首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 → T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites.  相似文献   

2.
3.
4.
Thermo-transient receptor potential channels display outstanding temperature sensitivity and can be directly gated by low or high temperature, giving rise to cold- and heat-activated currents. These constitute the molecular basis for the detection of changes in ambient temperature by sensory neurons in animals. The mechanism that underlies the temperature sensitivity in thermo-transient receptor potential channels remains unknown, but has been associated with large changes in standard-state enthalpy (ΔHo) and entropy (ΔSo) upon channel gating. The magnitude, sign, and temperature dependence of ΔHo and ΔSo, the last given by an associated change in heat capacity (ΔCp), can determine a channel’s temperature sensitivity and whether it is activated by cooling, heating, or both, if ΔCp makes an important contribution. We show that in the presence of allosteric gating, other parameters, besides ΔHo and ΔSo, including the gating equilibrium constant, the strength- and temperature dependence of the coupling between gating and the temperature-sensitive transitions, as well as the ΔHo/ΔSo ratio associated with them, can also determine a channel’s temperature-dependent activity, and even give rise to channels that respond to both cooling and heating in a ΔCp-independent manner.  相似文献   

5.
Homing endonucleases are highly specific enzymes, capable of recognizing and cleaving unique DNA sequences in complex genomes. Since such DNA cleavage events can result in targeted allele-inactivation and/or allele-replacement in vivo, the ability to engineer homing endonucleases matched to specific DNA sequences of interest would enable powerful and precise genome manipulations. We have taken a step-wise genetic approach in analyzing individual homing endonuclease I-CreI protein/DNA contacts, and describe here novel interactions at four distinct target site positions. Crystal structures of two mutant endonucleases reveal the molecular interactions responsible for their altered DNA target specificities. We also combine novel contacts to create an endonuclease with the predicted target specificity. These studies provide important insights into engineering homing endonucleases with novel target specificities, as well as into the evolution of DNA recognition by this fascinating family of proteins.  相似文献   

6.
Mutations altering the cleavage specificity of a homing endonuclease   总被引:10,自引:9,他引:1       下载免费PDF全文
The homing endonuclease I-CreI recognizes and cleaves a particular 22 bp DNA sequence. The crystal structure of I-CreI bound to homing site DNA has previously been determined, leading to a number of predictions about specific protein–DNA contacts. We test these predictions by analyzing a set of endonuclease mutants and a complementary set of homing site mutants. We find evidence that all structurally predicted I-CreI/DNA contacts contribute to DNA recognition and show that these contacts differ greatly in terms of their relative importance. We also describe the isolation of a collection of altered specificity I-CreI derivatives. The in vitro DNA-binding and cleavage properties of two such endonucleases demonstrate that our genetic approach is effective in identifying homing endonucleases that recognize and cleave novel target sequences.  相似文献   

7.
Homing endonucleases (HEs) promote the evolutionary persistence of selfish DNA elements by catalyzing element lateral transfer into new host organisms. The high site specificity of this lateral transfer reaction, termed homing, reflects both the length (14–40 bp) and the limited tolerance of target or homing sites for base pair changes. In order to better understand molecular determinants of homing, we systematically determined the binding and cleavage properties of all single base pair variant target sites of the canonical LAGLIDADG homing endonucleases I-CreI and I-MsoI. These Chlorophyta algal HEs have very similar three-dimensional folds and recognize nearly identical 22 bp target sites, but use substantially different sets of DNA-protein contacts to mediate site-specific recognition and cleavage. The site specificity differences between I-CreI and I-MsoI suggest different evolutionary strategies for HE persistence. These differences also provide practical guidance in target site finding, and in the generation of HE variants with high site specificity and cleavage activity, to enable genome engineering applications.  相似文献   

8.
Mycobacterium tuberculosis RecA intein (PI-MtuI), a LAGLIDADG homing endonuclease, displays dual target specificity in response to alternative cofactors. While both ATP and Mn2+ were required for optimal cleavage of an inteinless recA allele (hereafter referred to as cognate DNA), Mg2+ alone was sufficient for cleavage of ectopic DNA sites. In this study, we have explored the ability of PI-MtuI to catalyze ATP hydrolysis in the presence of alternative metal ion cofactors and DNA substrates. Our results indicate that PI-MtuI displays maximum ATPase activity in the presence of cognate but not ectopic DNA. Kinetic analysis revealed that Mn2+ was able to stimulate PI-MtuI catalyzed ATP hydrolysis, whereas Mg2+ failed to do so. Using UV crosslinking, limited proteolysis and amino acid sequence analysis, we show that 32P-labeled ATP was bound to a 14 kDa peptide containing the putative Walker A motif. Furthermore, the limited proteolysis approach disclosed that cognate DNA was able to induce structural changes in PI-MtuI. Mutation of the presumptive metal ion-binding ligands (Asp122 and Asp222) in the LAGLIDADG motifs of PI-MtuI impaired its affinity for ATP, thus resulting in a reduction in or loss of its endonuclease activity. Together, these results suggest that PI-MtuI is a (cognate) DNA- and Mn2+-dependent ATPase, unique from the LAGLIDADG family of homing endonucleases, and implies a possible role for ATP hydrolysis in the recognition and/or cleavage of homing site DNA sequence.  相似文献   

9.
Here we describe the discovery of a group I intron in the DNA polymerase gene of Bacillus thuringiensis phage Bastille. Although the intron insertion site is identical to that of the Bacillus subtilis phages SPO1 and SP82 introns, the Bastille intron differs from them substantially in primary and secondary structure. Like the SPO1 and SP82 introns, the Bastille intron encodes a nicking DNA endonuclease of the H-N-H family, I-BasI, with a cleavage site identical to that of the SPO1-encoded enzyme I-HmuI. Unlike I-HmuI, which nicks both intron-minus and intron-plus DNA, I-BasI cleaves only intron-minus alleles, which is a characteristic of typical homing endonucleases. Interestingly, the C-terminal portions of these H-N-H phage endonucleases contain a conserved sequence motif, the intron-encoded endonuclease repeat motif (IENR1) that also has been found in endonucleases of the GIY-YIG family, and which likely comprises a small DNA-binding module with a globular ββααβ fold, suggestive of module shuffling between different homing endonuclease families.  相似文献   

10.
Hydrogen partial pressures were measured in a thermophilic coculture comprised of a eubacterial rod which oxidized acetate to H2 and CO2 and a hydrogenotrophic methanogen, Methanobacterium sp. strain THF. Zinder and Koch (S. H. Zinder and M. Koch, Arch. Microbiol. 138:263-272, 1984) originally predicted, on the basis of calculations of Gibbs free energies of reactions, that the H2 partial pressure near the midpoint of growth of the coculture should be near 4 Pa (ca. 4 × 10−5 atm; ca. 0.024 μM dissolved H2) for both organisms to be able to conserve energy for growth. H2 partial pressures in the coculture were measured to be between 20 and 50 Pa (0.12 to 0.30 μM) during acetate utilization, approximately one order of magnitude higher than originally predicted. However, when ΔGf (free energy of formation) values were corrected for 60°C by using the relationship ΔGf = ΔHfTΔSHf is the enthalpy or heat of formation, ΔS is the entropy value, and T is the temperature in kelvins), the predicted value was near 15 Pa, in closer agreement with the experimentally determined values. The coculture also oxidized ethanol to acetate, a more thermodynamically favorable reaction than oxidation of acetate to CO2. During ethanol oxidation, the H2 partial pressure reached values as high as 200 Pa. Acetate was not used until after the ethanol was consumed and the H2 partial pressure decreased to 40 to 50 Pa. After acetate utilization, H2 partial pressures fell to approximately 10 Pa and remained there, indicating a threshold for H2 utilization by the methanogen. Axenic cultures of the acetate-oxidizing organism were combined with pure cultures of either Methanobacterium sp. strain THF or Methanobacterium thermoautotrophicum ΔH to form reconstituted acetate-oxidizing cocultures. The H2 partial pressures measured in both of these reconstituted cocultures were similar to those measured in the original acetate-oxidizing rod coculture. Since M. thermoautotrophicum ΔH did not use formate as a substrate, formate is not necessarily involved in interspecies electron transfer in this coculture.  相似文献   

11.
12.
Elucidating how homing endonucleases undergo changes in recognition site specificity will facilitate efforts to engineer proteins for gene therapy applications. I-SceI is a monomeric homing endonuclease that recognizes and cleaves within an 18-bp target. It tolerates limited degeneracy in its target sequence, including substitution of a C:G+4 base pair for the wild-type A:T+4 base pair. Libraries encoding randomized amino acids at I-SceI residue positions that contact or are proximal to A:T+4 were used in conjunction with a bacterial one-hybrid system to select I-SceI derivatives that bind to recognition sites containing either the A:T+4 or the C:G+4 base pairs. As expected, isolates encoding wild-type residues at the randomized positions were selected using either target sequence. All I-SceI proteins isolated using the C:G+4 recognition site included small side-chain substitutions at G100 and either contained (K86R/G100T, K86R/G100S and K86R/G100C) or lacked (G100A, G100T) a K86R substitution. Interestingly, the binding affinities of the selected variants for the wild-type A:T+4 target are 4- to 11-fold lower than that of wild-type I-SceI, whereas those for the C:G+4 target are similar. The increased specificity of the mutant proteins is also evident in binding experiments in vivo. These differences in binding affinities account for the observed ∼36-fold difference in target preference between the K86R/G100T and wild-type proteins in DNA cleavage assays. An X-ray crystal structure of the K86R/G100T mutant protein bound to a DNA duplex containing the C:G+4 substitution suggests how sequence specificity of a homing enzyme can increase. This biochemical and structural analysis defines one pathway by which site specificity is augmented for a homing endonuclease.  相似文献   

13.
The crystal structure of the full-length rat peroxisomal multifunctional enzyme, type 1 (rpMFE1), has been determined at 2.8 Å resolution. This enzyme has three catalytic activities and two active sites. The N-terminal part has the crotonase fold, which builds the active site for the Δ32-enoyl-CoA isomerase and the Δ2-enoyl-CoA hydratase-1 catalytic activities, and the C-terminal part has the (3S)-hydroxyacyl-CoA dehydrogenase fold and makes the (3S)-hydroxyacyl-CoA dehydrogenase active site. rpMFE1 is a multidomain protein having five domains (A–E). The crystal structure of full-length rpMFE1 shows a flexible arrangement of the A-domain with respect to the B–E-domains. Because of a hinge region near the end of the A-domain, two different positions of the A-domain were observed for the two protein molecules (A and B) of the asymmetric unit. In the most closed conformation, the mode of binding of CoA is stabilized by domains A and B (helix-10), as seen in other crotonase fold members. Domain B, although functionally belonging to the N-terminal part, is found tightly associated with the C-terminal part, i.e. fixed to the E-domain. The two active sites of rpMFE1 are ∼40 Å apart, separated by a tunnel, characterized by an excess of positively charged side chains. Comparison of the structures of rpMFE1 with the monofunctional crotonase and (3S)-hydroxyacyl-CoA dehydrogenase superfamily enzymes, as well as with the bacterial α2β2-fatty acid oxidation multienzyme complex, reveals that this tunnel could be important for substrate channeling, as observed earlier on the basis of the kinetics of rpMFE1 purified from rat liver.  相似文献   

14.
The effects of 3′ single-strand dangling-ends of different lengths, sequence identity of hairpin loop, and hairpin loop biotinylation at different loop residues on DNA hairpin thermodynamic stability were investigated. Hairpins contained 16 bp stem regions and five base loops formed from the sequence, 5′-TAGTCGACGTGGTCC-N5-GGACCACGTCGACTAG-En-3′. The length of the 3′ dangling-ends (En) was n = 13 or 22 bases. The identities of loop bases at positions 2 and 4 were varied. Biotinylation was varied at loop base positions 2, 3 or 4. Melting buffers contained 25 or 115 mM Na+. Average tm values for all molecules were 73.5 and 84.0°C in 25 and 115 mM Na+, respectively. Average two-state parameters evaluated from van’t Hoff analysis of the melting curve shapes in 25 mM Na+ were ΔHvH = 84.8 ± 15.5 kcal/mol, ΔSvH = 244.8 ± 45.0 cal/K·mol and ΔGvH = 11.9 ± 2.1 kcal/mol. In 115 mM Na+, two-state parameters were not very different at ΔHvH = 80.42 ± 12.74 kcal/mol, ΔSvH = 225.24 ± 35.88 cal/K·mol and ΔGvH = 13.3 ± 2.0 kcal/mol. Differential scanning calorimetry (DSC) was performed to test the validity of the two-state assumption and evaluated van’t Hoff parameters. Thermodynamic parameters from DSC measurements (within experimental error) agreed with van’t Hoff parameters, consistent with a two-state process. Overall, dangling-end DNA hairpin stabilities are not affected by dangling-end length, loop biotinylation or sequence and vary uniformly with [Na+]. Consider able freedom is afforded when designing DNA hairpins as probes in nucleic acid based detection assays, such as microarrays.  相似文献   

15.
We have used imidazole (Im) and N-methylimidazole (MeIm) as probes of the heme-binding cavity of membrane-bound cytochrome (cyt) c1 in detergent-solubilized bc1 complex from Rhodobacter sphaeroides. Imidazole binding to cyt c1 substantially lowers the midpoint potential of the heme and fully inhibits bc1 complex activity. Temperature dependences showed that binding of Im (Kd ≈ 330 μm, 25 °C, pH 8) is enthalpically driven (ΔH0 = −56 kJ/mol, ΔS0 = −121 J/mol/K), whereas binding of MeIm is 30 times weaker (Kd ≈ 9.3 mm) and is entropically driven (ΔH0 = 47 kJ/mol, ΔS0° = 197 J/mol/K). The large enthalpic and entropic contributions suggest significant structural and solvation changes in cyt c1 triggered by ligand binding. Comparison of these results with those obtained previously for soluble cyts c and c2 suggested that Im binding to cyt c1 is assisted by formation of hydrogen bonds within the heme cleft. This was strongly supported by molecular dynamics simulations of Im adducts of cyts c, c2, and c1, which showed hydrogen bonds formed between the NδH of Im and the cyt c1 protein, or with a water molecule sequestered with the ligand in the heme cleft.  相似文献   

16.
17.
This study examines the relationship between the DNA binding thermodynamics and the enzymatic activity of the Klenow and Klentaq Pol I DNA polymerases from Escherichia coli and Thermus aquaticus. Both polymerases bind DNA with nanomolar affinity at temperatures down to at least 5 °C, but have lower than 1% enzymatic activity at these lower temperatures. For both polymerases it is found that the temperature of onset of significant enzymatic activity corresponds with the temperature where the enthalpy of binding (ΔHbinding) crosses zero (TH) and becomes favorable (negative). This TH/activity upshift temperature is 15 °C for Klenow and 30 °C for Klentaq. The results indicate that a negative free energy of DNA binding alone is not sufficient to proceed to catalysis, but that the enthalpic versus entropic balance of binding may be a modulator of the temperature dependence of enzymatic function. Analysis of the temperature dependence of the catalytic activity of Klentaq polymerase using expanded Eyring theory yields thermodynamic patterns for ΔG, ΔH, and TΔS that are highly analogous to those commonly observed for direct DNA binding. Eyring analysis also finds a significant ΔCp of formation of the activated complex, which in turn indicates that the temperature of maximal activity, after which incorporation rate slows with increasing temperature, will correspond with the temperature where the activation enthalpy (ΔH) switches from positive to negative.  相似文献   

18.
Endonuclease assays of the H-N-H proteins encoded by two group I introns in the Chlamydomonas moewusii chloroplast psbA gene revealed that the CmpsbA·1 intron specifies a site-specific DNA endonuclease, designated I-CmoeI. Like most previously reported intron-encoded endonucleases, I-CmoeI generates a double-strand break near the insertion site of its encoding intron, leaving 3′ extensions of 4 nt. This enzyme was purified from Escherichia coli as a fusion protein with a His tag at its N-terminus. The recombinant protein (rI-CmoeI) requires a divalent alkaline earth cation for DNA cleavage (Mg2+ > Ca2+ > Sr2+ > Ba2+). It also requires a metal cofactor for DNA binding, a property shared with H-N-H colicins but not with the homing endonucleases characterized to date. rI-CmoeI binds its recognition sequence as a monomer, as revealed by gel retardation assays. Km and kcat values of 100 ± 40 pM and 0.26 ± 0.04 min–1, respectively, were determined. Replacement of the first histidine of the H-N-H motif by an alanine residue abolishes both rI-CmoeI activity and binding to its substrate. We propose that this conserved histidine residue plays a role in binding the metal cofactor and that such binding induces a structural modification of the enzyme which is required for DNA recognition.  相似文献   

19.
DNA intercalators that have high affinity and slow kinetics are developed for potential DNA-targeted therapeutics. Although many natural intercalators contain multiple chiral subunits, only intercalators with a single chiral unit have been quantitatively probed. Dumbbell-shaped DNA threading intercalators represent the next order of structural complexity relative to simple intercalators, and can provide significant insights into the stereoselectivity of DNA-ligand intercalation. We investigated DNA threading intercalation by binuclear ruthenium complex [μ-dppzip(phen)4Ru2]4+ (Piz). Four Piz stereoisomers are defined by the chirality of the intercalating subunit (Ru(phen)2dppz) and the distal subunit (Ru(phen)2ip), respectively, each of which can be either right-handed (Δ) or left-handed (Λ). We used optical tweezers to measure single DNA molecule elongation due to threading intercalation, revealing force-dependent DNA intercalation rates and equilibrium dissociation constants. The force spectroscopy analysis provided the zero-force DNA binding affinity, the equilibrium DNA-ligand elongation Δxeq, and the dynamic DNA structural deformations during ligand association xon and dissociation xoff. We found that Piz stereoisomers exhibit over 20-fold differences in DNA binding affinity, from a Kd of 27 ± 3 nM for (Δ,Λ)-Piz to a Kd of 622 ± 55 nM for (Λ,Δ)-Piz. The striking affinity decrease is correlated with increasing Δxeq from 0.30 ± 0.02 to 0.48 ± 0.02 nm and xon from 0.25 ± 0.01 to 0.46 ± 0.02 nm, but limited xoff changes. Notably, the affinity and threading kinetics is 10-fold enhanced for right-handed intercalating subunits, and 2- to 5-fold enhanced for left-handed distal subunits. These findings demonstrate sterically dispersed transition pathways and robust DNA structural recognition of chiral intercalators, which are critical for optimizing DNA binding affinity and kinetics.  相似文献   

20.
Flow calorimetry has been used to study the interaction of glycine with protons in water at temperatures of 298.15, 323.15, and 348.15 K and pressures up to 12.50 MPa. By combining the measured heat for glycine solutions titrated with NaOH with the heat of ionization for water, the enthalpy of protonation of glycine is obtained. The reaction is exothermic at all temperatures and pressures studied. The effect of pressure on the enthalpy of reaction is very small. The experimental heat data are analyzed to yield equilibrium constant (K), enthalpy change (ΔH), and entropy change (ΔS) values for the protonation reaction as a function of temperature. These values are compared with those reported previously at 298.15 K. The ΔH and ΔS values increase (become more positive), whereas log K values decrease, as temperature increases. The trends for ΔH and ΔS with temperature are opposite to those reported previously for the protonation of several alkanolamines. However, log K values for proton interaction with both glycine and the alkanolamines decrease with increasing temperature. The effect of the nitrogen atom substituent on log K for protonation of glycine and alkanolamines is discussed in terms of changes in long-range and short-range solvent effects. These effects are used to explain the difference in ΔH and ΔS trends between glycine protonation and those found earlier for alkanolamine protonation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号