首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data are presented for what we believe to be the first assessment of the elemental foliar status of red spruce (Picea rubens Sarg.) and Fraser fir [Abies fraseri (Pursh.) Poir.] trees in the high elevation forests of the southern Appalachian mountans. Needle samples were collected from September–November 1984. Needles were separated according to flush year for the 1984, 1983 and 1982 growing seasons. Each sample was analyzed without washing for 28 macro- and micronutrients and trace elements. Significant differences in foliar concentrations were observed between flush year for N, P, Ca, Mg, K, Cl, Cu, Ce, Th, Cs, Pb, Fe, La and Rb for Fraser fir (n=41), and P, Ca, K, Cl, Cu, Pb and Rb for red spruce (n=30). Nitrogen concentrations ranged from 11.2–20.2 mg g?1 for Fraser fir, and 8.7–15.9 mg g?1 for red pruce. The mean concentration of Ca observed in red spruce needles (1.4 mg g?1 1984 growing season) fell at the low extreme of reported values for non-necrotic red spruce foliage in the northeastern United States (1.2–11.6 mg g?1). The mean concentration of Ca in Fraser fir foliage (3.4 mg g?1, 1984 growing season) was also lower than reported values for eastern fir, but not to the extent demonstrated for red spruce. Fraser fir needles had higher concentrations of Al than red spruce (310vs 91 mg kg?1, respectively, 1984 growing season), but both values are higher than those reported for spruce or fir from the northeastern United States. Calcium:aluminum ratios in current foliage are the lowest yet reported for the eastern spruce/fir forest type, suggesting that Al toxicity and/or Ca deficiency may be important stresses in these stands. Comparison of Pb concentrations with those of other rare-earth elements known to be associated with dust on needle surfaces (Ce, La, Sc, Sm, and Th) suggested that a substantial portion of the Pb found was due to particulates on the needle surfaces. The significance of these results to the observed forest decline syndrome in high elevation forests of the eastern United States is also discussed.  相似文献   

2.
Monthly foliage samples were evaluated for elemental composition from red spruce and balsam fir trees in a commercial, low elevation spruce-fir stand at Howland, Maine during the 1987 growing season. Balsam fir showed consistently higher concentrations in A1 and to a lesser extent N, Ca, Mg, and Fe when compared to red spruce. Red spruce exhibited consistently higher Mn and K concentrations. Both species showed a marked seasonal trend in the foliar concentrations of N, P, K, and Ca in current year foliage. For N, P, and K current year foliar concentrations declined rapidly during the early part of the growing season. Calcium concentrations steadily increased during the growing season for both species and age class of needles. Foliar concentrations of N and P in both species suggests that the availability of these nutrients is limited for this site.  相似文献   

3.
Forest trees are constantly exposed to various types of natural and anthropogenic stressors. A major long-term goal of our research is to develop a set of early physiological and biochemical markers of stress in trees before the appearance of visual symptoms. Six red spruce (t Picea rubens Sarg.) stands from the northeastern United States were selected for collection of soil and foliage samples. All of the chosen sites had soil solution pH values below 4.0 in the Oa horizon but varied in their geochemistry. Some of these sites were apparently under some form of environmental stress as indicated by a large number of dead and dying red spruce trees. Samples of soil and needles (from apparently healthy red spruce trees) were collected from these sites four times during a two-year period. The needles were analyzed for perchloric acid-soluble polyamines and exchangeable inorganic ions. Soil and soil solution samples from the Oa and B horizons were analyzed for their exchange chemistry. The data showed a strong positive correlation between Ca and Mg concentrations in the needles and in the Oa horizon of the soil. However, needles from trees growing on relatively Ca-rich soils with a low exchangeable Al concentration and a low Al:Ca soil solution ratio had significantly lower concentrations of putrescine and spermidine than those growing on Ca-poor soils with a high exchangeable Al concentration and a high Al:Ca soil solution in the Oa horizon. The magnitude of this change was several fold higher for putrescine concentrations than for spermidine concentrations. Neither putrescine nor spermidine were correlated with soil solution Ca, Mg, and Al concentrations in the B horizon. The putrescine concentrations of the needles always correlated significantly with exchangeable Al (r2=0.73, t p0.05) and soil solution Al:Ca ratios (r2=0.91, t p0.01) of the Oa horizon. This suggests that in conjunction with soil chemistry, putrescine and/or spermidine may be used as a potential early indicator of Al stress before the appearance of visual symptoms in red spruce trees.  相似文献   

4.
Extensive investigations on the fine root status of declining and healthy spruce were conducted in several stands at higher elevations of the Bavarian Forest heavily affected by needle yellowing. In most of the root parameters recorded, yellowing trees had significantly lower values than neighbouring green trees. Tight correlations were found between decreasing fine root density and crown transparency, degree of yellowing (increasing) and needle Mg (Ca) contents (decreasing), respectively. Although growing on the same substrate, green trees showed much better Mg (Ca) nutrition than yellow trees, indicating that poor fine root status contributes to Mg (Ca) deficiency in yellowing spruce. Experiments with spruce seedlings growing in soil samples from yellowing stands proved that needle symptoms can easily be reproduced on the seedlings under controlled conditions (i.e. in the absence of adverse atmospheric factors). Furthermore, reduced fine root systems and severe root damage were observed on seedlings grown in soils from yellowing stands, but not on those in soils from green stands. Adding a layer of soil from a yellow stand to a soil from a green stand caused a decrease of root parameters. Needle as well as root symptoms in these experiments were largely ameliorated after soils had been heat (autoclaving, sterilisation) or fungicide treated. Plants from treated soils had significantly longer roots and more root tips. The results of our study indicate that Mg deficiency leading to severe needle yellowing in stands at higher elevations of the Bavarian Forest is at least partially mediated by fine root disorders. Also, strong evidence is presented that fine root damage on trees in the affected stands is caused by soilborne micro-organisms, most likely fungi. Their exact identity, however, still remains to be unravelled.  相似文献   

5.
Red spruce (Picea rubens Sarg.) trees are uniquely vulnerable to foliar freezing injury during the cold season (fall and winter), but are also capable of photosynthetic activity if temperatures moderate. To evaluate the influence of calcium (Ca) addition on the physiology of red spruce during the cold season, we measured concentrations of foliar polyamines and free amino acids (putative stress-protection compounds), chlorophyll (a key photosystem component), and sapwood area (a proxy for foliar biomass), for trees in Ca-addition (CaSiO3 added) and Ca-depleted (reference) watersheds at the Hubbard Brook Experimental Forest (NH, USA). Ca-addition increased concentrations of the amino acids alanine and γ-aminobutyric acid (GABA) and the polyamines putrescine (Put) and spermidine (Spd) in November, and Put in February relative to foliage from the reference watershed. Consistent with increased stress protection, foliage from the Ca-addition watershed had higher total chlorophyll and chlorophyll a concentrations in February than foliage from the reference watershed. In contrast, foliage from the reference watershed had significantly lower glutamic acid (Glu) and higher alanine (Ala) concentrations in February than foliage from the Ca-addition watershed. Imbalances in Ala:Glu have been attributed to cold sensitivity or damage in other species. In addition to concentration-based differences in foliar compounds, trees from the Ca-addition watershed had higher estimated levels of foliar biomass than trees from the reference watershed. Our findings suggest that Ca-addition increased the stress tolerance and productive capacity of red spruce foliage during the cold season, and resulted in greater crown mass compared to trees growing on untreated soils.  相似文献   

6.
Abstract Trees growing along windy coasts often have canopies that are greatly reduced in size by the sculpting effects of wind and salt spray. Trees with environmentally reduced stature are called elfinwood (windswept shrub‐form or krummholz) and are ecologically important because they represent outposts growing at the limit of tree success. The purpose of this study was to assess if Banksia grandis elfinwood growing at Cape Leeuwin had a different nutrient status than normal low‐form (LF) trees growing nearby, and if nutrient deficiencies, toxicities and/or imbalances were among the limiting factors imposed on elfinwood. The concentrations of N, P, K, Ca, Mg, Na, Cl, Fe, Mn, Zn, Cu, Mo and B were analysed for mature green foliage, immature foliage, foliage litter, flowers and soil. When the elfinwood and LF trees were compared, the foliar nutrient status was generally similar, except that elfinwood foliage had significantly higher mean concentrations of N, Zn and Cu, while LF trees had higher Fe and Mn contents. Many nutrients were conserved before leaves were shed in both elfinwood and LF trees, including N, P, K, Na, Cl, Mn and Cu (LF trees also conserved Ca and Mg). However, elfinwood and LF tree‐litter contained significantly higher Fe concentrations than green foliage (elfinwood litter also had higher levels of Mg and B). It is tempting to suggest that the translocation of Fe into leaves before they were shed is a regulation mechanism to prevent Fe toxicity, or imbalance in the Fe : Mn ratio. Proteoid roots strongly acidify the soil to mobilize P, which also chemically reduces Fe+3 to plant‐available Fe+2. The increased supply of Fe+2 in the rhizosphere, caused by the action of proteoid roots, might tend to defeat self‐regulation of Fe uptake. It is possible that excess Fe accumulation in the plant might be regulated, in part, by exporting Fe into the leaves before they are shed. The nutrient status of B. grandis elfinwood is compared with mountain elfinwood of North America. The extreme habitat of coastal elfinwood provides many theoretical pathways for nutrient limitation, but B. grandis elfinwood at Cape Leeuwin does not appear to be nutrient deficient.  相似文献   

7.
The decline of sugar maple (Acer saccharum Marsh.) in forest of north-eastern North America is an important environmental issue. In this study, relationships between, soil, wood and foliar chemistry were assessed for 17 stands distributed within a large area of the Quebec sugar maple forest and that were growing on soils with a strong gradient of acidity and base saturation. There were many significant relationships between variables describing the acid-base status of the top-B soil (Ca and Mg concentrations, exchangeable acidity and base saturation) and Ca and Mn concentrations and Ca/Mn and Mg/Mn in tree tissues. Manganese was the element that showed the strongest inverse non-linear relationships with top-B soil base saturation with variance explanation of 71 and 65%, for wood and foliage, respectively. The 17 sites were divided in two groups according to their level of decline. The declining stands had significantly higher wood Mn and Mg concentrations and lower Ca/Mn ratios and significantly higher foliar Mn and lower Ca and Al concentrations. It was impossible to determine if these differences were a cause or a symptom of sugar maple health. However, the increase in Mn concentrations in tree tissues with increasing soil acidity, as well as the higher Mn concentrations in declining as compared to healthy stands suggest that Mn, as well as low Ca availability, could be an important contributing factor in the sugar maple decline.  相似文献   

8.
Ten pairs of secondary pure spruce (Picea abies) and adjacent mixed spruce-beech (Fagus sylvatica) stands on comparable sites were selected on two different bedrocks for soil formation (Flysch: nutrient rich and high soil pH; Molasse: poor nutrient supply and acidic) to study how an admixture of beech to spruce stands affects nutrient cycling and consequently soil chemistry. Soil analyses indicated accumulation of Ca under the mixed stands while the top soil under pure spruce was acidified. It was hypothesized that changes of soil chemical properties due to species composition over the last six decades are reflected in the stem wood of spruce. Three healthy dominant spruce trees per plot were selected for coring. Cores were crossdated and half-decadal samples were analyzed for Ca, Mg, Mn and Al. Calcium and Mg concentrations in stem wood of spruce were significantly higher for the pure spruce than for the mixed stands in spite of lower Ca and Mg stores in the soil. We assume that acidification caused by pure spruce mobilized these cations temporarily, increasing soil solution contents and consequently stem wood concentrations. It was possible to reconstruct soil pH from the element ratios Ca/Al (pure stands) and Ca/Mg (mixed stands), since these ratios in the stem wood of the last half-decade did correlate with soil pH for selected soil depths. Reconstructed soil pH showed a decline over the last 60 years under both species compositions due to accumulation of base cations in the increasing biomass. Comparisons of reconstructed soil pH in 0–5 and 10–20 cm soil depth indicated more pronounced top soil acidification (lower soil pH in 0–5 cm) by spruce on the nutrient rich soil (Flysch) than on the acidic soil (Molasse). However, admixture of beech caused higher pH values in 0–5 cm than in 10–20 cm soil depth on Flysch due to the observed Ca-pump effect of beech (uptake of Ca from deeper soil horizons).  相似文献   

9.
Nutrient uptake is generally thought to exhibit a simple seasonal pattern, but few studies have measured temporal variation of nutrient uptake capacity in mature trees. We measured net uptake capacity of K, NH+4, NO3, Mg and Ca across a range of solution concentrations by roots of mature loblolly pine at Calhoun Experimental Forest in October 2001, July 2001, and April 2002. Uptake capacity was generally lowest in July; rates in October were similar to those in April. Across a range of concentrations, antecedent nutrient solution concentrations affected the temporal patterns in uptake in July but not in October or April. In July, uptake of NH+4, Mg and Ca was positively correlated with concentration when roots were exposed to successively lower concentrations, but negatively correlated with concentration when exposed to successively higher concentrations. In contrast, uptake in October was constant across the range of concentrations, while uptake increased with concentration in April. As in studies of other species, we found greater uptake of NH+4 than NO3. Temporal patterns of uptake capacity are difficult to predict, and our results indicate that experimental conditions, such as experiment duration, antecedent root conditions and nutrient solution concentration, affect measured rates of nutrient uptake.  相似文献   

10.
As part of an experimental study of air pollution effects on tree growth and health, we combined process studies with an ecosystem approach to evaluate the effects of acidic deposition on soil acidification, nutrient cycling and proton fluxes in miniature red spruce ecosystems. Ninety red spruce saplings were transplanted into 1-m diameter pots containing reconstructed soil profiles and exposed to simulated acid rain treatments of pH 3.1, 4.1 and 5.1 for four consecutive growing seasons. All the principal fluxes of the major elements were measured. During the first year of treatments, the disturbance associated with the transplanting of the experimental trees masked any treatment effects by stimulating N mineralization rates and consequent high N03 cation, and H+ flux through the soil profile. In subsequent years, leaching of base cations and labile Al was accelerated in the most intensive acid treatment and corresponding declines in soil pH and exchangeable pools of Ca and Mg and increases in exchangeable Al concentrations were observed in the organic horizon. Leaching of Ca2+ and Mg2+ also was significantly higher in the pH 4.1 than in the pH 5.1 treatment. Flux of Ca from foliage and soil was increased in response to strong acid loading and root uptake increased to compensate for foliar Ca losses. In contrast, K cycling was dominated by root uptake and internal cycling and was relatively insensitive to strong acid inputs. Cation leaching induced by acidic deposition was responsible for the majority of H+ flux in the pH 3.1 treatment in the organic soil horizon whereas root uptake accounted for most of the H+ flux in the pH 4.1 and 5.1 treatments. Although no measurable effects on tree nutrition or health were observed, base cation leaching was significantly accelerated by acidic deposition, even at levels below that observed in the eastern U.S., warranting continued concern about acid deposition effects on the soil base status of forested ecosystems.  相似文献   

11.
Litterfall and nutrient returns in red alder stands in western Washington   总被引:1,自引:0,他引:1  
Summary Litterfall was collected over 1 year from eight natural stands of red alder growing on different sites in western Washington. The stands occurred at various elevations and on different soils, and differed in age, basal area, and site index. Most litterfall was leaf litter (average 86 percent). Amounts of litterfall and leaf litter varied significantly (P<0.05) among the sites. Average weights of litterfall and leaf litter in kg ha–1 yr–1, were 5150 and 4440, respectively. Weight of leaf litter was not significantly (P<0.05) related to site index, stand age, or basal area. The sites varied significantly (P<0.05) in concentrations of all elements determined in the leaf litter, except Zn. Average chemical concentrations were: N, 1.98 percent; P, 0.09 percent; K, 0.44 percent; Ca, 1.01 percent; Mg, 0.21 percent; S, 0.17 percent; SO4–S, nil; Fe, 324 ppm; Mn, 311 ppm; Zn, 53 ppm; Cu, 13 ppm; and Al, 281 ppm. There were significant correlations between some stand characteristics and concentrations of some elements, and among the different chemical components of the leaf litter. Important correlations were found between stand age and P concentration (r=–0.84,P<0.01); weight of leaf litter and P concentration (r=0.74,P<0.05); weight of leaf litter and K concentration (r=0.71,P<0.05); concentrations of N and S (r=0.81,P<0.05); and concentrations of Fe and Al (r=0.98,P<0.01). Returns of the different elements to the soil by leaf litter varied among the different sites. Average nutrient and Al returns, in kg ha–1 yr–1, were: N, 82; Ca, 41; K, 19; Mg, 8; S, 7; P, 4; Fe, 1; Mn, 1; Al, 1; Zn, 0.2, and Cu, <0.1.  相似文献   

12.
Increasing evidence suggests that forest soils in central and northern Europe as well as in North America have been significantly acidified by acid deposition during the last decades. The present investigation was undertaken to examine the effect of soil acidity on rooting patterns of 40-year-old Norway spruce trees by comparing fine and coarse roots among four stands which differed in soil acidity and Mg (and Ca) nutrition. The coarse root systems of four to five 40-year-old Norway spruce trees per stand were manually excavated. The sum of cross sectional area (CSA) at 60 cm soil depth and below of all vertical coarse roots, as a measure of vertical rooting intensity, was strongly reduced with increasing subsoil acidity of the stands. This pattern was confirmed when 5 additional acidic sites were included in the analysis. Fine root biomass in the mineral soil estimated by repeated soil coring was strongly reduced in the heavily acidified stands, but increased in the humic layer. Using ingrowth cores and a screen technique, we showed that the higher root biomass in the humic layer of the more acidic stands was a result of higher root production. Thus, reduced fine root biomass and coarse root CSA in deeper soil layers coincided with increased root growth in the humic layer. Root mineral analysis showed Ca/Al ratios decreased with decreasing base saturation in the deeper mineral soil (20–40 cm). In the top mineral soil, only minor differences were observed among stands. In general, low Ca/Al ratios coincided with low fine root biomass. Calcium/aluminum ratios determined in cortical cell walls using X-ray microanalysis showed a similar pattern as Ca/Al ratios based on analysis of whole fine roots, although the amplitude of changes among the stands was much greater. Aluminum concentrations and Ca/Al ratios in cortical cell walls were at levels found to inhibit root growth of spruce seedlings in laboratory experiments. The data support the idea that Al (or Ca/Al ratios) and acid deposition-induced Mg (and possibly Ca) deficiency are important factors influencing root growth and distribution in acidic forest soils. Changes in carbon partitioning within the root system may contribute to a reduction in deep root growth.  相似文献   

13.
Conservation of element concentration in xylem sap of red spruce   总被引:4,自引:0,他引:4  
We investigated the chemistry of xylem sap as a marker of red spruce metabolism and soil chemistry at three locations in northern New England. A Scholander pressure chamber was used to extract xylem sap from roots and branches cut from mature trees in early June and September. Root sap contained significantly greater concentrations of K, Ca, Mg, Mn, and Al than branch sap. Sap collected in June contained a signficantly greater concentration of Mn than sap collected in September. Sap concentration was related to forest location for N and Mn. Variations in concentrations of N and K were significantly related to the interaction of tree organ and month of collection. Variations in concentrations of P, Cu, Zn, and Fe were not attributable to tree organ, month of collection, or forest location. Patterns of element concentration in xylem sap compared to previously published data on soil solution chemistry indicated a high degree of homeostatic control of xylem sap chemistry. This control likely represents a significant allocation of resources within the tree energy budget.  相似文献   

14.
在我国南方亚热带湿地松人工林设置了3个水平的野外氮添加控制试验(0、40、120 kg N·hm-2·a-1),于2014和2015年生长季高峰期(7月底)和末期(10月底)采集湿地松成熟绿叶和落叶,分析外源氮添加对湿地松叶片碳(C)、氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)、铝(Al)、铁(Fe)、锰(Mn)9种元素浓度及其养分回收的影响.结果表明: N添加显著增加了湿地松绿叶中N、Al、Mn浓度,降低了P和2014年的Ca浓度,而对C、K、Mg、Fe 浓度无显著影响.N添加显著提高了绿叶N/P,且该比值及绿叶养分浓度(N、P、Mn)对N添加的响应依赖于N的剂量(高N条件下响应更强).N添加显著降低了2015年N的回收效率,提高了2014年K的回收效率.相比于养分回收效率,回收能力对增加的可利用氮响应更强.N添加显著降低了N的回收能力,提高了P、K的回收能力,降低了枯叶中的Fe浓度,而对枯叶中Ca、Mg、Al、Mn浓度无显著影响.这表明,N添加对叶片化学计量的影响因不同元素而异,植物会通过调整自身的养分内循环(养分回收)来应对环境变化.N添加提高了绿叶N/P和K/P,说明氮添加条件下植物生长可能由N、P共同限制转变为P限制.氮添加增加了绿叶中Al、Mn浓度,表明N添加下湿地松面临潜在的金属离子毒性风险升高.  相似文献   

15.
Eva Ritter 《Plant and Soil》2007,295(1-2):239-251
Afforestation has become an important tool for soil protection and land reclamation in Iceland. Nevertheless, the harsh climate and degraded soils are growth-limiting for trees, and little is know about changes in soil nutrients in maturing forests planted on the volcanic soils. In the present chronosequence study, changes in C, N and total P in soil (0–10 and 10–20 cm depth) and C and N in foliar tissue were investigated in stands of native Downy birch (Betula pubescens Enrh.) and the in Iceland introduced Siberian larch (Larix sibirica Ledeb.). The forest stands were between 14 and 97 years old and were established on heath land that had been treeless for centuries. Soils were Andosols derived from basaltic material and rhyolitic volcanic ash. A significant effect of tree species was only found for the N content in foliar tissue. Foliar N concentrations were significantly higher and foliar C/N ratios significantly lower in larch needles than in birch leaves. There was no effect of stand age. Changes in soil C and the soil nutrient status with time after afforestation were little significant. Soil C concentrations in 0–10 cm depth in forest stands older than 30 years were significantly higher than in heath land and forest stands younger than 30 years. This was attributed to a slow accumulation of organic matter. Soil N concentrations and soil Ptot were not affected by stand age. Nutrient pools in the two soil layers were calculated for an average weight of soil material (400 Mg soil ha−1 in 0–10 cm depth and 600 Mg soil ha−1 in 10–20 cm depth, respectively). Soil nutrient pools did not change significantly with time. Soil C pools were in average 23.6 Mg ha−1 in the upper soil layer and 16.9 Mg ha−1 in the lower soil layer. The highest annual increase in soil C under forest compared to heath land was 0.23 Mg C ha−1 year−1 in 0–10 cm depth calculated for the 53-year-old larch stand. Soil N pools were in average 1.0 Mg N ha−1 in both soil layers and did not decrease with time despite a low N deposition and the uptake and accumulation of N in biomass of the growing trees. Soil Ptot pools were in average 220 and 320 kg P ha−1 in the upper and lower soil layer, respectively. It was assumed that mycorrhizal fungi present in the stands had an influence on the availability of N and P to the trees. Responsible Editor: Hans Lambers.  相似文献   

16.
The lichen Hypogymnia physodes was sampled from spruce trunks and we used to assess natural elements in the throughfall from pairs of neighbouring beech (Fagus sylvatica) and spruce (Picea abies) canopies in an unmanaged forest reserve. The beech bark (pH = 4.36 ± 0.13) was less acidic than spruce bark (3.71 ± 0.06). After a 1 yr transplantation onto trunks, lichens on beech had significantly higher concentrations of Ca, K, Mg and P than on spruce, and lower Mn, Zn and C, but had similar Al, B, Fe, N, Na, S and Si concentrations. Base cations (Ca, Mg, K) in lichens highly significantly increased with bark pH, with no overlap between tree species neither for base cations, nor for pH. The results are consistent with the view that trees modify the elemental composition of lichens in their dripzone, and that trees at least to some extent can modify the elemental chemistry of their local surroundings and thus influence ecosystem processes. We discuss lichen transplantation as a method to estimate long-term effects of tree species on local chemical environments.  相似文献   

17.
Richardson  Andrew D. 《Plant and Soil》2004,260(1-2):291-299
Red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea[L.] Mill) are the dominant conifer species at treeline in the mountains of the northeastern United States. The objective of this study was to investigate changes in foliar chemistry of these species along both elevational (below, at, and above treeline) and canopy light (sun vs. shade leaves) gradients. Nutrient concentrations (mass basis) did not show any significant (all P>0.05) differences among elevations, although mean concentrations of all macronutrients (N, P, K, Ca, Mg) tended to be higher at low elevation sites compared to high elevation. This result contradicts the traditional view that plants in cold growth environments are adapted to maintain high foliar nutrient concentrations, but it also gives only weak support for the hypothesis that nutrient limitation plays a role in determining treeline location. Foliar concentrations (mass basis) of lignin (both sun and shade needles) and cellulose (sun needles only) decreased sharply and significantly with increasing elevation, but foliar concentrations of hemicellulose did not change with elevation. These results are consistent with the hypothesis that as a result of carbon limitation at high elevation, synthesis of the most expensive fiber constituent (i.e. lignin) is reduced more than that of the least expensive fiber constituent (i.e. hemicellulose). The reduced lignin concentration at high elevation may have implications for nutrient cycling in this ecosystem where cold temperatures limit decomposition rates.  相似文献   

18.
Summary Seasonal changes in the foliar concentration of macronutrients (N, P, K, Ca and Mg) in sapling trees ofEucalyptus saligna Sm. andE. wandoo Blakely growing in rehabilitated bauxite mined areas in the Darling Range of Western Australia are described. Foliar N concentration decreased with age of the fully expanded leaf tissue. Leaf N concentrations were also high when rates of litter decomposition were expected to be high during the period of early spring. The greatest foliar N difference between trees growing in good soil conditions and those from poorer soil conditions also occurred during this period. Levels of P in leaves were highest in young developing leaves but once the leaves reached full size, no seasonal trend in P concentration was observed. Foliar K was lower during the winter and probably related to the period of maximum leaching by precipitation. High foliar K during summer, however, could be related to the role of K in lowering cellular water potential. Leaf Ca was highest during early sping. Low mobility of cellular Ca during the cool portion of the year was indicated. Foliar Mg showed a weak pattern of decreasing concentration with leaf age. The best season for sampling for these broadleafed evergreen species to provide information on plant nutrient status appears to be in spring.  相似文献   

19.
Summary Six stands of red alder (Alnus rubra Bong.) were sampled to assess the relationship between stand age and foliar chemical concentrations. The stands ranged in age from 9 to 45 years, and were located near Olympia, Washington, on sites of similar soil, aspect, and slope. Foliage was collected in July, and concentrations of most essential nutrients and aluminum were determined. Foliar concentrations of these elements varied among the different stands. Highest concentrations of N, P, Ca, S, Fe, and Al were found in trees of the youngest stand. Concentrations of N, P, S, and Fe were negatively correlated with stand age. The strongest correlation was obtained with P (r=–0.96,P<0.01), followed by N (r=–0.85,P=0.03). Results suggest that declining growth and deterioration of red alder stands with age may be related, at least in part, to limiting supplies of essential nutrients, especially P, N, and S.  相似文献   

20.
This study examines the heterogeneity of the Mn-hyperaccumulative trait in natural stands of the Australian rainforest tree species Gossia bidwillii (Myrtaceae). It is the only known Mn hyperaccumulator from Australia, and has an unusual spatial distribution of Mn in its leaves. G. bidwillii occurs naturally on a range of Mn-containing substrates including ultramafic soils. Leaf samples were collected from individual trees and four small stands, over a longitudinal range of ∼600 km. While no variation in the spatial distribution of foliar Mn was detected, considerable variation in Mn concentration was found. G. bidwillii was shown to accumulate Mn when growing on a variety of substrates, and dry weight (DW) foliar Mn concentrations of all trees sampled ranged between 2,740 and 27,470 μg g−1. The majority of samples exceeded 10,000 μg g−1, the threshold value for Mn hyperaccumulation. The overall frequency distribution of foliar Mn concentration was found to be bimodal, with a small outlier of extreme hyperaccumulators. Highest values were obtained from trees growing on a basaltic krasnozem clay, not ultramafic soil. Soil Mn concentrations were measured, and no relationship was found between foliar Mn concentrations and extractable Mn concentrations in host substrates. Some of the variation in the Mn-hyperaccumulative trait in G. bidwillii throughout its large natural distribution may reflect the unresolved taxonomy of this most widespread species in the genus Gossia. Ability to hyperaccumulate Mn may serve as an additional diagnostic tool for resolving this taxonomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号