striatum is dependent on the availability of DA, the integrity of dopaminergic neurons, or both. The studies provide evidence for an interrelationship and interdependence between the development of neurotransmitter and neuropeptide systems. It is suggested that an early developmental abnormality in the DA system could permanently alter the neuropeptide systems, which in turn could influence the progression and expression of the DA-deficiency state parkinsonism, Lesch-Nyhan disease, or both.  相似文献   

15.
Synthesis of Serotonin in Traumatized Rat Brain   总被引:1,自引:0,他引:1  
Abstract: Previous studies have demonstrated that focal freezing lesions in rats cause a widespread decrease of cortical glucose use in the lesioned hemisphere and this was interpreted as a reflection of depression of cortical activity. The serotonergic neurotransmitter system was implicated in these alterations when it was shown that (1) cortical serotonin metabolism was increased widely in focally injured brain and (2) inhibition of serotonin synthesis prevented the development of cortical hypometabolism. In the present studies we applied an autoradiographic method that uses the accumulation of the 14C-labeled analogue of serotonin α-methylserotonin to assess changes in the rate of serotonin synthesis in injured brain. The results confirmed that 3 days after the lesion was made, at the time of greatest depression of glucose use, serotonin synthesis was significantly increased in cortical areas throughout the injured hemisphere. The increase was also seen in the dorsal hippocampus and area CA3, as well as in the medial geniculate and dorsal raphe, but not in any other subcortical structures including median raphe. Present results suggest that the functional changes in the cortex of the lesioned hemisphere are associated with an increased rate of serotonin synthesis mediated by activation of the dorsal raphe. We also documented by α-[14C]aminoisobutyric acid autoradiography that there was increased permeability of the blood-brain barrier, but this was restricted to the rim of the lesion.  相似文献   

16.
We have measured [3H]dopamine ([3H]DA) uptake and tyrosine hydroxylase-immunopositive immunostaining in cells acutely dissociated from the embryonic ventral mesencephalon (MSC). DA and its metabolites as well as catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO) activities were determined in homogenates taken from the MSC and striatum (STR). In the embryonic ventral MSC measurable DA and tyrosine hydroxylase (TH) immunostaining were present as early as embryonic day (E) 12.5. At E14 the number of TH+ neurons was about 50% of the values at E18. In the MSC, DA concentration increased sharply at E16 and reached a plateau before birth that was 10-fold lower than adult values. In the STR, DA was first detected at E16, suggesting that DA fibers reach the STR at this embryonic stage. High-affinity DA uptake appeared in the MSC only at E16, concomitantly with the arrival of DA fibers in the STR, increased sharply between E16 and E18, and reached a plateau before birth. This uptake mechanism was not selective for catecholamine uptake inhibitors. Thus, DA synthesis in the MSC preceded the onset of high-affinity uptake mechanism, which could be correlated to the beginning of striatal DA innervation. Measurable MAO and COMT activities were detected as early as E13 (MSC) and E15 (STR), but not DA metabolites, which appeared later. We conclude that the high-affinity DA uptake mechanism in MSC DA neurons develops coincident with the arrival of DA fibers to the STR. The sharp increase of DA uptake between E16 and E18 is due only in part to an increase in the number of TH+ cells. These results support the hypothesis that in vivo the target STR neurons regulate the maturation of MSC DA cells.  相似文献   

17.
The effects of 20-min transient, global, forebrain ischaemia and cardiac arrest on extracellular concentrations of dopamine (DA), serotonin (5-HT), and their respective metabolites, homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), were measured in vivo by dialysis of rat striatum and hippocampus. During the ischaemic period, striatal DA content increased (250-fold basal concentrations) with parallel but much less marked increases of both striatal and hippocampal 5-HT content (eight- to 10-fold). Baseline values were restored during reperfusion. Subsequent increases of DA and 5-HT levels on cardiac arrest were comparable after both sham operation and ischaemia. Significant decreases of HVA and 5-HIAA levels were observed following ischaemia or cardiac arrest. The differential effects of ischaemia on DA and 5-HT suggest selective alterations in disposition or metabolism of the two transmitters and that dopaminergic neurones may be more vulnerable to ischaemic insults.  相似文献   

18.
The effects of 5-methoxy-N, N-dimethyltryptamine (5-MeO-DMT) and m-chlorophenylpiperazine (CPP), two 5-hydroxytryptamine (5-HT, serotonin) agonists, on the accumulation of 3,4-dihydroxyphenylalanine (DOPA] were studied in the striatum of rats treated with gamma-butyrolactone (GBL). Unlike 2 mg/kg i.p. apomorphine, neither 5 mg/kg i.p. 5-MeO-DMT nor 2.5 mg/kg i.p. CPP significantly reduced the GBL-induced increase in DOPA accumulation in the striatum. 5-MeO-DMT and CPP significantly reduced DOPA accumulation in animals that had received the aromatic amino acid decarboxylase inhibitor Ro 4-4602 but not GBL. 5-HT (10 micrograms in 0.5 microliter) injected in the substantia nigra, pars compacta, like GBL, significantly increased Ro 4-4602-induced accumulation of DOPA in the striatum. The data indicate that 5-HT agonists can reduce 3,4-dihydroxyphenylethylamine (DA, dopamine) synthesis in the striatum of rats only when the impulse flow of DA neurons is intact. An indirect effect through mechanisms controlling DA synthesis in the striatum, for instance cholinergic and GABA-ergic neurons, is suggested.  相似文献   

19.
Cerebrospinal fluid (CSF) was removed at a constant flow rate of 1 microliter/min from the third ventricle of anesthetized rats. Every 15 min, CSF dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) concentrations were determined by direct injection of CSF into a liquid chromatographic system coupled with electrochemical detection. Mean CSF concentrations of DOPAC, HVA, and 5-HIAA were 1.29 microM, 0.88 microM, and 2.00 microM, respectively. In order to determine the turnover rates of dopamine (DA) and serotonin, experiments using monoamine oxidase (MAO) inhibition were performed. Tranylcypromine (20 mg/kg i.p.) induced a sharp exponential decrease of CSF DOPAC, HVA, and 5-HIAA, with respective half-lives of 15.60 min, 16.91 min, and 77.23 min. Their respective turnover rates were 3.74, 2.22, and 1.18 nmol X ml-1 X h-1. m-Hydroxybenzylhydrazine (NSD-1015, 100 mg/kg i.p.) and monofluoromethyl-DOPA (100 mg/kg i.p.), two decarboxylase inhibitors, induced a slow exponential decrease of all three CSF metabolites. alpha-Methyl-p-tyrosine (250 mg/kg i.p.) also induced a slow exponential decrease of DOPAC and HVA. These decreases of CSF DOPAC and HVA induced by DA synthesis inhibitors may reflect the turnover of DA in vivo. Haloperidol (0.5 mg/kg i.p.) considerably enhanced CSF DOPAC and HVA without affecting 5-HIAA, confirming that dopaminergic receptors modulate DA neurotransmission in vivo. Haloperidol administered 1.5 h after NSD-1015 did not increase DOPAC and HVA, in contrast to reserpine (5 mg/kg i.p.) injected under the same conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Abstract: The dopamine (DA) D3 receptor antagonist PD 58491 {3-[4-[1-[4-[2-[4-(3-diethylaminopropoxy)phenyl]-benzoimidazol-1-yl-butyl]-1 H -benzoimidazol-2-yl]-phenoxy]propyl]diethylamine} bound with high affinity and selectivity to recombinant human DA D3 versus D2L and D4.2 receptors transfected into Chinese hamster ovary cells: K i values of 19.5 n M versus 2,362 and >3,000 n M , respectively. In contrast, the putative DA D3 receptor antagonist (+)-AJ76 displayed low affinity and selectivity for D3 versus D2L and D4.2 receptors (91 n M vs. 253 and 193 n M , respectively). In vitro, PD 58491 (1 n M −1µ M ) exhibited D3 receptor antagonist activity, reversing the quinpirole (10 n M )-induced stimulation of [3H]thymidine uptake in D3 CHOpro-5 cells, but did not have any significant intrinsic activity by itself in this assay. PD 58491 did not decrease the γ-butyrolactone-induced increase in DA synthesis ( l -3,4-dihydroxyphenylalanine accumulation) in rat striatum, indicating that the compound possessed no in vivo DA D2/D3 receptor agonist action at DA autoreceptors. PD 58491 (3–30 mg/kg, i.p.) generally did not alter DA or serotonin synthesis in either the striatum or mesolimbic region of rat brain. The D3-preferring agonist PD 128907 decreased DA synthesis in striatum and mesolimbic regions, and this effect was attenuated by pretreatment with PD 58491. These findings support the hypothesis that DA D3 autoreceptors may in part modulate the synthesis and release of DA in striatum and mesolimbic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号